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Characterization of the upstream 
and intron promoters of the gene 
encoding TAR DNA‑binding protein
Minami Hasegawa‑Ogawa & Hirotaka James Okano*

TAR DNA-binding protein (TDP-43, encoded by TARDBP) is a multifunctional protein that regulates 
transcription and RNA metabolism by binding DNA or RNA. TDP-43 has been implicated in the 
pathogenesis of amyotrophic lateral sclerosis (ALS) because abnormal accumulation of cleaved and 
phosphorylated C-terminal fragments of TDP-43 in motor neurons is a pathological hallmark of ALS. 
Here, we cloned and analyzed the promoter region of the TARDBP gene. TARDBP upstream sequences 
and/or intron/luciferase constructs were generated, and their promoter activity was experimentally 
assessed. The upstream region predictably exhibited promoter activity and identified putative cis-
acting elements, including the i-motif, was relevant for the regulation of TDP-43 expression. The 
cellular abundance of TDP-43 is strictly controlled, and its constancy is critically important for motor 
neuron survival. A machinery serving to maintain a constant level of TDP-43 is autoregulation via 
control of mRNA stability, a negative feedback system involving binding to the 3′ untranslated 
region of its own pre-mRNA. However, whether transcriptional mechanisms contribute to TDP-43 
autoregulation is unclear. We further showed that TDP-43 negatively regulates the TARDBP promoter 
and, surprisingly, that disease-causing TDP-43 mutants lacked this regulatory activity. These results 
allowed the elucidation of a novel transcriptional autoregulatory mechanism of TDP-43.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) 
in the brain motor cortex and spinal cord and is characterized by late-onset progressive muscle weakness and 
atrophy, and respiratory failure, leading to death typically within several years1, 2. Approximately 5–10% of ALS 
cases are familial (familial ALS, fALS), and more than 20 causative genes have been identified from fALS, such 
as superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), 
optineurin and chromosome 9 open reading frame 72 (C9orf72)3–16. Some causative gene mutations are found 
not only in fALS but also in sporadic ALS (sALS). In fact, more than 30 disease-related mutations of TDP-43 have 
been found, and some TDP-43 mutations are found in both fALS and sALS5–11. A characteristic disease hallmark 
in ALS pathology is the frequent presence of insoluble ubiquitin-positive inclusions in MNs of ALS patients1, 2. 
The neuronal inclusions located in the cytoplasm or nucleus include abnormally cleaved and phosphorylated 
C-terminal fragments of TDP-4317–23. In recent years, TDP-43 was shown to be present in the inclusions of 
more than 97% of ALS patients, including those with fALS and sALS, even if the patient did not harbor TDP-43 
mutations24. Although whether TDP-43 affects MNs by loss of function or gain of toxic function remains con-
troversial, these findings imply that TDP-43 plays a critical role in ALS onset and progression.

TDP-43, encoded by TARDBP, was initially identified as a transcriptional regulator that binds to a regula-
tory element in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat known as TAR and 
suppresses HIV-1 gene expression25. TDP-43 binds not only DNA but also RNA, thus regulating aspects of 
RNA metabolism such as alternative splicing and mRNA stability24, 26–28.TDP-43 includes two RNA recognition 
motifs (RRM) and binds to DNA/RNA targets. It is known that RRM1 is necessary and sufficient for DNA/RNA 
binding activity26.

In organisms, tight control of TDP-43 expression is very important. TDP-43 gene knockout (KO) was embry-
onically lethal in mice at E3.5–12.5, and even heterozygotic animals appeared to develop motor impairment late 
in life29. In addition, MN-specific TDP-43 conditional KO mice developed motor dysfunctions such as abnor-
mal clasping, decreased time on a rotarod, and late-onset loss of MNs30. These findings indicate that TDP-43 is 
essential for ontogeny and necessary for the survival of MNs. Furthermore, regarding the TDP-43 overexpression 
model, PrP promoter-mutant human TDP-43 transgenic (Tg) mice developed weak grip strength and spinal 
MN loss at 10 months of age31. Similarly, Thy-1 promoter-human wild-type (WT) TDP-43 Tg mice, in which the 
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transgene is expressed virtually all neurons in the central nervous system (CNS), showed an abnormal hindlimb 
reflex response, MN loss and ubiquitin-positive aggregates that were also positive for phosphorylated TDP-43 
in spinal MNs32. These findings indicate that excessive expression of mutant as well as WT TDP-43 leads to MN 
degeneration. Thus, inappropriate TDP-43 levels affect the homeostasis of MNs, and the level of TDP-43 should 
be strictly regulated within the appropriate range. A recent study showed that the envelope protein of human 
endogenous retrovirus K (HERV-K) is expressed in the motor cortex and spinal cord of patients with sALS but 
not in healthy controls33. Interestingly, TDP-43 interacts with consensus sequences in the HERV-K promoter and 
regulates its transcription. From these findings, although TDP-43 is often characterized as a regulator of RNA 
metabolism, TDP-43 as a transcriptional regulator may also have an important role in ALS pathophysiology.

Previous reports have shown that the TDP-43 level is strictly regulated by a negative feedback mechanism 
via an alternative polyA site in the 3′ untranslated region (UTR)23, 34, 35 of TDP-43 mRNA; however, whether 
the TDP-43 promoter is also involved in autoregulatory systems is unknown. The predicted TDP-43 promoter 
region was identified previously by using a promoter prediction database36, but no experimental study has been 
performed. In this study, we experimentally investigated whether the TARDBP upstream region shows promoter 
activity and demonstrated that the TARDBP promoter is involved in TDP-43 autoregulation.

Results
The TARDBP upstream region exhibits promoter activity.  Predicted promoter regions of TARDBP 
were determined by the programs ElDorado and Promoter Scan in a previous study36. We cloned the TAR-
DBP upstream sequence starting at nucleotide − 721, which included the predicted promoter region and the 
sequences described in Fig. 1. We also predicted the TARDBP promoter region using the UCSC genome browser. 
In agreement with the previous prediction, the region upstream of the transcription start site (TSS), exon 1 and 
intron 1 exhibited high enrichment with epigenetic markers of active transcription (Fig. 2a). Therefore, TARDBP 
upstream or intron/luciferase (encoded by Luc2) reporters containing the predicted region were generated on 
pcDNA3.1(−) backbone, and their promoter activities were determined (Fig. 2b). Promoter construct 1 (P1) 
includes the TARDBP upstream sequence from nucleotide -721 relative to the TSS, while P2 and P3 include 
intron 1 and intron 2, respectively. P3 was used as the negative control. Promoter activity was demonstrated by a 
luciferase assay in three cell lines—human cervical cancer HeLaS3, embryonic kidney HEK293T and neuroblas-
toma SH-SY5Y (Fig. 2c–e). P1 showed a marked luciferase signal compared with that of P3 in all cell lines; the P1 
signal was increased relative to that of P3 by 58.8-, 76.9- and 41.7-fold in HeLaS3, HEK293T and SH-SY5Y cells, 
respectively. Interestingly, P2 also exhibited a greater level of promoter activity than P3: increases of 17.8-fold 
in HeLaS3 cells, 12.8-fold in HEK293T cells and 10.7-fold in SH-SY5Y cells. To identify a functional promoter 
element, the additional reporters P4-9 were generated: P4 (− 300/− 1), P5 (− 721/− 223), P6 (− 721/− 281), P7 (− 

Figure 1.   TARDBP upstream sequences from the UCSC genome browser. The 721 nucleotides in the TARDBP 
upstream sequence include the predicted promoter region shown in a previous study. The red characters 
indicate the predicted i-motif region. Cytosine-rich regions are denoted by bolded text. The primer sequences 
used to generate the promoter/reporter constructs are underlined. Fwd forward primer, Rev reverse primer, TSS 
transcription start site. The UCSC genome browser shows 2 TSSs, and TSS1 is located 223 bp upstream of TSS2.
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527/− 223), P8 (− 527/− 281) and P9 (− 527/− 327) (Fig. 2f). P4 exhibited a 41.8% decrease in activity relative to 
P1, suggesting that the region between nucleotides − 721 and − 300 includes an important element for full pro-
moter activity (Fig. 2g). In the analysis of TARDBP upstream sequences, the UCSC genome browser showed two 
TSSs (TSS1 and TSS2; Fig. 2f) based on accession no. NM_007375 from NCBI. P5, which includes the upstream 
sequence of TSS1, showed a 28.3% decrease in activity relative to P1. Interestingly, P6, which has a deletion of 
58 nucleotides from the 3′ end of P5, resulted in a marked reduction (80.3% decrease) in promoter activity, sug-
gesting that the region including the proximal TSS (TSS1) is crucial in the promoter. When 104 nucleotides in 
the 3′ end of P7 were removed (forming P9), a significant decrease in promoter activity was observed (93.8% 
decrease). Our data suggested that both proximal and distal upstream sequences are necessary for maximal pro-
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Figure 2.   The TARDBP upstream region exhibits promoter activity. (a) Epigenetic marker activity in the 
human TARDBP region in 7 cell lines from ENCODE is exhibited by the UCSC genome browser. H3K4me1 
(often found near regulatory elements), H3K4me3 (often found near promoters) and H3K27ac (often found 
near active regulatory elements) are described. The TARDBP genomic position is chr1:11072679–11085549 in 
GRCh37/hg19, and the gene accession code from NCBI is NM_007375. (b) Schematic representation of the 
TARDBP upstream promoter and intron/Luc2 constructs (P1–3). The black boxes and lines indicate exons 
(Ex) and introns, respectively. + 1 indicates TSS2 (see Fig. 1). P1 (− 721/− 1), P2 (+ 123/ + 1094, intron 1), and 
P3 (+ 1345/ + 4222, intron 2). (c–e) TARDBP promoter/luciferase assay in 3 cell lines: HeLaS3 (c), HEK293T 
(d) and SH-SY5Y (e). n = 3 replicates; one-way ANOVA with post hoc Tukey’s test relative to P1. (f) Schematic 
representation of TARDBP promoter constructs (P4–9). P4 (− 300/− 1), P5 (− 721/− 223), P6 (− 721/− 281), P7 
(− 527/− 223), P8 (− 527/− 281), and P9 (− 527/− 327). (g) Luciferase assay of TARDBP promoter fragments. 
Quantitative analyses have n = 9 (P1), n = 6 (P7) and n = 3 (P4, P5, P6, P8 and P9) replicates. One-way ANOVA 
with post hoc Tukey’s test was used, and all error bars indicate the means ± SEMs. **P < 0.01, ***P < 0.001, 
****P < 0.0001. (h) Fluorescence images of TDP-43-Venus (Green) expression driven by the CMV promoter 
(CMVp) or TARDBP upstream promoter (P1) in HeLaS3 cells. Nuclei were stained with Hoechst (blue). Scale 
bar 10 μm.
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moter activity and that important cis-acting elements for regulatory factors may be present in the region between 
nucleotide − 327 and TSS1. Furthermore, to determine whether P1 can drive TDP-43 expression, constructs 
harboring TDP-43-Venus with the cytomegalovirus promoter (CMVp) or with P1 were transfected into HeLaS3 
cells. Although the level of TDP-43-Venus expression driven by P1 was lower than that driven by the CMV pro-
moter, a moderate level of TDP-43-Venus expression was driven by P1 (Fig. 2h).

The TARDBP intron exhibits promoter activity.  The P2 (full length of intron 1) reporter construct 
showed promoter activity levels that were 30.2% (HeLaS3), 16.7% (HEK293T), and 25.7% (SH-SY5Y) that of P1 
(Fig. 2c–e). Then, we generated various intron 1/luciferase promoter constructs to identify the element respon-
sible for promoter activity: P2 (1/972), P10 (1/500), P11 (501/972), P12 (603/972), P13 (666/972), P14 (737/972) 
and P15 (850/972) (Fig. 3a). The distal P10 (1/500) fragment exhibited a 68.9% decrease in luciferase activity 
relative to P2. In contrast, the promoter activity of the proximal P11 (501/972) fragment was similar to that of P2, 
suggesting that the proximal half of intron 1 is required for promoter activation (Fig. 3b). To further characterize 
the core promoter region, an additional 4 intron 1 fragments—P12 (603/972), P13 (666/972), P14 (737/972) and 
P15 (850/972)—were analyzed (Fig. 3a,c). The luciferase activity of the shortest fragment (P15) was significantly 
higher than that of the other fragments, indicating that P15 includes the core activation region in this promoter. 
However, the 912/972 fragment did not exhibit any promoter activity (data not shown). In addition, our results 
suggest that the core activation region in the intron 1 promoter may be regulated by the suppressor element in 
the region comprising nucleotides 666–850, since the activity of P15 was significantly higher than that of P13 
or P14. As the proximal half of the intron 1 promoter seems to have physiological significance, we analyzed the 
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Figure 3.   TARDBP intron 1 shows weak promoter activity. (a) Schematic images of human TARDBP intron 
1/luciferase reporter (P2, 10–15) constructs. Each fragment name is described below: P2 (1/972, full length 
of intron 1), P10 (1/500), P11 (501/972), P12 (603/972), P13 (666/972), P14 (737/972), and P15 (850/972). 
(b,c) Luciferase assay of TARDBP introns 1/luciferase reporter constructs. n = 5 (b) and n = 7 (c) replicates; 
one-way ANOVA with post hoc Dunnett’s test relative to P2 (b) or Tukey’s test (c). All error bars indicate the 
means ± SEMs. *P < 0.05, ***P < 0.001, ****P < 0.0001. (d) Analysis of TARDBP intron 1 sequence conservation 
among the chimpanzee, macaque, mouse, dog, chicken and zebrafish genomes using the UCSC genome 
browser. The thick black arrow indicates the proximal half of intron 1, P11 (501/972).
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conservation of the intron 1 sequence in vertebrates via the UCSC genome browser. Surprisingly, the proximal 
half of intron 1 is conserved only among primates such as macaques and chimpanzees but not mice, and it is 
deleted from the dog genome (Fig. 3d). TARDBP intron 1 sequences are described in Supplementary Figure S1.

To determine whether the noncoding exon 1 and intron 1 sequences in TARDBP are crucial for the activa-
tion of the upstream promoter, a reporter construct harboring an upstream promoter together with exon 1 and 
intron 1 was generated: P16 (− 721/+ 1094) (Fig. 4a). Relative to P1, P16 exhibited a marked 2.6-fold increase 
in promoter activity (Fig. 4b). To further study the activity of P16, P16-related constructs were generated: P16 
(Δexon 1) and P16 (Δintron 1) (Fig. 4a). P16 (Δexon 1) exhibited an 80.5% decrease in luciferase activity, in 
addition, P16 (Δintron 1) showed 2.6-fold increase in promoter activity relative to P16 (Fig. 4c). RT-PCR analysis 
revealed that the intron 1 of the P16 was spliced out and the spliced transcript with exon 1 was produced which 
was the same transcript generated with the P16 (Δintron 1) (Fig. S2a). These results indicate that the intron 1 
sequences are not crucial for the TARDBP promoter and suggest that exon 1 plays an important role for TDP-43 
expression probably by posttranscriptional mechanisms.

TDP‑43 inhibits the TARDBP promoter.  Although the expression level of TDP-43 is strictly autoregu-
lated via control of the stability of its own mRNA, whether TDP-43 acts on its own promoter as a transcriptional 
regulator is unclear. To determine the effects of TDP-43 on transcription, we conducted a promoter assay with 
repression or overexpression of TDP-43. We generated siRNA specifically targeting endogenous TDP-43 and 
confirmed the reduction in TDP-43 expression by immunoblotting (Fig. 5a). TDP-43 knockdown (KD) induced 
an 17.7% increase in the promoter activity of P16, while no effect in that of CMVp (Fig.  5b). In contrast, a 
significant reduction (16.6%) in promoter activity was observed with TDP-43 overexpression (Fig. 5c). Moreo-
ver, TDP-43 overexpression induced robust decrease of P16 activity (44.4%) under conditions of endogenous 
TDP-43 KD (Fig. 5d, Fig. S2b). Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that either 
overexpressed FLAG-TDP-43 or endogenous TDP-43 binds to the TARDBP promoter (Fig. 5e). Previous study 
showed that RRM1 of TDP-43 is necessary and sufficient for DNA/RNA binding activity26, 34. Phe 147 and 149 
located in the RRM1 form a canonical binding platform for nucleic acid association and mutations of these two 
key amino acids (F147/149L) is sufficient to abolish DNA/RNA binding and TDP-43 function26, 37. Our study 
demonstrated that TDP-43 (F147/149L) disrupted the negative effect for P16 activity (Fig. 5f). This result indi-
cates that the DNA binding efficacy of TDP-43 via RRM1 is crucial for transcriptional autoregulation and the 
RRM1 mutant has lost the activity of transcriptional autoregulation. Similar to P16, TDP-43 overexpression sig-
nificantly decreased P1 activity in a dose-dependent manner (Fig. 5i, Fig. S2d,e); however, it had no effect on P2 
activity (Fig. 5j). These results indicate that TDP-43 has a role as a negative regulator of the TARDBP promoter 
in the transcriptional autoregulatory machinery circuit.

-721

(a)

P16

Intron1

+122 +1095 +1344

+1094
Luc2

Ex1 Ex2
+1

(b)

P16
(Δexon 1)

Luc2
-721 -1 +123 +1094

P16
(Δintron 1)

Luc2
-721 -1 +122

(c)

-721
P1

-1
Luc2

****

**

P1
P2

P16

Relative luciferase activity (P1=1.0)
0.0 1.0 2.0 3.0 4.0

Relative luciferase activity (P16=1.0)

P16

P16 (Δexon 1) ****
P16 (Δintron 1) ****

0.0 1.0 2.0 3.0 4.0
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Figure 5.   TDP-43 regulates the activity of the TARDBP upstream and intron 1 promoter. (a) Immunoblot 
analysis of TDP-43 in HeLaS3 cells. Mock and KD indicate transfected negative control or TDP-43 siRNA, 
respectively. (b-d) Luciferase assay of P16 or CMV promoter activity with TDP-43 KD (b) or overexpression (c) 
or both endogenous TDP-43 KD and exogenous TDP-43 overexpression (d). n = 4 (b, c) and n = 8 (d) replicates; 
Welch’s t-test relative to Mock (b) or Empty vector (c,d). (e) ChIP assay of overexpressed FLAG-TDP-43 (top) or 
endogenous TDP-43 (bottom) binding to the TARDBP promoter in HEK293T cells. Immunoprecipitation was 
performed using anti-DDDDK (FLAG) antibody (for overexpressed FLAG-TDP-43) or anti-TDP-43 antibody 
(for endogenous TDP-43), then PCR was conducted using primer detecting TARDBP -721 to -431 (290 bp). 
Control IgG and Histone H3 antibody are used for negative or positive control for immunoprecipitation. 
(f) Luciferase assay of P16 promoter activity with RRM1 mutant TDP-43 (F147/149L) overexpression. n = 8 
replicates; one-way ANOVA with post hoc Tukey’s test. (g) Immunoblot analysis of FLAG-WT or 2 pathological 
TDP-43 mutants (G348C or A382T) overexpressed in HeLaS3 cells. Empty vector was transfected as the 
negative control. (h-j) Luciferase assay of P16 (h), P1 (upstream promoter) (i) and P2 (intron 1 promoter) (j) 
promoter activity with overexpression of WT TDP-43 or 2 pathological TDP-43 mutants (G348C or A382T). 
n = 7 (h), n = 3 (i) and n = 5 (j) replicates; one-way ANOVA with post hoc Tukey’s test. 2 μg of each reporter 
plasmids (P16, P1 and P2) were co-transfected with 1 μg of TDP-43/pFLAG-CMV2 in all overexpression 
experiments. Empty vector was used as the control in the overexpression experiment. All error bars indicate the 
means ± SEMs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Disruption of the autoregulatory machinery by TDP‑43 mutants.  To reveal whether disease-
causing TDP-43 mutants affect the TARDBP promoter, we conducted a promoter assay with coexpression of 
the disease-causing mutants (G348C or A382T) (Fig. 5g–j). We confirmed that FLAG-TDP-43 proteins (WT, 
G348C and A382T) were expressed at the similar levels and localized in nuclei without aggregation (Fig. 5g, 
Fig.  S2f). Furthermore, ChIP assay revealed that overexpressed pathological mutants (TDP-43 G348C and 
A382T) bound to the TARDBP promoter (Fig. S2g). While the WT TDP-43 exhibited a 22.4% reduction in P16 
activity compared to that of the empty vector control, the G348C and A382T mutants did not affect promoter 
activity (Fig. 5h). We further demonstrated that the 2 pathological mutants also did not affect P1 (upstream 
promoter) activity in contrast to WT (Fig. 5i). In addition, the G348C and A382T mutants induced P2 (intron 1 
promoter) activation significantly relative to that of the empty vector control or WT (Fig. 5j). Indeed, both the 
G348C and A382T mutants significantly induced P2 activity in a dose-dependent manner (Fig. S2h,i). These 
data indicate that TDP-43 with the G348C or A382T mutation disrupts the circuit of the transcriptional autoreg-
ulatory machinery.

The TARDBP upstream region includes the predicted i‑motif.  Based on the study of deletion 
mutants of the upstream region (Fig. 2f,g), cis-acting elements important for regulatory factors are likely to be 
present in the region between nucleotides − 327 and − 223. We noted that this region includes C-rich sequences 
(− 327/− 309), which are highly conserved between humans and mice (Fig. 6a). A previous study showed that a 
C-rich strand can form i-motif DNA secondary structures38–42. Nuclease hypersensitivity element III1 (NHE III1) 
in the c-MYC promoter contains five runs of cytosines that can form multiple i-motif structures and strongly 
control the transcriptional activity of the c-MYC oncogene. Interestingly, the TARDBP sequence upstream of 
P1 includes nine runs of cytosines (− 371/− 309), a predicted i-motif region; thus, we investigated whether the 
predicted i-motif region is important for P1 activation (Fig. 1). P17 (Δ− 371/− 307), in which the predicted 
i-motif region is deleted, showed a 55.8% decrease in promoter activity relative to P1, suggesting that cis-acting 
elements exist in the − 371 to − 307 region (Fig. 6b). Heterogeneous ribonucleoprotein (hnRNP) K, a DNA/
RNA-binding protein, is known to regulate the transcriptional activity of target genes by binding specifically to 
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Figure 6.   hnRNP K regulates the TARDBP promoter via the predicted i-motif region. (a) Conservation of 
C-rich sequences in predicted i-motif regions between humans and mice. The squares and asterisks indicate 
C-rich and conserved sequences, respectively. (b) Schematic representation and luciferase assay of the TARDBP 
promoter construct with deletion of the predicted i-motif (P17). n = 6 replicates; Welch’s t-test relative to P1. (c) 
Immunoblot analysis of FLAG-hnRNP K overexpression in HeLaS3 cells. (d) Luciferase assay of P1 and P17 
promoter activity with dose-dependent hnRNP K overexpression. Each reporter plasmid was co-transfected 
with 0, 0.5, 1 and 2 μg of hnRNP K/pFLAG-CMV2. n = 3 replicates; two-way ANOVA with post hoc Dunnett’s 
test relative to 0 μg of hnRNP K/pFLAG-CMV2. All samples transfected 2 μg of reporter vector and 2 μg 
of pFLAG-CMV2 vector (empty vector + hnRNP K). All error bars indicate the means ± SEMs. *P < 0.05, 
****P < 0.0001. (e) ChIP assay of overexpressed FLAG-hnRNP K (top) or endogenous hnRNP K (bottom) 
binding to the TARDBP promoter in HEK293T cells. Immunoprecipitation was performed using anti-FLAG 
antibody (for overexpressed FLAG-TDP-43) or anti-hnRNP K antibody (for endogenous hnRNP K), then PCR 
was conducted using primer detecting TARDBP − 721 to − 431 (290 bp). Control IgG and Histone H3 antibody 
are used for negative or positive control for immunoprecipitation.
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i-motifs42–46. Particularly, recent studies revealed the functional relationship between TDP-43 and hnRNP K in 
ALS47, 48. We thus hypothesized that hnRNP K may regulate TARDBP promoter activity as a part of the role of 
their co-regulation. Indeed, hnRNP K activated P1 and P16 in a dose-dependent manner but did not activate 
P17 or the CMVp (Fig. 6c,d, Fig. S3a,b). As overexpression of TDP-43 did not affect hnRNP K level, the negative 
effect of TDP-43 on TARDBP promoter was not due to the downregulation of hnRNP K (Fig. S3h). Furthermore, 
ChIP assay revealed that either overexpressed FLAG-hnRNP K or endogenous hnRNP K binds to the TARDBP 
promoter (Fig. 6e). We also conducted a promoter assay with repression of hnRNP K and remarkable reduction 
in P1 activity (68.4%) was observed with hnRNP K KD (Fig. S3c,d). These data suggest that TARDBP promoter 
activity is regulated by hnRNP K via the region (− 371 to − 307) which includes predicted i-motif. Since insuf-
ficiency of hnRNP K affect the activity of CMVp (38.2%), it is suggested that hnRNP K may also have a role in 
the general promoter (Fig. S3e).

Discussion
In the present study, we experimentally identified the promoter region of the TARDBP gene for the first time. A 
previous study predicted the TARDBP promoter region using two prediction software packages, ElDorado and 
Promoter Scan36. TARDBP promoter regions were predicted in the 502 nucleotides upstream of exon 1, across 
exon 1 and 66 nucleotides downstream of exon 1 and in two regions of intron 1 (212 and 613 nucleotides) by 
ElDorado and in the − 577 to − 326 region by Promoter Scan. Our promoter prediction via the UCSC genome 
browser also indicated the existence of promoters in the TARDBP upstream region and intron 1 (Fig. 2a). Con-
sistent with the predictions, marked promoter activity was experimentally detected in the upstream − 721/− 1 
region, and intron 1 also exhibited relatively weak promoter activity—approximately 25% that of the upstream 
promoter—in 3 cell lines (Fig. 2c–e). However, it is not clear whether the intron 1 promoter is active and can 
start transcription from exon 2 in vivo. Then, we attempted to search a database (DataBase of Transcriptional 
Start Sites (DBTSS), https://​dbtss.​hgc.​jp) that presents the exact positions of TSSs in the genome49. We found 
that transcription actually starts from TSS2 in most TDP-43 transcripts, but only a minor population of TDP-43 
transcripts in the human fetal brain have a TSS within exon 2 (data not shown). We also showed that the proximal 
half of TARDBP intron 1, the region that includes a critical element for promoter activity, is highly conserved 
in chimpanzees and macaques but not in mice, dogs, chickens or zebrafish (Fig. 3d). This finding indicates that 
the intron 1 regulatory element may have been acquired by primates via evolution.

Generally, it is known that splicing is a post-transcriptional event enhancing the gene expression. Indeed, 
the sequential region of TARDBP (upstream/exon 1/intron 1), whose intron 1 was spliced out producing the 
transcript with exon 1 (Fig. S2a), exhibited 2.60-fold stronger activity than the upstream promoter alone (Fig. 4b). 
Interestingly, P16 (Δintron 1), which produces same transcript as P16 without splicing, exhibited 2.58-fold 
increase the promoter activity than P16 (Fig. 4c). There is no evidence supporting that exon 1 has an influence 
on the upstream promoter activity, however it may enhance the gene expression by posttranscriptional mecha-
nisms as a 5′UTR of the transcript.

In present study, we demonstrated a regulatory effect of hnRNP K on TARDBP upstream promoter activity. 
hnRNP K has multiple regulatory functions in events such as chromatin remodeling, transcription, splicing, 
mRNA stability and translation processes45. Regarding transcriptional regulation, hnRNP K activates the c-src 
promoter and promotes its transcription in cooperation with the transcription factor Sp145, 46. In contrast, hnRNP 
K has suppressive effects on several transcriptional targets. Indeed, hnRNP K suppresses the thymidine kinase 
gene promoter and inhibits Sp1- and Sp3-mediated transactivation of the neuronal nicotinic acetylcholine recep-
tor β4 subunit45, 50. Previous reports demonstrated that hnRNP K regulates the transcription of its target promoter 
by interacting with the i-motif, a unique secondary structure of single-stranded DNA. The i-motif is a tetraplex 
structure formed by hemiprotonated cytosine-cytosine (C–C+) base pairing under acidic conditions in DNA 
sequences enriched in cytosine38–42. In fact, hnRNP K is reported to bind selectively to the i-motif and positively 
modulate KRAS transcription40, 44. In our study, ChIP assay experiment revealed the interaction between hnRNP 
K and TARDBP promoter region (Fig. 6e) while it is still unclear whether hnRNP K directly binds to the pre-
dicted i-motif of the TARDBP upstream promoter. Since the P17 reporter construct lacking the predicted i-motif 
region showed a reduction in promoter activity to half of that of P1 (Fig. 6b) and lost responsiveness to hnRNP 
K (Fig. 6d), indicating that this region is a critical cis-acting element for TARDBP upstream promoter activity 
and for transcriptional activation by hnRNP K. In fact, the predicted i-motif region of the TARDBP upstream 
promoter is highly conserved between humans and mice (Fig. 6a), which supports our conclusion. Unfortunately, 
we could not show the regulatory effect of hnRNP K on the transcription of the endogenous TARDBP (Fig. S3f,g), 
however it might be due to the potent autoregulation system of TDP-43 which makes it difficult to prove. Recent 
reports demonstrated the functional interaction between hnRNP K and TDP-43. hnRNP K has been shown to 
bind to TDP-43 in the cytoplasm and facilitate the control of TDP-43 trafficking. Moreover, attenuated expres-
sion of hnRNP K is observed in ALS patient fibroblasts and in mouse ALS models47. Indeed, there is a global 
reduction of hnRNP K expression in ALS spinal cord motor neurons compared to healthy controls48. Thus, the 
accumulating evidence strongly suggests a potential association of hnRNP K with ALS pathogenesis via TDP-43 
regulation. The present study indicates a role for hnRNP K in controlling TDP-43 which led us to further explore 
the physiological and pathophysiological significance of the mutual regulation between TDP-43 and hnRNP K.

C9orf72 is the most common causative gene of both fALS and sALS, and GGG​GCC​ repeat expansion has 
been reported in the UTR of C9orf723, 15, 16. A GGG​GCC​ hexanucleotide repeat expansion is located in the first 
intron of the C9orf72 gene, and ALS patients possess 500 to > 5000 repeats, whereas individuals without disease 
possess 2–19 repeats15, 16. A recent study reported that the antisense GGC​CCC​ repeat forms an i-motif and that 
hnRNP K preferentially binds to the antisense repeat51–53. This finding implies that the excessive presence of 

https://dbtss.hgc.jp
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i-motifs in ALS patients with C9orf72 repeat expansion may trap i-motif-binding proteins, such as hnRNP K, 
and affect the TARDBP promoter.

Our results suggest that the transcriptional regulation of TDP-43 by its own promoter is also involved in the 
autoregulatory machinery in a manner controlled by mRNA stability. TDP-43 KD significantly increased P16 
activity (Fig. 5b), indicating that TDP-43 has a negative effect on its own promoter activity. Indeed, overexpres-
sion of TDP-43 significantly reduced the activity of P16 and P1 upstream promoter to 83.4% and 73.9% that 
of baseline, respectively (Fig. 5c,i). These findings indicate that TDP-43 is a negative regulator of the upstream 
promoter. Our ChIP assay experiment revealed that TDP-43 binds to the TARDBP promoter region (Fig. 5e), 
therefore our findings imply that the transcriptional regulation of TARDBP promoters by TDP-43 plays an impor-
tant role in the autoregulation of the TDP-43 level. In conclusion, the TDP-43 expression is strictly regulated to 
an appropriate level by multiple autoregulatory mechanisms.

As reported previously, either an excess or deficiency of TDP-43 induced MN disorders29–32; thus, elucidating 
the involvement of mutant TDP-43 in TDP-43 autoregulation is very important. Regarding the 2 most common 
mutants of TDP-4354 used in the present experiments, G348C and A382T, 2 mutants tend to induce compara-
tively early onset of fALS55. Yamanaka and colleagues reported that the mutants exhibited longer half-lives than 
WT TDP-43 and speculated that the longer half-lives of these mutant proteins were correlated with accelerated 
ALS onset55; G348C and A382T mutants belong to the longest half-life group among 7 disease causing mutants 
(G298S, A315T, M337V, Q343R, G348C, N352S and A382T). Our transient expression studies demonstrated 
that there are no significant differences in the subcellular localization pattern and the promoter binding ability 
among WT and mutant TDP-43s (Fig. S2f,g).

In particular, among the 2 mutants selected in our study, the A382T mutant exhibited the longest half-life 
and was associated with the earliest ALS onset, indicating that A382T is one of the most “malignant” mutants. 
In our experiment, compared with WT TDP-43, A382T did not affect TARDBP upstream promoter activity 
but induced significant activation of the intron 1 promoter (Fig. 5i,j). In other words, A382T is not involved in 
the negative feedback loop via the TARDBP upstream promoter and can maintain a high level of expression by 
escaping from the autoregulatory machinery.

Our investigation succeeded in experimentally detecting promoter activity in the TARDBP upstream region. 
As WT TDP-43 but not mutant TDP-43 negatively regulated its own promoter activity, our findings suggest that 
the TDP-43 mutants may contribute to maintaining high levels of TDP-43 transcription and promoting the early 
onset and progression of ALS.

Methods
DNA construction and siRNA.  Human TARDBP upstream and intronic genomic DNA were isolated 
from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (201B7) using TRIzol reagent 
(Invitrogen) following the manufacturer’s instructions. The cloned genome and luciferase (Luc2) gene liberated 
from the Luc2/pGL4 vector (Promega) were subcloned into the pcDNA3.1 (−) vector (Invitrogen). Promoter 
fragment/Luc2 constructs were produced using the primers described in Table  S3. The hnRNP K/pFLAG-
CMV2 plasmid used for hnRNP K overexpression was a gift from Dr. Yano. For TDP-43-Venus overexpression, 
TDP-43-Venus/pcDNA3 and TARDBP upstream region-TDP-43-Venus/pcDNA3.1(−) were constructed using 
the former plasmid. For the promoter assay, TDP-43 (WT, G348C, A382T and F147/149L) were cloned into the 
pFLAG-CMV2 vector (Sigma). All primer sequences used for plasmid construction are described in the Sup-
plemental Information (Tables S2, S3). PCR for the construction was conducted using PrimeSTAR MAX (Takara 
Bio) according to the manufacturer’s protocol.

For TDP-43 KD, double-stranded siRNA targeting TDP-43 was originally designed using siDirect software 
(Version 2.0, http://​sidir​ect2.​rnai.​jp/). The target and negative control siRNA sequences are described in Table S1.

Cell culture.  HEK293T and HeLaS3 cells were cultured in DMEM (Sigma) containing 10% FBS (GE Health-
care), nonessential amino acids (NEAA) (Gibco) and 1% penicillin–streptomycin (Wako). SH-SY5Y cells 
were maintained in DMEM/F12 (Sigma) containing 10% FBS, 1% penicillin–streptomycin and NEAA. hiP-
SCs (201B7) were purchased from RIKEN Cell Bank and maintained in StemFit medium (Ajinomoto). Neu-
rospheres were produced and maintained according to a previous report56. Briefly, cells were cultured in KBM 
neural stem cell medium (Kohjin Bio) supplemented with 2% B27 (Gibco), 20 ng/mL bFGF (Wako), 10 ng/
mL LIF (Millipore), 10 ng/mL Y-27632 (Wako), 3 μM CHIR (Cayman Chemical Company), 2 μM SB431542 
(Sigma), 1 μM retinoic acid (Wako), and 1 μM purmorphamine (Cayman Chemical Company).

Luciferase assay.  For plasmid transfection, cells were transfected with 2 μg of promoter/luciferase vector 
(or 1 μg of CMV promoter/luciferase vector) using Lipofectamine 3000 Reagent (Invitrogen) according to the 
manufacturer’s instructions. After transfection for 24 (HeLaS3 and HEK293T) or 48 h (SH-SY5Y), a promoter 
assay was performed using a luciferase assay system (Promega) according to the manufacturer’s instructions. 
Briefly, cells were collected with the extraction buffer provided in the kit and centrifuged at 12,000×g for 2 min 
at 4 °C. The supernatants were collected for the conduction of subsequent experiments. Luminescence detection 
was performed using a WSE-6100H LuminoGraph I (Atto). The signal quantification was conducted ImageJ 
(Fiji) software (Version 1.53, National Institute of Health)57.

For multiple plasmid cotransfection, HeLaS3 cells were transfected with 2 μg of promoter/luciferase vector; 
0, 0.5, 1 or 2 μg of FLAG-hnRNP K or TDP-43 plasmid; and 2, 1.5, 1 or 0 μg of pFLAG-CMV2 empty vector 
to equal total 4 μg of plasmid DNA in each group. For siRNA and plasmid DNA cotransfection, HeLaS3 cells 
were transfected with 60 nM (final conc.) siRNA using Lipofectamine RNAiMAX (Invitrogen), and after 24 h, 

http://sidirect2.rnai.jp/


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8720  | https://doi.org/10.1038/s41598-021-88015-y

www.nature.com/scientificreports/

additional transfection was performed using Lipofectamine 3000 with 2 μg of promoter/luciferase vector. After 
another 24 h, a luciferase assay was conducted.

Immunocytochemistry and fluorescence observations.  For immunocytochemistry, HeLaS3 cells 
transfected with the 1 μg of TDP-43 (WT, G348C or A382T) /pFLAG-CMV2 fixed with 4% paraformaldehyde 
(PFA) for 5 min at room temperature (RT) and washed with PBS after 24 h of transfection, and permeabilized 
with 0.01% Triton X-100 for 15 min at RT. After washing with PBS and incubation in 5% BSA for one hour at 
RT, cells were incubated with the primary antibodies, anti-DDDDK-tag (MBL M185-3 1:1000), for overnight at 
4 °C. The cells were washed with PBS, then incubated with the secondary antibody Alexa 488-conjugated anti-
body (Molecular Probes A11001, 1:200) and Hoechst 33342 (Molecular Probes H3570, 1:1000), for one hour at 
RT. After washing with PBS, fluorescence was observed using a confocal laser scanning microscope (Zeiss) with 
a Plan Apochromat 20×/0.8 objective. For promoter reporter overexpression and nuclear staining, HeLaS3 cells 
transfected with 1 μg of the Venus reporter vector (driven by CMV promoter or P1) were fixed with 4% PFA for 
5 min RT and washed with PBS after 48 h of transfection. Incubation with Hoechst 33342 was performed for one 
hour. After washing with PBS, fluorescence was visualized using the confocal microscope with a Plan Apochro-
mat 63×/1.4 oil immersion objective. Comparison images were acquired with the same laser intensity, exposure 
time, and filter. Details are described in each figure legend.

RT‑PCR analysis.  Total RNA from HeLaS3 cells transfected P16 or P16 (Δintron 1) was extracted using 
TRIzol reagent and RNeasy Plus Mini Kit (Qiagen). cDNA synthesis and PCR were performed using Rever-
Tra Ace α (TOYOBO) and EmeraldAmp PCR Master Mix (TaKaRa) following the manufacturer’s instructions. 
Primers for the detection of the transcript of exon 1/intron 1/luciferase are described in Table S4.

Immunoblotting.  Cultured cells were washed with PBS, and protein was extracted with extraction buffer 
containing Tissue Extraction Reagent I (Wako), protease inhibitor cocktail (Roche) and a phosphatase inhibitor 
(Nacalai Tesque) on ice for 10 min. The extracted solutions were transferred into 1.5 mL tubes and centrifuged at 
15,000 rpm for 15 min at 4 °C. Supernatants were collected in new tubes and used for subsequent experiments. 
Protein lysates were mixed with 2 × Laemmli sample buffer (Bio-Rad) and 2-mercaptoethanol (Sigma) and 
boiled for 3 min at 95 °C. Protein samples were separated by electrophoresis on 10% TGX FastCast Acrylamide 
gels (Bio Rad) and transferred to Immobilon-P membranes (Millipore). Nonspecific antibody reactions were 
blocked with 1% skim milk (Wako) for 30 min at RT. Membranes were incubated with primary antibody at 4 °C 
overnight. Membranes were then washed with TBST and incubated with horseradish peroxidase (HRP)-conju-
gated secondary antibodies for 2 h at RT. After a wash in TBST, protein signals were detected by Western BLoT 
Chemiluminescence HRP Substrate (Takara Bio) using the WSE-6100H LuminoGraph I (Atto). The following 
primary antibodies were used: anti-TDP-43 (Protein Tech 10782-2-AP, 1:1000), anti-hnRNP K (MLB RN019P, 
1:1000), anti-DDDDK (FLAG)-tag (MBL M185-3, 1:10000), anti-GAPDH (Cell Signaling #5174, 1:1000), and 
anti-β-actin (Sigma A1978, 1:2000). The secondary antibodies are described below: HRP-conjugated goat anti-
rabbit IgG (Millipore AP307P, 1:2000) and HRP-conjugated goat ant-mouse IgG (Millipore AP308P, 1:2000).

Chromatin immunoprecipitation (ChIP) assays.  ChIP assays were performed using SimpleChIP 
Enzymatic Chromatin IP Kit (Cell Signaling) as described by manufacturer’s protocol. Briefly, HEK293T cells 
were fixed in 1% formaldehyde for 10 min at RT, quenched, and enzymatically digested for 20 min at 37 °C. For 
overexpression analysis, the cell fixation was performed after 24 hr from transfection. Chromatin was briefly 
sheared by sonication (three times, 20 s each), and was incubated overnight at 4 °C with specific antibody, anti-
DDDDK (FLAG)-tag (MBL M185-3, 6.7 ng/μL), anti-TDP-43 (Protein Tech 10782-2-AP, 1.0 ng/μL) or anti-
hnRNP K (MBL RN019P, 10 ng/μL). Control IgG and Histone H3 antibody were provided with the ChIP kit as a 
negative or positive control for the immunoprecipitation. Approximately 4 × 106 cells were used for all immuno-
precipitations. Immunoprecipitated chromatin was then incubated with protein G magnetic beads, washed and 
eluted. After reversal of the cross-links and purification, precipitated DNAs were analyzed by PCR with specific 
primers using EmeraldAmp PCR Master Mix (TaKaRa). The primers are described in Table S5.

Statistical analysis and graphs.  Statistical data were analyzed by GraphPad Prism 7.03 software (Graph-
Pad Software). The significance level was set at 0.05, and Welch’s t test (1 variable, 2 groups), one-way ANOVA (1 
variable, > 2 groups) and two-way ANOVA (2 variable, > 2 groups) were used. After ANOVA, additional analysis 
was performed utilizing Tukey’s or Dunnett’s post hoc test, and details are provided in the figure legends.
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