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H2‑CO2 polymer electrolyte 
fuel cell that generates 
power while evolving CH4 
at the Pt0.8Ru0.2/C cathode
Shofu Matsuda, Yuuki Niitsuma, Yuta Yoshida & Minoru Umeda*

Generating electric power using CO2 as a reactant is challenging because the electroreduction of CO2 
usually requires a large overpotential. Herein, we report the design and development of a polymer 
electrolyte fuel cell driven by feeding H2 and CO2 to the anode (Pt/C) and cathode (Pt0.8Ru0.2/C), 
respectively, based on their theoretical electrode potentials. Pt–Ru/C is a promising electrocatalysts 
for CO2 reduction at a low overpotential; consequently, CH4 is continuously produced through CO2 
reduction with an enhanced faradaic efficiency (18.2%) and without an overpotential (at 0.20 V 
vs. RHE) was achieved when dilute CO2 is fed at a cell temperature of 40 °C. Significantly, the cell 
generated electric power (0.14 mW cm−2) while simultaneously yielding CH4 at 86.3 μmol g−1 h−1. These 
results show that a H2-CO2 fuel cell is a promising technology for promoting the carbon capture and 
utilization (CCU) strategy.

Recently, carbon capture and utilization (CCU) methods have received significant levels of attention as tech-
nologies for effectively removing and utilizing atmospheric CO2

1,2. These technologies are attractive approaches 
as they treat CO2 as an unused resource and convert it into value-added chemicals and fuels. Among them, 
electroreduction is a promising technique, and C1, C2, and C2+ products have reportedly been obtained using 
various electrocatalysts through different CO2 reduction mechanisms3–13. In particular, CO production at Au and 
Ag, and hydrocarbon production at Cu, have been successfully elucidated to follow multistep proton-coupled 
electron-transfer pathways14,15. These reactions exhibit relatively high faradaic efficiencies; however, they require 
large overpotentials, which is disadvantageous. Consequently, their energy-conversion efficiencies are low, despite 
their high faradaic efficiencies.

Developing methods that ensure that the CO2-electroreduction reaction occurs with a small overpotential 
and a high energy-conversion efficiency is important. In this regard, platinum group metals have the potential to 
realize overpotential-free CO2 reductions. There are many reports in which CO is adsorbed on a metal (COads) 
at a positive potential rather than its theoretical potential16,17. However, the further reduction of COads is dif-
ficult because CO is strongly adsorbed to the metal through a donation–back-donation mechanism (Blyholder 
mechanism)18. To the best of our knowledge, the main product is H2 when a Pt electrocatalyst is used, even when 
it is negatively polarized19–21. We previously obtained the C1 compound by reducing CO2 near the theoretical 
potential in a proton-exchange-type membrane electrode assembly (MEA) with a carbon-supported platinum 
(Pt/C) electrocatalyst22. The use of a proton-exchange membrane and an ionomer was suggested to facilitate 
CO2 reduction; however, the C1 yield was quite low. We recently demonstrated that CH4 can be produced by 
the reduction of CO2 in the absence of an overpotential and with a faradaic efficiency of 6.8% using the MEA23. 
This CH4-generation reaction proceeds by a Langmuir–Hinshelwood (L–H) mechanism associated with COads 
and H adsorbed on the metal (Hads):

where * represents an active site on the metal catalyst. It follows that placing COads and Hads in the appropriate 
ratio on the metal surface is important for CH4 production, and this is realized by controlling the CO2-feed con-
centration as well as the electrode potential in the case of a Pt catalyst24. Based on these techniques, we reported 
CO2 reduction at a Pt catalyst to generate CH4 with a faradaic efficiency of 12.3% at 0.16 V vs. RHE using 4 vol% 
CO2 diluted with Ar (Ref.25).

(1)COads + 6 Hads → CH4 + H2O + 7∗,
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Here, the most noteworthy point is that the CH4-synthesis potential is almost the same as the theoretical 
potential, which is more positive than that for the hydrogen oxidation reaction (HOR). Therefore, power can be 
generated by an H2-CO2 fuel cell26 by combining the HOR and the CO2 reduction reaction (to generate CH4) 
as the anodic and cathodic reactions, respectively25. The H2-CO2 fuel cell is a promising CCU technology that 
utilizes CO2 as a resource to generate electricity while producing a valuable compound (CH4). However, the CH4 
yield as well as the amount of power generated need to be increased to further develop this technology, and the 
efficient use of COads, which requires weakening the CO-metal bond, would represent a potential breakthrough 
toward this goal.

Pt-Ru alloy catalysts are known to impact the ligand effect, in which Ru affects the electronic state of COads 
and weakens the CO-metal bond27–30. In our previous study, we investigated the reduction of CO2 using MEAs 
incorporated with Pt-Ru electrocatalysts and revealed that the CH4-generation efficiencies at the theoretical 
potential follow the order: Pt/C < Pt0.5Ru0.5/C < Pt0.8Ru0.2/C when 100 vol% CO2 was supplied31. For this reason, 
we expected that CH4 would be more-efficiently produced by the reduction of CO2 without an overpotential by 
combining both techniques, namely diluting the CO2 concentration and using a MEA with the Pt0.8Ru0.2/C elec-
trocatalyst. In this work, we designed a polymer electrolyte fuel cell that incorporated a MEA with a Pt0.8Ru0.2/C 
cathode and a Pt/C anode. This paper reports the reduction of CO2 for the simultaneous production of CH4 and 
power by supplying CO2 and H2 to the cathode and anode, respectively.

Results
Effect of CO2 concentration on CH4 yield.  We first performed cyclic voltammetry (CV) to assess the 
cathodic reaction of the prepared cell (Fig. 1a) under various CO2 concentrations in Ar at a cell temperature of 
40 °C. As shown in Fig. 1b, the oxidation current decreases with increasing CO2 concentration in the 0.08–0.43 V 
(vs. RHE) potential range, whereas it increases between 0.43 and 0.70 V (vs. RHE). Considering that the former 
and the latter are the oxidation currents that originate from H desorption and CO desorption, respectively32, 
this result reveals that the amounts of COads and Hads increase and decrease, respectively, with increasing CO2 
concentration. The faradaic charges for Hads (QH) and COads (QCO) calculated from Fig. 1b are shown in Fig. 1c. 
In detail, QH and QCO were calculated as the integrated faradaic oxidation currents at 0.08–0.43 V (vs. RHE) and 
0.43–0.70 V (vs. RHE), respectively, as depicted as the green filled area (for QH) and the red filled area (for QCO) 
in the inset in Fig. 1c. Based on Fig. 1c, a trade-off relationship between the QCO and QH are clearly observed. 
Therefore, the amounts of COads and Hads on the Pt0.8Ru0.2/C catalyst surface can be controlled by changing the 
concentration of CO2 supplied to the cathode. The onset potential for COads desorption was determined, as 
shown by the black arrow in Fig. 1b, which provided a value of 0.43 V (vs. RHE) for Pt0.8Ru0.2/C, which is more 
negative than that for Pt/C (0.45 V vs. RHE25), suggesting that the Pt0.8Ru0.2/C electrocatalyst exhibits a lower 
CO-adsorption energy.

CH4 generation from CO2 reduction at the Pt0.8Ru0.2/C electrocatalyst was next investigated. Figure 2a,b show 
cyclic voltammograms with in-line MS signals (m/z 2 and 15) at CO2 concentrations of 7 vol% and 100 vol%, 
respectively. The signal at m/z 15 was simultaneously detected with a reduction current at 7 vol% CO2 when the 
potential was below ~ 0.25 V (vs. RHE), whereas the m/z 15 signal only was weakly detected at 100 vol% CO2. 
The pattern in the mass spectrum of the cathodic output gas from the cell at 0.10 V (vs. RHE) in the 7 vol% CO2 
atmosphere (Supplementary Fig. S1) is concordant with that of the CH4 standard gas; hence, the detected signal 
at m/z 15, which corresponds to CH3

+ (not affected by H2O and CO2), is entirely derived from CH4 produced 
through the reduction of CO2. It should be noted that the signal at m/z 2 as hydrogen generation started to be 
detected at ~ 0.08 V (vs. RHE) at all CO2 concentrations. Figure 2c shows the dependence of the faradaic effi-
ciency determined during CH4 generation on the CO2 concentration acquired during negative-potential-sweep 
CV between 0.20 and 0.10 V (vs. RHE). The faradaic efficiency was determined as a percentage of the metha-
nogenic faradaic charge relative to the total faradaic charge. As a result, the highest faradaic efficiency of ~ 4.5% 
was calculated at 7 vol% CO2, which exceeds the efficiency for Pt/C (3.0% in a 5 vol% CO2 atmosphere24). On 
the other hand, the faradaic efficiency was only 0.61% in 100 vol% CO2, which corresponds to our previously 
reported efficiency31. Overall, we determined 7 vol% to be the preferred CO2 concentration for generating CH4 
at the Pt0.8Ru0.2/C electrocatalyst.

CH4‑generation dependence on the CO2 electroreduction potential.  We next explored the opti-
mum potential for CH4 production at the Pt0.8Ru0.2/C electrocatalyst with the supplied CO2 concentration fixed 
at 7 vol% under a potentio-static condition. The cathode potential was stepped 14 times in the negative direction 
in the 0.40–0.05 V (vs. RHE) range every 2 min. As shown in Fig. 3a, which was produced by analyzing Sup-
plementary Fig. S2, the signal at m/z 15 for CH4 began to be detected at 0.30 V (vs. RHE), was most intense at 
around 0.20 V (vs. RHE), and began to decrease in intensity below this value. The cathode potential at which the 
maximum m/z 15 signal was observed was different under the potentio-dynamic (Fig. 2a) and potentio-static 
(Fig. 3a) conditions, probably be due to the slow reaction rate of CO2 → CH4. Meanwhile, the signal at m/z 2 for 
H2 was observed only at 0.08 V and 0.05 V (vs. RHE), where CH4 generation was suppressed. These results reveal 
that CH4 production occurs at a more positive potential than H2 evolution, with a maximum CH4 yield observed 
at 0.20 V (vs. RHE). The in-line MS signals (m/z 2 and 15) recorded during cyclic voltammetry at 0 vol% CO2 
(100 vol% Ar) shown in Supplementary Fig. S3 reveal that the m/z 15 signal was hardly detected at all cathode 
potentials. Based on the standard CO2|CH4 electrode potential (0.169 V vs. SHE33), we successfully generated 
CH4 from CO2 in the absence of an overpotential in this study. Therefore, from the viewpoints of CH4 yield and 
product selectivity, 0.20 V vs. RHE was determined to be the preferred potential.

We subsequently directly stepped the potential from 0.40 to 0.20 V (vs. RHE). As shown in Fig. 3b, the inten-
sity of the m/z 15 signal was observed to be almost constant when the potential was held at 0.20 V (vs. RHE). 
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The faradaic efficiency of CH4 generation from CO2 reduction (CO2 + 8H+  + 8e− → CH4 + 2H2O) between 240 
and 299 s in Fig. 3b was calculated by the following formula:

where n is the number of reaction electrons, m is the molar number of CH4, F is the Faraday constant, I is the 
mean current, and t is the time. Significantly, the faradaic efficiency was 18.2%, which exceeds the previously 
reported Pt/C efficiency (12.3%25). Supplementary Fig. S4 shows gas chromatograms of the cathodic output 
gas from the cell in which the cathode potential was held at 0.20 V (vs. RHE). Based on the results obtained 
using flame-ionization and thermal-conductivity detectors, only CH4 was produced during CO2 reduction at 
Pt0.8Ru0.2/C, and the faradaic efficiency was calculated to be 17.6%, as detailed in Supplementary Information 
S4. Overall, continuous CH4 generation with enhanced efficiency and zero overpotential was achieved at a CO2 
concentration of 7 vol% and a holding potential of 0.20 V (vs. RHE).

Power generation as an H2‑CO2 fuel cell.  Figure 4 shows power generation characteristics as well as 
CH4-production rates determined from the data in Fig. 3a. The current densities shown in Fig. 4 are mean cur-
rent densities (shown in Supplementary Fig. S2) for 60 s just before the next potential step. Figure 4 reveals that 
the power density (as an H2-CO2 fuel cell) and the CH4 yield rate exhibit similar trends, with maximum values 
of ~ 0.14 mW cm−2 and 86.3 μmol g−1 h−1, respectively, at a cell voltage of 0.20 V. Compared to a report on the 

(2)Faradaic efficiency (% ) =
nmF

It
× 100,

Figure 1.   Schematic diagram and performance data. (a) Schematic diagram of the experimental setup used in 
this study. (b) Cathodic cyclic voltammograms at various concentrations of CO2 in Ar. (c) CO2-concentration-
dependences of the faradaic charges of the oxidation-current peaks between 0.08 and 0.43 V (QH) and between 
0.43 and 0.70 V (QCO) (vs. RHE) in the voltammograms shown in (b). The method used to calculate QH and QCO 
is shown in the inset in panel (c).
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Figure 2.   Cyclic voltammetry coupled with mass spectrometry. In-line m/z 2 (for H2) and 15 (for CH4) 
MS signals during CV at CO2 concentrations of: (a) 7 vol% and (b) 100 vol%. (c) Faradaic efficiency for the 
generation of CH4 as a function of CO2 concentration calculated by integrating the m/z 15-signals in the 
0.20–0.10 V (vs. RHE) potential range during negative-scan CV.

Figure 3.   Stationary-potential CO2 reduction. (a) Potential dependence of faradaic charge, and integrated m/z 2 
and 15 MS signals when held at each potential for 2 min at a CO2 concentration of 7 vol%. (b) Potential program 
applied to the cathode (upper), current response (middle), and in-line m/z 2 and 15 MS signals (lower) at 7 vol% 
CO2.
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formation of CH3OH (but not CH4) through CO2 reduction at Pt–Ru/C using a MEA34, the rate of CH4 produc-
tion in this study is higher.

Finally, we compared the results obtained for Pt0.8Ru0.2/C with those for Pt/C. As listed in Table 1, the power 
density, CH4 yield rate, turnover frequency, and faradaic efficiency were ~ 10-, ~ 3.5-, ~ 5-, and ~ 1.5-times higher, 
respectively, when the Pt0.8Ru0.2/C electrocatalyst was used instead of the Pt/C electrocatalyst. Therefore, we 
demonstrated a H2-CO2 fuel cell that generates electric power while efficiently reducing CO2 to CH4.

Discussion
In the present study, we designed and demonstrated an H2-CO2 polymer-electrolyte fuel cell that generates CH4 
from CO2 with enhanced efficiency, which was achieved by the strategic use of a Pt0.8Ru0.2/C cathodic catalyst. As 
mentioned in the introduction, the generation of CH4 through the reduction of CO2 follows the L–H mechanism 
involving COads and Hads (Ref.23). According to Eq. (1), this reaction theoretically proceeds at a COads-to-Hads 
molar ratio of 1:6; however, this reaction proceeded when the ratio was 1:11 or higher for a Pt/C electrocatalyst24, 
with the best ratio reported to be 1:18 (Ref.24). On the other hand, this ratio at the Pt0.8Ru0.2/C electrocatalyst was 
determined to be 1:8 at a CO2 concentration of 7 vol% according to the following equation:

(3)COads : Hads =

(

QCO

2

)

: QH .

Figure 4.   Cell performance. CH4 yield, cell voltage, and power density as functions of current density at a CO2 
concentration of 7 vol%.

Table 1.   Comparing Pt0.8Ru0.2/C and Pt/C cathode electrocatalyst data for the H2-CO2 fuel cell. Pt/C data are 
taken from our previous report25.

Pt0.8Ru0.2/C Pt/C

Cell voltage/V 0.20 0.16

Power density/mW cm−2 0.14 0.015

CH4 yield rate/μmol g−1 h−1 86.3 26.4

Turnover frequency/nmol (ECSA)−1 s−1 0.73 0.15

Faradaic efficiency/% 18.2 12.3
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Hence, COads can be used to efficiently generate CH4 at Pt0.8Ru0.2/C because the ratio is close to the theoretical 
value of 1:6, which leads to a higher faradaic CH4-production efficiency, and was achieved by the lower CO-
adsorption energy associated with the Pt0.8Ru0.2/C electrocatalyst.

The sustained generation of CH4 at 0.20 V (vs. RHE) (Fig. 3b) is also related to the COads-to-Hads ratio. Based 
on Supplementary Fig. S5, this ratio was determined to be 1:7 after holding at a potential of 0.20 V (vs. RHE) for 
5 min at 7 vol% CO2. Therefore, CH4 is continuously generated at Pt0.8Ru0.2/C because the COads-to-Hads ratio was 
slightly different when the potential was held at 0.20 V (vs. RHE). It should be noted that the CH4-production 
reaction proceeds at a more-positive potential than its theoretical potential. Although the reason is unclear at 
present, there is one possible explanation for this observation. In our system, the CO2|CH4 equilibrium potential 
is influenced by the proton activity of the Nafion membrane electrolyte. As shown in Supplementary Fig. S3, the 
H2-evolution onset potential is ~ 0.08 V (vs. RHE); this value does not correspond to the theoretical potential 
(0.00 V vs. SHE33). In addition, the proton activity of the Nafion membrane has been reported to be different to 
that observed under SHE conditions35–37. Importantly, the CH4-generation reaction is likely to occur through a 
sequential CO2 → COads → CH4 reduction process, rather than through a one-step process (CO2 → CH4). Sup-
plementary Fig. S6 shows that the onset potential for the formation of COads from CO2 through reduction at 
Pt0.8Ru0.2/C in 7 vol% CO2 is 0.375 V (vs. RHE). Hence, an electrode potential that progresses the COads → CH4 
process can drive the overall reaction.

H2-CO2 fuel cells function when platinum group metals are employed as cathodic catalysts. In other words, 
a H2-CO2 fuel cell does not function using “active” electrocatalysts composed of only Cu, Au, and Ag, as well as 
their alloys, because CO2 reduction proceeds at a more negative potential than that for HOR (the overpotential 
is large)38. It should be noted that the highest faradaic CH4-yield efficiency was only 18.2% in this study, which 
is insufficient for practical applications. The reason for this low efficiency has not yet been clarified; one possible 
process that contributes to the rest efficiency involves the formation of COads and Hads, which are not associated 
with CH4 generation. Hence, further increasing the efficiency through catalyst design, including optimizing 
the Ru ratio in the Pt-Ru catalyst, will be important. One significant advantage of this technology is that the 
CO2-conversion reaction that produces CH4 occurs at a lower temperature (40 °C) than that used in chemical 
methanation technology39 and CO2-utilization technologies that rely on solid oxide electrolytes40 and molten 
solts41, which require temperature of several hundreds of degrees.

In conclusion, this work provides a novel approach to H2-CO2 fuel cells as a CO2-utilization technology. 
CH4 is produced continuously by the reduction of CO2 in the absence of an overpotential (at 0.20 V vs. RHE) 
in a cell that uses a MEA with a Pt0.8Ru0.2/C cathode at a CO2 concentration of 7 vol% and a cell temperature of 
40 °C, and electrical energy is generated by combining the CO2-reduction and H2-oxidation (at a Pt/C anode) 
reactions. These results facilitate the carbon utilization strategy, although further investigations are necessary 
before it can be considered for practical applications.

Methods
Materials.  Pt0.8Ru0.2/C (42.5 wt%; TECRuE43) and Pt/C (46.2 wt%; TEC10E50E) electrocatalyst powders 
were obtained from Tanaka Kikinzoku Kogyo Co., Ltd. Nafion-117 membranes (0.18-mm thick) were purchased 
from DuPont and boiled successively in Milli-Q water, 0.5 M H2O2, 0.5 M H2SO4, and Milli-Q water (1 h each) 
prior to use. All chemicals (H2O2, H2SO4, acetone, 2-propanol, methanol, and 5 wt% Nafion solution) were 
obtained from the Fujifilm Wako Pure Chemical Corporation. Water-repellent carbon paper (TGP-H-060H) 
was purchased from Toray Industries, Inc, and polymer electrolyte cell components (gasket, separator with par-
allel flow paths, and stainless steel plate) were purchased from Miclab.

Cell fabrication.  A polymer electrolyte fuel cell (PEFC) was fabricated by essentially following the same 
procedure reported previously23–25, with the exception that Pt0.8Ru0.2/C was used as the cathode instead of Pt/C. 
Briefly, a 6 × 6 cm2 Nafion 117 membrane and 3 × 3 cm2 pieces of carbon paper pretreated with acetone were 
used as the proton-exchange membrane and gas diffusion layers, respectively. The electrocatalyst dispersion was 
prepared by mixing the Pt0.8Ru0.2/C catalyst with 5 wt% Nafion (1:1 v/v) and an aqueous solution containing 
1:2:1 (w/w/w) 2-propanol, methanol, and Milli-Q water, followed by spraying onto one piece carbon paper to 
prepare the cathode. The anode was prepared by spraying a Pt/C electrocatalyst dispersion onto another piece 
of carbon paper. The amount of loaded metal and the apparent electrode surface area were 1.0 mg cm−2 and 9.0 
cm2, respectively, on both electrodes. The MEA was prepared by bringing these electrodes into contact with each 
side of the Nafion-117 membrane, followed by hot-pressing at 140 °C with a 4.5 kN load for 10 min. It should be 
noted that the Pt/C electrocatalyst dispersion was dropped onto the Nafion 117 membrane on the anode side to 
provide a reference reversible hydrogen electrode (RHE). Finally, the MEA, gasket, separator, and stainless steel 
plate were assembled to complete the PEFC used in this study, as shown in Fig. 1a.

Electrochemical CO2 reduction and product analysis.  A schematic diagram of the experimental 
setup used in this study is shown in Fig. 1a. Electrochemical experiments were conducted using a PEFC-operat-
ing apparatus (FCG-20S, ACE), a potentiostat/galvanostat (HA-310, Hokuto Denko), and a function generator 
(HB-104, Hokuto Denko). Fully humidified 100 vol% H2 and CO2 diluted with Ar (CO2 concentration: 0, 4, 7, 
10, 20, 50, and 100 vol%) gas were fed to the anode and cathode at 50 cm3 min−1, respectively, in all experiments. 
Fully humidified 100 vol% H2 gas was supplied to the reference electrode at 10 cm3 min−1. The cell temperature 
was set to 40 °C because the cell humidification at least 40 °C is required to operate the MEA. The H2, CO2, and 
Ar gases were 99.999%, 99.995%, and 99.998% pure, respectively. Before electrochemical measurements, the 
cathodic potential sweep in the 0.05–0.70 V (vs. RHE) range at 50 mV s−1 was repeated until the current–poten-
tial curve of the cathode became stable. The initial cathode potential during introduction of CO2-containing gas 
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was ~ 0.13 V (vs. RHE). The electrochemical surface area (ECSA) of the cathode electrocatalyst was obtained 
to be 0.294 m2 according to the hydrogen adsorption method30,42,43. The cathodic potential was scanned in the 
0.08–0.70 V (vs. RHE) range at 10 mV s−1 during CV. It should be noted that that a 0.05–0.70 V (vs. RHE) poten-
tial range was used for CV with in-line product analysis. In the potential-step experiment, the cathodic potential 
was stepped through 14 levels in the 0.40–0.05 V (vs. RHE) range in the negative direction every 2 min at a CO2 
concentration of 7 vol%. In addition, the cathodic potential was directly stepped from 0.40 to 0.20 V (vs. RHE) at 
7 vol% CO2 and held there for 5 min, after which it was stepped to 0.05 V (vs. RHE). In-line mass spectrometry 
(MS) was carried out during the electrochemical experiments by introducing the cathode exhaust gas directly to 
a mass spectrometer (JMS-Q1050GC, JEOL). The ionization voltage was 23 eV. Note that the lag time for in-line 
MS product detection was adjusted by the H2 evolution response (7 s). A calibration curve, which was obtained 
using CH4 gas (purity: 99.999%) diluted with Ar, was used to calculate the amount of CH4 generated, for deter-
mining the faradaic efficiencies and CH4-yield rates. All the current densities were calculated using the apparent 
electrode surface area (9.0 cm2).
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