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Machine learning analysis 
to predict the need for ankle foot 
orthosis in patients with stroke
Yoo Jin Choo1,5, Jeoung Kun Kim2,5, Jang Hwan Kim3, Min Cheol Chang1* & Donghwi Park4*

We investigated the potential of machine learning techniques, at an early stage after stroke, to predict 
the need for ankle–foot orthosis (AFO) in stroke patients. We retrospectively recruited 474 consecutive 
stroke patients. The need for AFO during ambulation (output variable) was classified according to the 
Medical Research Council (MRC) score for the ankle dorsiflexor of the affected limb. Patients with an 
MRC score of < 3 for the ankle dorsiflexor of the affected side were considered to require AFO, while 
those with scores ≥ 3 were considered not to require AFO. The following demographic and clinical data 
collected when patients were transferred to the rehabilitation unit (16.20 ± 6.02 days) and 6 months 
after stroke onset were used as input data: age, sex, type of stroke (ischemic/hemorrhagic), motor 
evoked potential data on the tibialis anterior muscle of the affected side, modified Brunnstrom 
classification, functional ambulation category, MRC score for muscle strength for shoulder abduction, 
elbow flexion, finger flexion, finger extension, hip flexion, knee extension, and ankle dorsiflexion of 
the affected side. For the deep neural network model, the area under the curve (AUC) was 0.887. For 
the random forest and logistic regression models, the AUC was 0.855 and 0.845, respectively. Our 
findings demonstrate that machine learning algorithms, particularly the deep neural network, are 
useful for predicting the need for AFO in stroke patients during the recovery phase.

Stroke is a leading cause of serious long-term disability in the adult population, and it is the second leading cause 
of death of the elderly in high-income  countries1. Most patients with stroke suffer from lower limb hemiparesis, 
which disturbs gait function, and of them, more than half are reported to have gait problems in the chronic 
stage of  stroke2, 3.

Weakness on ankle dorsiflexion is one of the major causes of gait disturbance after stroke, which results in 
instability of the ankle during the stance phase and reduced clearance during the swing  phase4, 5. For patients 
with weakness on ankle dorsiflexion, an ankle–foot orthosis (AFO) is commonly applied, which can provide 
medial–lateral stability at the ankle during the stance phase, and improve clearance during the swing  phase4, 6.

However, in our clinical practice, we often experience the following scenario: for a patient with motor weak-
ness in the ankle dorsiflexor (e.g. Medical Research Council [MRC]: grade 1–2) 1 month after stroke, the clinician 
prescribes an AFO. However, 2 weeks later, the strength of the patient’s ankle dorsiflexor may improve to MRC 
grade 4. Consequently, continued use of the AFO is not necessary. This patient may consider this situation as a 
waste of money.

Stroke recovery is relatively rapid during the first month after stroke onset, but continues at a slower pace 
between 3 and 6  months7. Moreover, only minor improvements in the recovery of motor function occur 6 months 
after stroke  onset8. Therefore, for determining the continuous necessity of orthoses, clinicians should predict the 
motor function of patients at ≥ 6 months after stroke onset.

Accurate and early prediction of the recovery of ankle dorsiflexion strength may help to reduce the prevalence 
of unnecessary AFO use in stroke patients. However, to date, there has been no tool for predicting the necessity 
of the use of AFO. With recent developments in technology, new techniques such as machine learning have been 
used to assist clinicians in predicting patients’ motor  recovery9. Machine learning is a technique in artificial intel-
ligence (AI) in which a system learns patterns and rules from given information. Machine learning has several 
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advantages regarding the detection of possible interactions between many attributes/variables and hence may 
be useful in clinical  prediction9–11. In previous studies, machine learning techniques have been used to predict 
motor and functional recovery in the acute and subacute stages of  stroke12–16. However, to date, no machine 
learning study has investigated the prediction of the need for AFO in stroke patients. Therefore, considering 
its expected impact on stroke management, this study aimed to apply machine learning to predict the need for 
AFO in stroke patients.

Methods
This study was approved by the Institutional Review Board of Yeungnam University hospital, and informed con-
sent was waived because of the retrospective nature of the study and because the analysis involved anonymous 
clinical data. All methods were carried out in accordance with relevant guidelines and regulations. This study 
included patients who were admitted to the rehabilitation department of a single university hospital because of 
stroke and who were diagnosed using magnetic resonance imaging from January 2009 to April 2020. The steps 
of the modeling process applied in this study are shown in Fig. 1.

Data collection. The inclusion criteria were as follows: (1) first-ever stroke; (2) age over 20 years; (3) hemi-
plegia or hemiparesis following stroke; (4) clinical data collected within 7–30 days (early stage, day of transfer, 
or day of admission to the rehabilitation department) after onset; (5) absence of serious medical complica-
tions, such as pneumonia or cardiac problems from onset to final evaluation; and (6) presence of a functional 
ambulation category (FAC) score of ≥ 1 at 6 months after stroke onset. The exclusion criteria were as follows: 
(1) ankle dorsiflexion strength of ≥ 3 at initial enrollment; (2) other preexisting brain or spinal cord lesions; and 
(3) presence of other peripheral neuropathies that could affect ankle dorsiflexion strength, such as peripheral 
polyneuropathy.

The following demographic and clinical data were collected when patients were transferred to the rehabilita-
tion unit (16.2 ± 6.0 days after stroke onset): age, sex, type of stroke (ischemic/hemorrhagic), the presence of 
motor evoked potential (MEP) data for the tibialis anterior muscle of the affected side, modified Brunnstrom 
classification (MBC), FAC, and MRC score for muscle strength with respect to shoulder abduction, elbow flexion, 
finger flexion, finger extension, hip flexion, knee extension, and ankle dorsiflexion of the affected side. We have 
selected these input variables because they represent clinical data that is commonly collected when stroke patients 
are admitted or visit the hospital for rehabilitation. Regarding MEP evaluation, transcranial magnetic stimulation 
was performed using a Magstim Novametrix 200 magnetic stimulator (Novametrix Inc., Wallingford, CT, USA) 
with a circular coil (7-cm mean diameter). While the patients were in a relaxed state, MEPs were recorded from 
tibialis anterior. Details of the other stimulation methods have been outlined in a previous  study17. Moreover, we 
determined the MRC score of ankle dorsiflexion for the affected side at 6 months after stroke onset.

Figure 1.  The overall modeling process of this study. MEP motor evoked potential, MBC modified Brunnstrom 
classification, FAC functional ambulation category, MRC medical research council, ML machine learning.
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We used 3 machine learning algorithms: deep neural network, random forest, and logistic  regression14. The 
deep neural network consists of layers of interconnected artificial neurons. An artificial neuron is designed based 
on the biological neuron and receives multiple inputs multiplied by weights, and outputs the sum of the  inputs18. 
The random forest algorithm comprises several decision trees that consist of multiple true or false conditions 
using input  variables19. The sum of the decisions made by the decision trees is used for the final  classification19. 
The machine learning models were trained with all variables as inputs to classify patients that were likely to 
require AFO for the lower extremity of the affected side. For the deep neural network model, 4 layers with 
256–512-1024–512 neurons, RMSProp optimizer, and relu activation were used. For the random forest model, 
500 decision trees were used. We categorized the output variables as the necessity and non-necessity of AFO dur-
ing ambulation. Patients with an MRC score of < 3 for the ankle dorsiflexor of the affected side were considered 
to require AFO, while patients with scores of ≥ 3 were considered not to require AFO.

To prevent overfitting, we reduced the network size (only 4 layers), applied dropout regulation and early 
stopping, and held back validation and test datasets to check potential overfitting. To avoid under-fitting, we 
used neural networks with the capability of capturing the variability of the training dataset.

Of the study population, 75% (n = 335), 18.75% (n = 89), and 6.25% (n = 30) were included in the training, 
validation, and test sets, respectively, to prevent overfitting of the models. TensorFlow version 1.1.0 (Google, 
Mountain View, CA) and scikit-learn toolkit version 0.18.1 (Google) were used to train the machine learning 
models.

Statistical analysis. Statistical analyses were performed using python 3.7.9 and scikit-learn version 0.23.2. 
Receiver operating characteristic curve analysis was employed, and the area under the curve (AUC) was calcu-
lated. The confidence interval (CI) for the AUC was calculated using the approach used by DeLong et al20.

Results
A total of 474 patients (mean age 60.3 ± 12.8 years; 269 males, 205 females) were included in this study (Table 1). 
Of the 474 patients, 193 (40.7%) required AFO (ankle dorsiflexor MRC score < 3), while 281 (59.3%) did not 
need AFO (Table 1). The AUC of the validation dataset for the deep neural network model was 0.887 [95% CI, 
0.824–0.951]. For the random forest and logistic regression models, the AUC was 0.855 [95% CI, 0.783–0.926] 
and 0.845 [95% CI, 0.772–0.918], respectively (Table 2) (Fig. 2).

Discussion
To the best of our knowledge, this study is the first to use machine learning to predict the need for AFO in stroke 
patients. AFO is one of the most frequently prescribed braces for the rehabilitation of stroke patients with gait 
 disturbance21. The tibialis anterior is one of the muscles that contributes most to ankle flexion, and it is one of 
the muscles that commonly experiences motor impairment in patients with gait  disturbance22. In a normal gait, 
the tibialis anterior is activated during the loading and swing  phases23. During the swing phase, the activity of 
the tibialis anterior lifts the foot and toe to obtain foot  clearance23. In general, AFO can improve foot clearance 
during the swing and stance  phases24.

The most noticeable improvements occur in the first few weeks after the onset of stroke, then the rate of 
improvement slows and reaches a relatively stable state after 3  months25–27. Within 3 months after stroke onset, 

Table 1.  The demographic data of the stroke patients included in this study. MBC modified Brunnstrom 
classification; FAC functional ambulation category; MRC medical research council; MEP motor evoked 
potential.

Variables Results

Demographic data

Number of patients, n 474

Age, years 60.3 ± 12.8

Days to transfer or admission 16.2 ± 6.0

Clinical data (when patients were transferred to the rehabilitation unit, 16.2 ± 6.0 days after stroke onset)

MBC 1.8 ± 1.4

FAC 0.4 ± 0.7

MRC

 Shoulder abductor 1.0 ± 1.2

 Elbow flexor 1.0 ± 1.3

 Finger flexor 0.8 ± 1.2

 Finger extensor 0.7 ± 1.2

 Hip flexor 1.2 ± 1.1

 Knee extensor 1.2 ± 1.2

 Ankle dorsiflexor 0.5 ± 0.8

The presence of MEP (presence : absence, n)

Tibialis anterior 185 : 289
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Table 2.  Outcomes of the three prediction models. ML machine learning; DNN deep neural network; SGD 
stochastic gradient descent; AUC  area under the curve; CI confidence interval.

ML model Prediction model

Sample size (patients) 355 for training, 89 for validation, 30 for test, total 474

Sample zero ratio Train 40.8%, validation 40.5%, test 40.0%

DNN

- 4 layers with 256–512-1024–512 neurons, RMSProp optimizer, relu activation
- Training accuracy: 79.7%
- Validation accuracy: 87.6%
- Test accuracy: 80.0%
- Validation AUC 0.887 with CI [0.824–0.951]
Test AUC 0.819 with CI [0.685–0.954]

Logistic regression

- Training accuracy: 80.6%
- Validation accuracy: 83.2%
- Test accuracy: 63.3%
- Validation AUC 0.845 with CI [0.772–0.918]
Test AUC 0.667 with CI [0.505–0.829]

Random forest

- 500 estimators
- Out-of-bag score estimate: 77.8%
- Mean validation accuracy score: 84.3%
- Mean test accuracy score: 76.7%
- Validation AUC 0.855 with CI [0.783–0.926]
- Test AUC 0.792 with CI [0.653–0.930]

Figure 2.  Receiver operating characteristic curve for the models for data validation. The deep neural network 
model is superior with an area under the curve of 0.887, followed by the random forest model with an area 
under the curve of 0.855 and the logistic regression model with an area under the curve of 0.845. AUC: area 
under the curve.
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70% of recovery in motor function is known to  occur28. After 6 months, recovery usually reaches its limit and 
enters a chronic  phase29. Therefore, in this study, we used the MRC score for ankle dorsiflexion at 6 months after 
stroke onset as an indicator of the need for AFO in stroke patients.

Machine learning models have been used to predict motor or cognition recovery in stroke  patients12–16. For 
example, Lin et al. have investigated whether machine learning models can predict the recovery of activities of 
daily living in acute stroke  patients14. They recruited 313 subjects and predicted the Barthel Index score at dis-
charge using machine learning methods such as logistic regression, support vector machine, and random forest. 
The average of the AUC for the classification models (logistic regression, support vector machine, and random 
forest) were 0.755, 0.777 and 0.769 respectively. Other studies evaluated whether machine learning models 
could predict motor or cognition improvement in the acute and subacute stages of  stroke13, 15, 16. Heo et al. have 
predicted the modified Rankin Scale score using deep neural network, logistic regression, and random forest 
with 2604 acute ischemic stroke subjects, and report AUCs of 0.888, 0.849, and 0.857,  respectively13. Sale et al. 
have studied the predictability of improving motor and cognitive function after rehabilitation treatment from 
the early stages of stroke. They used data of 55 patients collected at the time of admission to the Department of 
Rehabilitation Medicine and at discharge, and predicted the Barthel Index and functional independence measure 
score with a linear support vector machine regression model. All output results and the actual measured results 
show a good correlation of 0.75–0.8115. Wang et al. have constructed a prognostic model of functional outcome 
using data from 333 patients with primary intracerebral hemorrhage. They utilized Auto-WEKA 2.0 that uses a 
sequential model-based algorithm configuration to determine the class with the best performance on the given 
data. Functional scores at 1 and 6 months after onset evaluated with the modified Rankin Scale were used as 
the outcome data. They show that the AUC predicting a 1-month outcome is 0.899, and the AUC predicting a 
6-month outcome is 0.91716. The results of these studies are promising, with moderate to high accuracy. Similar 
to these previous studies, current study has demonstrated that machine learning models could accurately predict 
the need for AFO in acute stroke patients. Bearing in mind that AUCs of 0.7–0.8, 0.8–0.9, and > 0.9 are generally 
considered acceptable, excellent, and outstanding,  respectively30, the ability of the machine learning models used 
in this study to predict the need for AFO is excellent, with the deep neural network model performing better 
than the other models (random forest and logistic regression models).

The deep neural network model may be more appropriate for predicting clinical  outcomes31. Multiple layers 
of complex networks may be efficient for representing the complex characteristics of the clinical outcomes in a 
stroke  patient13. However, the theoretical background underlying the improved performance reported for the 
deep neural network is  unknown32. However, given that machine learning models can learn independently with 
additional data, the previously mentioned results could be  improved33.

Limitations. There are some limitations to this study. First, this was a single-center study, and should be 
verified with data from other sources. Second, variables used as inputs in machine learning algorithms are usu-
ally variables that can be acquired or evaluated in most cases. However, the prediction may be slightly affected by 
variables and may be adjusted to account for availability when considering data from different centers.

Conclusion
This study demonstrated that machine learning algorithms, particularly the deep neural network, can improve 
the prediction of the need for AFO in acute stroke patients.
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