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A prognostic dynamic model 
applicable to infectious diseases 
providing easily visualized guides: 
a case study of COVID‑19 in the UK
Yuxuan Zhang1,6,7, Chen Gong2,7, Dawei Li3,7, Zhi‑Wei Wang4,5, Shengda D. Pu2, 
Alex W. Robertson2, Hong Yu6* & John Parrington1*

A reasonable prediction of infectious diseases’ transmission process under different disease control 
strategies is an important reference point for policy makers. Here we established a dynamic 
transmission model via Python and realized comprehensive regulation of disease control measures. 
We classified government interventions into three categories and introduced three parameters as 
descriptions for the key points in disease control, these being intraregional growth rate, interregional 
communication rate, and detection rate of infectors. Our simulation predicts the infection by COVID‑
19 in the UK would be out of control in 73 days without any interventions; at the same time, herd 
immunity acquisition will begin from the epicentre. After we introduced government interventions, a 
single intervention is effective in disease control but at huge expense, while combined interventions 
would be more efficient, among which, enhancing detection number is crucial in the control strategy 
for COVID‑19. In addition, we calculated requirements for the most effective vaccination strategy 
based on infection numbers in a real situation. Our model was programmed with iterative algorithms, 
and visualized via cellular automata; it can be applied to similar epidemics in other regions if the basic 
parameters are inputted, and is able to synthetically mimic the effect of multiple factors in infectious 
disease control.

Coronavirus disease (COVID-19) is an infectious respiratory syndrome caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and characterised by high overall human-to-human transmission  potential1. 
The epidemic rapidly spread regionally at the end of 2019 and subsequent follow on caused a global pandemic and 
left the world facing a grave social as well as economic  crisis2. Yet until an effective vaccination programme for all 
populations or specific medicine to combat COVID-19 is realised, it is likely that the possibility of a resurgence 
in contagion will exist so that disease control may become a normal part of everyday  life3. In most world regions, 
the initial basic reproduction number  (R0) of COVID-19 was around 2.2–6.474–9. In comparison, for MERS and 
SARS, the overall  R0 values were 0.47 and 0.95,  respectively10, indicating that the transmissibility of COVID-19 
is up to 10 times higher than that of previous coronavirus-caused infectious respiratory syndromes. In addition,, 
the complex epidemiological properties of COVID-19 which include a long infectious period (infectiousness 
during the incubation period)11, the existence of asymptomatic infectors who have a similar infection capacity 
(30–60%)10,12, a high overall self-healing rate (80%)13, yet clinical severity in a minority of  individuals14, have 
made the disease different from other antecedent epidemics. As such the unprecedentedly enormous infection 
scale and limited healthcare system capacity makes it challenging to formulate a proper disease control strategy 
in the COVID-19 era.

Over the last year, many previous epidemic studies have successfully provided insights for understanding, 
predicting and simulating the development of COVID-19 from multiple perspectives, such as calculating and 
predicting the evolving basic reproduction  number4; quantitively predicting epidemiological  characteristics10,15; 
evaluating particular disease control measures such as social  distancing16, controlling  mobility17–20; analysing 
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transmission dynamics in special populations such as the elderly, obese individuals, and  diabetics3,21,22; evaluating 
various factors affecting disease transmission from urban health, meteorological and geo-environmental perspec-
tives, such as water systems, wind speed, and air  pollution23–25; and also forecasting the subsequent impacts on 
the social environment and  economy26,27. Epidemic models evaluating the effect and efficiency of disease control 
measures have provided good reference points for policy  makers5,17,21,28,29, and in this study we aim to establish 
such a model to systematically simulate different measures, and with consideration of the special epidemiologi-
cal characteristics. Most of the existing models follow the existing principle of susceptible-infectious-recovered 
(SIR)7; here we established a novel infectious-hospitalized-self-heal (IHS) model, with application of an iterative 
algorithm; asymptomatic infectors, hospitalized infectors, and self-heal infectors were analysed separately. This 
new principle makes our model more applicable to COVID-19 when considering its huge infection scale and 
its contagiosity in asymptomatic and pre-symptomatic infectors. With the involvement of some region-specific 
parameters such as population density, mobility, and hospital capacity, our model is also flexible for application 
to different global regions where COVID-19 is unlikely to follow an identical  path15. With the platform of cellular 
automata, the simulation results are visualized and accessible. In this article, we simulate the development and 
recovery processes in the UK for 100 days since the first outbreak, and we discuss what is the optimum plan for 
early-stage disease control, and also the optimal vaccination strategy based on the updated conditions, which 
will effectively bring the pandemic to an end.

Results
Dynamic transmission model. In this article we summarised governmental interventions into three key 
strategies. First, the intraregional transmission probability has been lowered by protective measures or vac-
cinations, which aim to reduce the possibility of people contracting the  disease24,30. Second, the mobility of the 
population has been reduced by government-level measures like city lock-down, border sealing, and compul-
sory stay-at-home  policies19. Last but not least, healthcare system capacity has been enhanced to make sure as 
many patients as possible are quarantined and treated, while enhancement of detection capacity has aided early 
detection and immediate  isolation31. We introduced interregional communication rate (c) to describe the coeffi-
cient of disease transmission between communities to take the impact of population mobility into consideration. 
Initial intraregional growth rate (m) was introduced to describe internal infection among communities, which 
indicates the influence of personal protection measures such as keeping a social distance and face covering. Dur-
ing the simulated transmission process, intraregional growth rate (m) changes continuously as it is affected by 
patient recovery and thus gain of immunity. Detection rate of infectors (k) was introduced to describe the pos-
sibility of an infector (including asymptomatic and pre-symptomatic individuals) being detected.

N: Daily infection number, c: Interregional communication coefficient (travel rate over 15  km2), m: Self-growth 
rate (intraregional spreading coefficient), h: General percentage of hospitalization (including death), s: General 
percentage of self-healing, th: Average latent period, ts: Average self-heal period, H: Daily hospitalization number, 
S: Daily self-healing number, p: Population.

We use cellular automata as a platform of modelling; in cellular automata, cells are arranged as matrixes such 

as: 
1 2 3
4 5 6
7 8 9

 ; each cell represents a region and people tend to migrate between two adjacent cells (details provided 

in Supplementary Information, Fig. S1). In the equations, N5(t + 1) is the daily infection number on day t + 1 in 
cell 5, which equals the daily infection number on day t added to the effect of migration in and out, then multi-
plied by the intraregional spreading coefficient, and subtraction of the day’s number going to hospital and self-
healing. The percentage of people who migrate out of a square cell from one side is c, therefore, the percentage 
of people who migrate out of a whole square is 4c.

Then we introduce controlled parameters to describe the situation after interventions (details in “Methods” 
section). To be realistic, controlled interregional communication rate  (cc) and detection rate of infectors (k) are 
steady state values while controlled intraregional growth rate  (mc) is an initial value varying with the immunity 
acquisition number.

N5(t + 1) =
[

N5(t)+
(

N2,4,6,8(t)− 4N5(t)
)

· c
]

· (1+m5(t))−H5(t)− S5(t)

H5(t) = N5(t − th) ·m5(t − th) · s · (1− 4c)th + N2,4,6,8(t − th) ·m5(t − th) · h · c ·
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mc: Initial value of controlled intraregional growth rate, cc: Controlled interregional communication rate, k: 
Detection rate of infectors, p: Regional population.

We also take advantage of the definition of m which initially relies on  R0 and changes with the percentage of 
immunization to calculate the number of vaccinations required in disease control.

vr: Required vaccinations, v: Received vaccinations, i: Cumulative number of infections.

Visualised transmission process of COVID‑19 in the UK. Videos showing the prognostic transmis-
sion process on the UK and London maps were generated by Python 3 based on our model (details shown in 
“Methods” section and Supplementary Information). Here we present the infection curves (Fig. 1) and visualised 
transmission maps (Fig. 2) based on our simulation of the infection which starts with the initial daily infec-
tion number of each region in the UK on 4th March  202032. Due to the limitations of the iterative algorithm, 
the earliest date we can start simulating disease control interventions is one day after the first self-heal period. 
Therefore, in the first 15 days (a self-heal period) of the simulation, we use the initial parameters according to 
COVID-19 epidemiological characteristics, the initial intraregional growth rate as 0.48,33, the interregional travel 
rate as 0.138, and the detection rate of infectors as 0 (Table 1, data resources presented in “Methods” section). 
Without any governmental intervention, the accumulated infection number in 100 days may exceed 70% of the 
UK population (Fig. 1A). Since the simulation was interrupted when the cumulative infection number exceeds 
the local population, COVID-19 transmission in the UK suspends on the 73rd day (Fig. 1A). The daily infection 
scale will exceed 14.8 million people on the 60th day of domestic infection (Fig. 1B), which accounts for nearly 
a quarter of the UK  population34. When we look at the regional infection curves, we can see that the epidemic 
in London develops differently from other regions in that the infection in the former increases sharply from the 
30th to the 58th day, then decreases rapidly (Fig. 1C). This indicates that, without interventions, the infection 
will first be eliminated in London while the conditions are still getting worse in other regions.

From the visualized transmission maps we can also see that when the infection peak is reached, the COVID-19 
outbreak will ameliorate in the epicentre while it is still developing in surrounding regions (Fig. 2A). As shown in 
the screenshots of the simulation videos (Supplementary video files), the epidemic spreads from the epicentre to 
the periphery and surprisingly leaves the centre epiclean (Fig. 2A). Here we also simulated the COVID-19 trans-
mission process in London based on the initial daily infection number of each borough on 11th March (Fig. 2B) 
which shows similar  results32. Despite the fact that a second wave of infection may occur from the epicentre 
of the outbreak once again, the periphery may be the place hit by the epidemic more severely in a later period.

COVID‑19 can be brought under control by a single intervention at the early stage, but at 
huge expense. We ran simulations to see how effective single interventions are in flattening the daily infec-
tion curves. When the controlled intraregional growth rate  (mc) was in the range of 0.05–0.4 (0.75 <  R0 < 6, 
m = R0/15 days , details in the “Methods” section)14,35, the daily infection curve became progressively flatter 
with reduced  mc while the period of the epidemic became longer. When the controlled intraregional growth rate 
was lower than 0.1  (R0 < 1.5), this was effective in controlling the propagation tendency, but a second infection 
wave was likely to occur. In addition, it was not possible to completely eliminate infection cases within a 100-day 
period by only controlling  mc, and the epidemic would thus last for a longer time (Fig. 3A). When the controlled 
travel parameter  (cc) was in the range of 0.0125–0.01, the overall infection trends were downward but it was not 
possible to control the daily infection scale to an acceptable level (Fig. 3B). An increasing detection rate of infec-
tors (k) was capable of controlling the infection scales stably and efficiently as well as eliminating the infection 
within a short period (Fig. 3C). The daily infection number dropped while k was enhanced, and as shown in 
Fig. 3, controlling k brings better disease control results than controlling  mc and  cc. When k is as high as 0.175, 
it was possible to maintain the daily infection number curve at a flat level.

Combined interventions will significantly enhance disease control efficiency. As shown in 
Fig. 3, with achievable single interventions, it is hard to contain the peak daily infection number to acceptable 
levels. Therefore, as shown in Fig. 4, combined interventions were applied to search for optimum disease control 
strategies.

The average length of the hospital stay for COVID-19 patients is 7  days36. The number of inpatient beds avail-
able for COVID-19 patients at the early stage of COVID-19 in the UK was around 6000–700032. So the daily 
number of hospitalizations should be kept at around 1,000, which is a premise for our optimum disease control 
strategies. As shown in mobility trend reports by Apple Maps, the general mobility in the UK was reduced by 
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20–50% during the COVID-19 lockdowns (January 2020–January 2021)37. Hence, we suppose the interregional 
communication rate in the UK to be reduced from 0.1 to 0.08–0.0538, indicating that 20% ~ 32% people can 
travel beyond 4 km (2.5 miles) every day. We selected several representative conditions to quantify the UK tier 
system, according to this tier system being based on the mobility trends and four-tier alert levels:  mc = 0.17 
 (R0 = 2.5),  mc = 0.23  (R0 = 3.5) and  mc = 0.3  (R0 = 4.5) with  cc in the range of 0.08–0.05 (Table 2)32,35,37; then we 
ran simulations and found proper relevant detection rates. The disease control process occurring systematically 
with three interventions was simulated and presented as transmission curves (Fig. 4a, b, c). With regard to these 
different combinations of interventions, we can conclude that when tier 1, tier 2, and tier 3 lockdown measures 
are implemented, the detection rate should be ensured as 16%, 11.5% and 4.5%, and as shown in Fig. 4d, e, f, the 
highest daily numbers to hospital (H) under these conditions do not exceed hospital capacity.

Application for calculating vaccination demand to end COVID‑19. A key current strategy to com-
bat COVID-19 is the development of an effective vaccine. We thereby provided a method of calculating the 
required vaccination numbers based on this model. We started the simulation with the current infection number 
as an initial condition, and intraregional growth rate was influenced by vaccination and existing natural immu-
nity. For example, in early January 2021, the average daily infection cases in the UK were around 35,000 with 
3,300 being in  London39. Considering the average infection period of COVID-19 which is 2–15   days10, we 
assume the real infection number in the UK and London to be 220,000 and 22,00032, accordingly. With the 
premise of controlling the pandemic within two months, and controlling  mc solely with vaccinations, we simu-
lated the disease control process with the initial infection number of 220,000 and 22,000 in the UK and London 
and calculated the required number of vaccinations based on optimized  mc values (Fig. 5) by applying the equa-

Figure 1.  Infection curves without interventions in the UK. (A,B) The cumulative/daily infection curve 
without interventions in the UK. The simulation stops when cumulative infection number exceeds the regional 
population (blue sections). (C) The daily infection curves for regions in the UK without interventions. The 
simulation stops when cumulative infection number exceeds the regional population.
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Figure 2.  Visualized COVID-19 transmission without interventions in the UK and London. (A) Screenshots 
of visualized dynamic model of transmission in the UK from day 10 to day 60. The red saturation represents the 
severity of COVID-19. COVID-19 starts from a random spot in each region and spreads rapidly. In the outbreak 
centre, COVID-19 infection will reach a peak on day 50 and be cleared on day 60 when it is out of control in the 
whole country. (B) Screenshots of visualized dynamic model of transmission in London from day 10 to day 90. 
(Day-by-day transmission videos were generated by Pythons 3 https:// www. python. org using python package 
matplotlib https:// matpl otlib. org with initial maps from open-source software WordPress.org. Screenshots were 
generated by Windows10, more details were shown in the Results——Technical details.)

https://www.python.org
https://matplotlib.org
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tion of mc = m ·

(

1− vr+v+i
p

)

 as presented in an earlier  paragraph32. The required number of vaccinations 
should be not less than 43 million in the UK and 4.2 million in London (Table 2).

Discussion
As we have summarised, intervention measures have focused on three aspects: the intraregional spreading 
rate, detection rate of infectors and interregional communication rate. Long-duration intraregional lockdown 
effectively reduced the burden of the  pandemic19,20, however, without cutting off the source of infection, the 
epidemic will not be eliminated in 100 days, even if the  R0 number is very low (Fig. 3A). With respect to inter-
regional communication rate, during the first round lockdown and associated impact on travel, 46% of driving, 
62% of public transport and 33% walking trips, were reduced on the days of lock-down compared to normal 
 days37. However, the data shows the reduction started from 21st  March37, when the cases of infection had already 
spread all over the country, therefore intraregional growth was already occurring at this  point35. This also matches 
our simulation results and shows that it is difficult to control the infectious trend by simply reducing the travel 
parameter once the infection has spread to all regions. We then considered rate of detection and quarantine for 
infectors. In our simulation, around one fifth of infectors must be detected and strictly isolated even if they are 
in the latent period of the disease or asymptomatic, and enhancing detection rate of infectors (k) is shown to 
be the most efficient intervention to bring the infection scale down as well as shorten the intervention period.

However, controlling all the single disease control parameters to ideal values is difficult in real conditions 
because of the special characteristics of COVID-19. Detection and isolation of early-stage and asymptomatic 
infectors is a big challenge for healthcare systems, and this was particularly the case with the immature detec-
tion technologies and limited resources in the first phase of the COVID-19  outbreak14,15. Therefore, our findings 
support the conclusion that COVID-19 spread must be controlled by multiple combined strategies and as early 
as possible (Supplementary Information Fig. S2). The initial  R0 value was around 5.81 in the  UK9. To reduce the 
social burden as well as balance the needs of the economy and disease control, we believe that controlling  R0 
within the range of 2.5–4.5 and mobility reduced by 20–32% (tier 1–3) is a reachable goal with proper control 
measures taken at the beginning of the period of  interventions17,32,35. To keep the peak daily number of hospi-
talizations within acceptable levels when  R0 is immediately controlled at 2.5 (tier 3), with intermediate travel-
ling control policy, 5% of infectors must be detected and quarantined. When  R0 is controlled at 4.5 (tier 1), our 
recommendation is that the detection rate should be enhanced to at least 20%.

Table 1.  Parameter symbols, definitions and values used as initial conditions in this study.

Symbol Definitions Value References

R0 Basic reproduction number 2.2–6.94 8,33

m Initial spreading coefficient 0.4 8

c Interregional communication coefficient 0.1 (UK)/0.2 (London) 38,42

h Percentage of hospitalization including death rate 0.2 49,50

s Percentage of self-healing 0.8 32

th Average incubation period 6 18

ts Average self-heal period 15 46

v Received vaccinations (until Jan 2021) 462,114 32

i Cumulative number of infections (until Jan 2021) 3,817,176 (UK)/652,979 (London) 32

R0-D614G Basic reproduction number of variant D614G 3.1–4.8 40

Figure 3.  Impact of single interventions on daily infection curves. (A) Daily infection curves for the UK with 
intraregional growth rates varying from 0.4 to 0.05. The orange section means no interventions were taken. (B) 
Daily infection curves for the UK with interregional communication rates varying from 0.1 to 0.0125. (C) Daily 
infection curves for the UK with detection rates of infectors varying from 0 to 0.2.
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Moreover, our simulation showed that the location at which the epidemic is most severe, was where the epi-
demic first began to disappear. So we suggest that instead of gathering all detection systems and resources to the 
main areas affected by the epidemic, distributing these resources to the peripheral regions will be a more efficient 
way to save resources and bring the epidemic under control. We also provided a potential method of calculating 
required vaccination numbers based on the actual infection number, for example, our simulation shows that 
when the infection number is around 220,000 in the UK and 22,000 in  London32, the number of vaccinations in 
the UK should not be less than 45 million in the UK and 6.6 million in London.

Our study presents a few limitations due to model design as well as the nature of cellular automata. One such 
limitation is the inability of cellular automata to mimic long-distance migrations like trips by plane during the 
early stage of the disease transmission, as the chroma are only transmitted between two adjacent cells at a time 

Figure 4.  Daily infection curve and daily hospitalization curve with combined interventions.  mc was in the 
range of 0.3–0.17 (initial  R0 in the range of 4.5–2.5), and  cc was in the range 0.05–0.08 (20–32% people in the 
UK can travel over 2.5 miles a day). (A) Daily infection curves when  mc was initially controlled at 0.17  (R0 = 2.5). 
(B) Daily infection curves when  mc was initially controlled at 0.23  (R0 = 3.5). (C) Daily infection curves when 
 mc was initially controlled at 0.3  (R0 = 4.5). (D) When  mc = 0.17,  cc = 0.08–0.05, the number to hospital can be 
controlled at around 1000 when k is controlled at 0.055–0.045. (E) When  mc = 0.23,  cc = 0.08–0.05, the number 
to hospital can be controlled at around 1000 when k is controlled at 0.105–0.12. (F) When  mc = 0.3,  cc = 0.08–
0.05, the number to hospital can be controlled around 1000 when k is controlled at 0.16–0.145.

Table 2.  The detection number and vaccination demand under different intervention levels.

Restriction level Controlled  R0 Controlled intraregional growth rate  (mc)
Controlled interregional communication 
rate  (cc) Detection rate (k) Vaccinations (million)

London

Tier 4 1.5 0.1 0.05 0.05 4.74

Tier 3 2.5 0.17 0.06 0.08 3.15

Tier 2 3.5 0.23 0.07 0.11 2.21

Tier 1 4.5 0.3 0.08 0.15 0.7

UK

Tier 4 1.5 0.1 0.05 0.05 42.73

Tier 3 2.5 0.17 0.06 0.09 32.85

Tier 2 3.5 0.23 0.07 0.13 28.18

Tier 1 4.5 0.3 0.08 0.2 19.9
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(Supplementary Information Fig. S1). Another limitation is that mimicking the change of  R0 through the process 
of viral mutation is not applicable. Future optimizations of such modelling studies may focus on plugging evolv-
ing parameters relating to the variations in the virus in the longer  term40. It will also be interesting to introduce 
new parameters to quantify other critical factors affecting epidemic transmission from social, economic, envi-
ronmental, demographic, climatological, and health risk  angles23,25,26,41.

Conclusion
This study is a prognostic analysis of infectious disease development on the strength of an infectious-hospital-
ized-self-heal (IHS) mathematic model with the first wave of COVID-19 in the UK as an example. The model is 
designed to match the epidemiological characteristics of infectious diseases with similarities to COVID-19, in 
particular ones with asymptomatic and pre-symptomatic infectivity.

Through Python design, we realized the systematic regulation of intraregional growth rate, interregional com-
munication coefficient, and detection rate. It is easy to evaluate the disease control effect by adjusting parameters 
and thus we can seek optimal solutions. In addition, we have found that to achieve better control effects in the 
mid-term of the epidemic, more attention should be paid to the surrounding areas of the epicentre. Moreover, 
our model can also be applied to estimate the quantity of vaccination demand based on realistic situations to 
provide guidance for vaccination production.

This model can also be applied in the future to predict the spread of similar infectious diseases in different 
regions. It only needs to input specific disease parameters in the system, such as incubation period, self-healing 
period, self-healing rate and so on. This model makes it convenient to quickly find the optimal solutions for 
comprehensive interventions and take action, which can be helpful in future public health decision-making to 
reduce morbidity and mortality.

Methods
Assumptions. 

1. The population is approximated to be constant and evenly distributed within each geographical region.
2. Death rate is counted as a part of the percentage of cases that are admitted to hospital.
3. Infected people are contagious constantly from the beginning to the end of the incubation period as well as 

during the illness stage.
4. All the population are at the same risk of infection.
5. All patients have contracted the virus through secondary infection; considering the high population mobility, 

primary infected patients, which represent a tiny percentage, are omitted.

Automata cell establishment. Cellular automata is a dynamic system that is discrete in time and space; 
it consists of a regular grid of cells, with each one being in a finite number of states. In our model, the disease 
transmission was described as partial cellular interaction leading to global change. A geographical region was 
regarded as a two-dimension network. To input this into cellular automata, each network was deemed as a cell 
while each cell stands for the location of a group of people. Pixels were downscaled to correspond to the area of 
the cells. Each cell was selected and separated according to the red, green, blue (RGB) value of the map (Supple-
mentary Information Fig. S1). Red colour chromatic value in the pixels represents the severity of the epidemic 
in the corresponding regions. The minimum value (r = 0) means no cases while the maximum value (re = 225) 
represents the population of the cell.

The epidemic information and regional population of each cell was set  initially32,34, and the number of people 
who migrate each day depends on the interregional communication coefficient and the local population.

Figure 5.  The daily infection curves at the recovery stage with proper control strategies. (A,B) Ideal daily 
infection curves starting with a daily infection number of 220,000 in the UK/22,000 in London.
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A method of convolution kernel was applied for calculation of migrating cases. We suppose that infection 
starts from one cell in each region, which was represented as a red dot on the map. The location of the dot was 
randomly chosen, and pseudo-random number seeds were fixed. The epidemic is assumed not to transmit to 
non-populated areas outside the coast where the infection number was forcibly set as zero.

Dynamical equations. Infectors go to the hospital and become self-healed only after the appearance of 
symptoms, and thus the precise number that go to hospital and self-heal depends on the infection number 
one period previously. The day’s number to hospital in the cell is dependent on the daily infection number that 
occurred six days (the average latent period) previously in local and surrounding regions. Considering that 
some infectors will continually migrate between regions, these infectors who are infected 6 days previously and 
are currently in cell 5 can be divided into two parts: infectors who were infected in cell 5 and remained in cell 5 
(local infectors who never migrate), and infectors who were infected in other cells and moved into the cell 5 in 
the previous 6 days. Assuming the number of infectors in cell 5 at the beginning is  Y5.

Therefore, replacing Y with the exact number of infectors, the daily number to hospital of local infectors in 
cell 5 on day t is calculated as

Next, we consider the number of infectors who move into cell 5. Suppose the number of people in group Y in 
adjacent cells of Y5 are Y2, Y4, Y6, Y8, and add up to Y2,4,6,8. Since each cell has only one side in contact with cell 5, 
on the first day the number of people in group Y who move into cell 5 is Y2,4,6,8 · c . Meanwhile people also move 
out from cell 5, so on the second day the number of people in group Y who move into cell 5 is Y2,4,6,8 · c · (1− 4c) . 
The rest can be calculated in the same manner.

Hence, the total number of people in group Y who move into cell 5 on day t is

If we replace Y with the exact number of infectors, the daily number of infectors who move into hospital in 
cell 5 on day t is calculated as

Therefore, the daily increase in the number of hospitalizations in cell 5 on day t is

In a similar way, the daily increase in the number that self-heal (S) is calculated as

Data sources. We used an initial spreading coefficient to explain the daily percentage increase; in the UK 
the initial  R0 value was 5.818,9, the infection period (including incubation period) was 15 days, and the incidence 
number doubled every 1.8–2.8 days (Table 1). So the value of the initial growth rate can be calculated as 0.4 
(

m = R0/15 days
)

.
We set 16,183 pixels, for the areas of the UK. Therefore, on the UK map, each pixel represents a 15  km2 geo-

graphic area, and people who travel over a 4 km (2.5 mile) straight-line distance are considered as migrants. The 
percentage of people migrating between cells in the UK is around 40% as roughly estimated based on available 
worldwide and domestic travel and transport statistics (Table 1)38,42. Since there are four directions in which 

Day Number of local infectors in cell 5
1 Y5(1− 4c)
2 Y5(1− 4c)2

3 Y5(1− 4c)3

·

·

T Y5(1− 4c)t

N5(t − th) ·m5(t − th) · h · (1− 4c)th

Day Number of people in groupY who move into cell 5
1 Y2,4,6,8 · c
2 Y2,4,6,8 · c(1− 4c)
3 Y2,4,6,8 · c(1− 4c)2

·

·

t Y2,4,6,8 · c(1− 4c)t−1

t−1
∑

i=0

Y2,4,6,8 · c(1− 4c)i = Y2,4,6,8 · c ·
1− (1− 4c)t

1− (1− 4c)
= Y2,4,6,8 · c ·

1− (1− 4c)t

4c

N2,4,6,8(t − th) ·m5(t − th) · h · c ·
1− (1− 4c)t

4c

H5(t) = N5(t − th) ·m5(t − th) · s · (1− 4c)th +N2,4,6,8(t − th) ·m5(t − th) ·h · c ·
1− (1− 4c)th

4c

S5(t) = N5(t − ts) ·m5(t − ts) · s · (1− 4c)ts +N2,4,6,8(t − ts) ·m5(t − ts) · s · c ·
1− (1− 4c)ts

4c



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8412  | https://doi.org/10.1038/s41598-021-87882-9

www.nature.com/scientificreports/

people in one square cell can migrate, the number will be divided by 4, and the travel parameter was estimated 
to be 0.1, standing for 10% people in one cell migrating between two adjacent cells every day (Table 1).

The general percentage of hospitalization means the possibility of infectors being accepted to the hospital 
and thus strictly isolated. We consulted the cumulative death rate which was estimated at 15.4%, and the number 
of beds occupied by confirmed COVID-19 patients according to the NHS statistics in July, which showed that 
2000 beds were occupied by COVID-19  patients43. Moreover, in early April the number of hospitalizations was 
estimated at around 7000–800044. Considering there to be 200% undetected cases, as the number of undetected 
patients is estimated to be more than two times that of the confirmed patients, the percentage to hospital includ-
ing death rate is 20% (Table 1)45.

Since the illness period is estimated at 15 days, the controlled spreading coefficient can be calculated as 
m = R0/15 days , which means the average number of people who can contract COVID-19 from one patient in 
one day during his/her illness  period46.

The detection rate of infectors stands for the possibility of an infector being detected as well as isolated. For 
instance, if the healthcare system provides no detection service, the detection rate of infectors is equal to 0. If 
the healthcare system provides enough detection for all patients with severe symptoms and immediately iso-
lates them, the detection rate of infectors is equal to the rate of occurrence of severe symptoms (13.8%)46. If the 
healthcare system provides general, extensive and compulsive detection services for all citizens, the detection 
rate of infectors will be close to 1.

An approximate validation of the accuracy of the model was based on the early statistics from the UK govern-
ment, although this was hard to do in practice because the real transmission dynamic and infection scale were 
difficult to determine at the early stage of the pandemic (Supplementary Table S1).

Technical details. All source codes were generated by Python 3 (https:// www. python. org) and Jupyter 
Notebook (jupyter.org). Videos were produced by python package matplotlib (https:// matpl otlib. org) using 
"Animation" Class. Initial UK and London maps were downloaded from open-source software WordPress.org 
which was released under a General Public License (GPLv2) from the Free Software  Foundation47,48, and were 
pre-processed by python package scikit-image (https:// scikit- image. org) so that all boundaries between regions/
boroughs are smoother for mimicking population migration. All codes are publicly available on GitHub (https:// 
github. com/ dawei liucsd/ Cov19- model). In order to run all example codes, prebuilt Python distributions such as 
Anaconda are strongly recommended.
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