# Table 1 Test program with flow depth h = 0.10 m and cross-sectional average velocity U = 0.10 m/s (C = log at center, S = log at side, e = emergent, s = submerged).

Test Discharge Log length Log diameter Relative submergence Log angle Wake length Reattach-ment length TKE length Integral length scale
# Q (l/s) L (m) d (m) h/d (–) γL (°) Lw (m) Lr (m) LTKE (m) $$\overline{{\Lambda_x}}$$(m) $$\Lambda_{peak}$$(m)
C1e 12.72 0.75 0.11 0.91 90 3.50 2.00 1.3 ± 0.7 0.77
C2e 12.72 0.50 0.11 0.91 90 2.00   1.50 0.16 ± 0.08 0.46
C3e 12.72 0.25 0.11 0.91 90 2.50   0.23 0.04 ± 0.01 0.20
C4s 12.72 0.50 0.09 1.63 90 4.50   0.27 0.08 ± 0.05
C5s 12.72 0.50 0.06 1.17 90 6.00   0.19 0.07 ± 0.07
C6s 12.72 0.50 0.09 1.17 45 5.50   0.18 0.06 ± 0.03
C7s 12.72 0.50 0.09 1.17 30 3.50   0.27 0.04 ± 0.04
S1e 12.72 0.50 0.11 0.91 90 6.50 5.00 0.23
S2e 12.72 0.25 0.11 0.91 90   3.50 3.50 0.23 ± 0.10
S3e 12.72 0.13 0.11 0.91 90   1.50 1.50 0.09 ± 0.07
S4s 12.72 0.50 0.09 1.17 90   3.00 0.27 0.05 ± 0.04
S5s 12.72 0.25 0.09 1.17 90   2.50 0.18 0.11 ± 0.08
1. The measured wake length Lw and reattachment length Lr exhibit a consistent uncertainty of Ο(L) due to measurement spacing. Longitudinally averaged $$\Lambda_x$$ with standard deviation (except for S1e, which is a single measurement point). For cases with a VS (C1e–C3e), the peak integral length scale $$\Lambda_{peak}$$ is also listed.