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Macrophages with reduced 
expressions of classical M1 
and M2 surface markers in human 
bronchoalveolar lavage fluid 
exhibit pro‑inflammatory gene 
signatures
Hiroto Takiguchi1,4, Chen X. Yang1, Cheng Wei Tony Yang1, Basak Sahin1, Beth A. Whalen1, 
Stephen Milne1,3,5, Kentaro Akata1, Kei Yamasaki1, Julia Shun Wei Yang1, 
Chung Yan Cheung1, Ryan Vander Werff2, Kelly M. McNagny2, Fernando Sergio Leitao Filho1, 
Tawimas Shaipanich3, Stephan F. van Eeden1,3, Ma’en Obeidat1, Janice M. Leung1,3 & 
Don D. Sin1,3*

The classical M1/M2 polarity of macrophages may not be applicable to inflammatory lung diseases 
including chronic obstructive pulmonary disease (COPD) due to the complex microenvironment 
in lungs and the plasticity of macrophages. We examined macrophage sub-phenotypes in 
bronchoalveolar lavage (BAL) fluid in 25 participants with CD40 (a M1 marker) and CD163 (a M2 
marker). Of these, we performed RNA-sequencing on each subtype in 10 patients using the Illumina 
NextSeq 500. Approximately 25% of the macrophages did not harbor classical M1 or M2 surface 
markers (double negative, DN), and these cells were significantly enriched in COPD patients 
compared with non-COPD patients (46.7% vs. 14.5%, p < 0.001). 1886 genes were differentially 
expressed in the DN subtype compared with  all other subtypes at a 10% false discovery rate. The 
602 up-regulated genes included 15 mitochondrial genes and were enriched in 86 gene ontology 
(GO) biological processes including inflammatory responses. Modules associated with cellular 
functions including oxidative phosphorylation were significantly down-regulated in the DN subtype. 
Macrophages in the human BAL fluid, which were negative for both M1/M2 surface markers, harbored 
a gene signature that was pro-inflammatory and suggested dysfunction in cellular homeostasis. These 
macrophages may contribute to the pathogenesis and manifestations of inflammatory lung diseases 
such as COPD.

Macrophages are the most abundant immune cells in the lower airways of the human respiratory tract. They are 
involved in host immune defenses and airway homeostasis. They are also highly plastic, being able to change 
their phenotype and function depending on the local milieu1,2. Over the past few decades, a conceptual frame-
work has evolved to describe the activation pattern of macrophages in vitro, which has been used to categorize 
macrophages into at least two distinct phenotypes: classically (M1) or alternatively (M2) activated macrophages3.

Briefly, classical activation of M1 macrophages is typically induced by lipopolysaccharide (LPS)/interferon 
(IFN)-γ or tumor necrosis factor (TNF) and contributes to a pro-inflammatory milieu, and demonstrate strong 
bactericidal activities, along with expression of CD40, CD80, CD86 and inducible nitric oxide synthase (iNOS). 
In contrast, alternatively activated M2 macrophages are stimulated by interleukin (IL)-4, and IL-13 and contribute 

OPEN

1St Paul’s Hospital, The University of British Columbia (UBC) Centre for Heart Lung Innovation (HLI), Vancouver, 
BC, Canada. 2The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada. 3Division 
of Respiratory Medicine, UBC Department of Medicine, Vancouver, BC, Canada. 4Division of Pulmonary Medicine, 
Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan. 5Faculty of Medicine and 
Health, The University of Sydney, Sydney, NSW, Australia. *email: don.sin@hli.ubc.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-87720-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8282  | https://doi.org/10.1038/s41598-021-87720-y

www.nature.com/scientificreports/

to immunomodulation by scavenging debris, enabling tissue repair and promoting remodeling of local tissue. 
M2 macrophages are also characterized by a high expression level of scavenger receptors such as CD163 and 
CD2064–6. In general, M1 macrophages are thought to be pro-inflammatory, while the M2 macrophages limit 
inflammation and promote healing and homeostasis7. Although this simple classification works in vitro, it is of 
limited use in vivo. Owing to repeated exposures to external microbes and environmental toxins, the micro-
environment in the lung can rapidly change, leading to modulations in the host immune response. Consistent 
with this notion, one study showed that chronic inflammation can lead to broad changes in the transcriptional 
repertoire of macrophages beyond the classical M1 and M2 phenotypes8. As there is a scarcity of data on the 
state of polarization of alveolar macrophages in vivo, the utility and appropriateness of the classical M1/M2 
categorization of macrophages in the human airways are uncertain. We hypothesized that while in health most 
macrophages can be categorized based on M1/M2 polarization, in inflammatory lung conditions such as chronic 
obstructive pulmonary disease (COPD), most cells will be non-typeable. To address this hypothesis, here, we 
phenotyped macrophages in human bronchoalveolar lavage (BAL) fluid by using classical cell surface markers: 
CD40 for M1 macrophages and CD163 for M2 macrophages5,9–11. This study was exploratory in nature and its 
main purpose was to characterize the polarization and associated gene signatures of macrophages from human 
BAL fluid in health and disease according to their classical cell surface markers for M1/M2 phenotypes.

Results
Macrophage sub‑phenotyping.  We first performed flow cytometry on macrophages that were isolated in 
BAL fluid of 25 participants including 8 chronic obstrutive pulmonary disease (COPD) and 13 asthma patients 
and divided the cell population into four groups: double negative (DN), double positive (DP), and M1 and M2 
based on cell surface markers. The mean percentage of DN, DP, M1 and M2 subtypes in the BAL fluid was 24.8%, 
35.4%, 14.0% and 25.9%, respectively.

RNA‑sequencing.  Next, we performed RNA-sequencing on BAL macrophages collected from 10 consecu-
tive participants between March 2019 and June 2019. After exclusion of 3 samples (i.e. 1 DN and 2 DP’s, which 
were obtained from three patients with asthma) because of poor RNA quality or low RNA yield, we subjected 
the remaining samples (n = 37) to bulk-RNA sequencing. The demographic data of the study participants are 
summarized in Table S1.

Differentially expressed genes (DEGs) between subtypes.  We compared the transcriptomic expression pattern 
across all four subtypes of macrophages. The greatest number of differentially expressed genes was observed with 
the DN subtype (1886 differentially expressed genes versus all other subtypes at a 10% false discovery rate, FDR). 
There were 498 differentially expressed genes between the DP subtype and the others; 15 genes between the M1 
subtype and the others; and 52 genes between the M2 subtype and the others (Fig. 1). All differentially expressed 
genes at 10% FDR are shown in Table S2.

Among the differentially expressed genes, 602 were up-regulated in the DN subtype, 292 were up-regulated 
in DP, 12 were up-regulated in M1 and 11 were up-regulated genes in the M2 subtype. The top 20 up-regulated 
genes for each subtype are shown in Fig. 1. Importantly, the top 20 up-regulated genes for the DN macrophages 
included 15 mitochondrial genes and 4 mitochondrial pseudogenes; for other macrophage subtypes, these mito-
chondrial genes were not differentially expressed.

Enrichment analysis was performed using only the up-regulated genes for each macrophage subtype at 10% 
FDR. Up-regulated genes in DN were enriched in 86 GO biological processes. The results of the enrichment 
analysis including the top 5 strongest p-values are shown in Fig. 2. These included genes involved in inflamma-
tory responses (FDR = 3.89E−04).

For the DP subtype, up-regulated genes were enriched in 61 GO processes, which included pathways for 
complement activation (FDR = 1.05E−05), protein activation cascade (FDR = 1.05E−05), antigen processing and 
presentation of peptide antigen (FDR = 3.73E−05). Up-regulated genes in M1 were enriched in 21 GO processes 
such as responses to viruses (FDR = 3.79E−02), IFN-γ (FDR = 7.32E−02) and LPS (FDR = 7.70E−02). However, 
none of the up-regulated genes for M2 macrophages were enriched in the GO processes. All enriched GO bio-
logical processes at 10% FDR are shown in Table S3.

Likewise, we compared the transcriptomic expression pattern on the basis of CD163 positivity. Among 128 
differentially expressed genes at 10% FDR, 39 genes were up-regulated and 89 genes were down-regulated in 
macrophages positive for CD163 (Fig. S1). All differentially expressed genes at 10% FDR are shown in Table S4. 
However, none of the up- or down-regulated genes were enriched in GO biological processes at 10% FDR.

Weighted gene co‑expression network analysis (WGCNA).  Based on detectable expression levels of all genes on 
the RNAseq platform (18,314 genes in total), 13 gene expression modules were constructed using a weighted 
gene co-expression network analysis (WGCNA). The WCGNA-derived modules ranged in size from 19 genes in 
module 13 to 1,831 genes in module 1. The 13 modules as well as the “garbage module” (i.e. module 00) derived 
from WGCNA are shown in Table S5.

Among these module eigengenes, nine of them were differentially expressed in at least one macrophage sub-
type at a 10% FDR threshold (Fig. 3). Gene signatures in the DN subtype were significantly distinct from those 
of other subtypes. In contrast, M1 macrophages were not associated with a distinct module. Importantly, module 
12, which was up-regulated in DNs, was down-regulated in the DP and M2 subtypes. This module was composed 
of 15 mitochondrial genes, 13 protein subunit genes, 2 ribosomal RNA and 4 mitochondrial pseudogenes. The 
top genes with the highest membership in this module were MT-ATP6, MT-CYB and MT-ND4.
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Enrichment analysis was performed at 10% FDR to identify GO biological processes that were associated 
with these modules. The top three GO processes are shown in Fig. 4. Module 2 was associated with the func-
tion of ATP production in mitochondria including oxidative phosphorylation (FDR = 6.32E−44) and respira-
tory electron transport chain (FDR = 2.62E−31). Module 3 was associated with fatty oxidation and metabo-
lism (FDR = 1.49E−03). Module 4 was associated with RNA splicing (FDR = 4.88E−08) and mitotic nuclear 
division (FDR = 4.88E−08). Module 6 was associated with regulation of protein localization to telomeres 
(FDR = 2.81E−04). Mitochondrial genes in module 12 were not included in the enrichment analysis because of 
the absence of a reference gene set for these genes. All enriched GO biological processes at 10% FDR and the 
top 20 genes with the highest membership for each of the modules are shown in Tables S6 and S7, respectively.

To further explore potential changes in mitochondrial respiration in the DN subtype, we examined the rela-
tive gene expression in the GO biological process of oxidative phosphorylation, which overlapped with those in 

Figure 1.   Volcano plots showing differentially expressed genes across macrophage subtypes (n = 10). (a) Double 
negative (DN) subtype versus the other subtypes. (b) Double positive (DP) subtype versus the others. (c) M1 
subtype versus the others. (d) M2 versus the others. The plot shows the fold-change on the X-axis versus the 
unadjusted p values (on a –log10 scale) on the Y-axis. Differentially expressed genes at 10% FDR are represented 
as colored dots and the top 20 up-regulated genes for each cell-type are labelled on the graph. The greatest 
number of differentially expressed genes was observed with the DN subtype (1886 differentially expressed genes 
versus all other subtypes at 10% FDR) followed by 498 differentially expressed genes between the DP subtype 
and the others; 15 genes between the M1 subtype and the others; and 52 genes between the M2 subtype and 
the others. The top 20 up-regulated genes for the DN macrophages included 15 mitochondrial genes and 4 
mitochondrial pseudogenes. Figure created with the R (version 3.5.0). https://​www.r-​proje​ct.​org/.

https://www.r-project.org/
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module 2, and the mitochondrial genes in module 12. The oxidative phosphorylation genes were down-regulated 
in the DN subtype (Fig. 5a), whereas the mitochondrial genes were up-regulated in the DN subtype (Fig. 5b).

Macrophage sub‑phenotype distributions across diseases.  Among 25 participants including 8 with 
COPD and 13 with asthma, we investigated the distribution of macrophage subtypes based on disease. Because 
the presence of asthma did not significantly alter the macrophage subtype distribution (Fig. S2), we compared 
the subtypes between participants with and without COPD. Patients with COPD were more likely to be males 
(p = 0.003) and current smokers (p = 0.001) and had lower FEV1/FVC (p = 0.006). None of the patients with 
COPD had been previously diagnosed with asthma. A majority of patients with COPD had moderate to severe 
airflow limitation. Baseline characteristics are shown in Table 1.

Macrophages in patients with COPD were less likely to express classical surface markers including CD 163 
compared to those without COPD (39.3% vs. 71.6%, p = 0.004). For the four macrophage sub-phenotypes, the 
DN subtype was enriched in patients with COPD (46.7% vs. 14.5%, p < 0.001). In contrast, the DP subtype was 
significantly reduced in COPD (16.5% vs. 44.3%, p = 0.001). There were no significant differences in terms of 
M1 and M2 subtypes (Table 1).

Discussion
Here, we showed that many macrophages in human BAL did not conform to the M1/M2 paradigm, and that 
these cells, especially those that did not harbor M1 or M2 cell surface markers, demonstrated distinct transcrip-
tomic signatures. Interestingly, the double negative subtype contained differential expression of mitochondrial 
genes, which were significantly enriched in patients with COPD. Although previous studies have attempted to 
characterize the gene signatures in the framework of dichotomized classification in vitro, or in vivo, to the best 

Figure 2.   Enrichment analysis: The top 5 Gene Ontology (GO) biological processes based on up-regulated 
differentially expressed genes. The top 5 GO biological processes at 10% FDR for each macrophage subtype are 
shown. The circle size represents the number of overlapping genes between each GO process and up-regulated 
genes according to the subtype. The colour scale represents the extent to which the up-regulated genes are 
significantly enriched in each GO process. The GO processes associated with DN, DP and M1 subtype included 
inflammatory response, complement activation and response to virus, respectively, whereas none of the 
up-regulated genes for M2 macrophages were enriched in the GO processes. Figure created with the R package 
ggplot2. https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2/​index.​html.

https://cran.r-project.org/web/packages/ggplot2/index.html
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of our knowledge, this is the first study to shed light on the transcriptional profile of macrophages beyond the 
M1/M2 classification in human BAL fluid12–14.

To date, the prevalence of M1 and M2 macrophages in vivo has not been well characterized. A priori we 
decided to use CD40 and CD163 based on previous studies, which showed that they were distinct markers for 
human M1 and M2 macrophages9–11. A number of studies have shown that CD40 and CD163 are expressed on 
4–20% and 45–60%, respectively, of human lung macrophages in non-smoking individuals9,15,16. We extend these 
findings by showing that approximately 25% of all macrophages in human BAL fluid could not be phenotyped 
with CD40 and CD163 (and thus were deemed “double negative” macrophages); and that the percentage of these 
double negative cells increased significantly in BAL fluid of patients with COPD. This observation is consist-
ent with previous studies which reported reduced expression of CD163 and CD40 on alveolar macrophages in 
COPD lungs9,17.

We also showed that these double negative cells demonstrate a distinct RNA signature compared with M1, 
M2 or double positive macrophages. The up-regulated, differentially expressed genes in double negatives were 
significantly enriched in inflammatory responses. The GO inflammatory responses were relatively broad and 
contained 43 genes including NFKB1 (NFκB1), NFKB2 (NFκB2), NFKBIA (IκBα), TNFRSF1B (TNFR2), CXCL1, 
CXCL2, CXCL8, IL1B (IL-1β) and NLRP3. The transcription factors NF-κB and TNF orchestrate many immune 
and inflammatory responses including stress responses and regulation of cell proliferation and apoptosis18–20. 
CXCL1, CXCL2, CXCL8 and IL-1β are powerful pro-inflammatory cytokines released by macrophages for neu-
trophil recruitment21–23. NLRP3, on the other hand, has been linked with age-related cellular dysfunction, or 
“inflammaging”, which is characterized by dysregulated low-grade inflammation24.

In WGCNA, interestingly, we found that module 2, which was associated with oxidative phosphorylation in 
mitochondria, was down-regulated in double negative macrophages. Mitochondria is the main producer of cel-
lular energy by means of oxidative phosphorylation, which involves electron-transferring respiratory chain (com-
plexes I–IV) and adenosine triphosphate (ATP) synthase (complex V). Although mitochondria has its own DNA, 
which contains 37 genes, over 98% of the mitochondrial proteins are encoded by the nuclear genome25,26. We 

Figure 3.   Heat map of the correlation of weighted gene co-expression network analysis (WCGNA) modules 
with macrophage subtypes (n = 10). The rows represent the gene modules and the sizes of the modules are 
shown in parentheses next to the module name. The columns represent macrophage subtypes. In each cell, the 
number at the top is the linear regression coefficient and the number in the parentheses is the corresponding 
p-value. Color scale represents the regression coefficient. Only modules with at least one significant cell at 
10% FDR across four subtypes are  shown. Gene signatures in the DN subtype were significantly distinct from 
those of the othersubtypes . Importantly, Module 12, which was composed of 15 mitochondrial genes, was 
up-regulated in DNs, and was down-regulated in the DP and M2 subtypes. Figure created with the R package 
“WGCNA” (version 1.68). https://​cran.r-​proje​ct.​org/​web/​packa​ges/​WGCNA/​index.​html.

https://cran.r-project.org/web/packages/WGCNA/index.html
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found that a number of nuclear genes, which control cellular respiration and ATP synthesis in the mitochondria, 
were markedly down-regulated in double negative macrophages. For instance, 32 genes encoding the NADH: 
ubiquinone oxidoreductase supernumerary subunits (NDUF), which form an essential component of complex 
I of the respiratory chain, were depleted in double negative macrophages compared to the other subtypes, sug-
gesting a reduced ability to generate ATP on demand to maintain cellular functions27. On the other hand, we 
observed a significant up-regulation of 15 mitochondrial genes in double negative macrophages in module 12.

The origins of double negative macrophages are unknown. Previous studies have shown that aged cells have 
reduced expression of surface markers including MHC class II molecules and co-stimulatory receptors such 
as CD40, which raises the possibility that the double negative macrophages may be senescent cells28,29. This 
notion is further supported by our data showing that these cells harbor differentially expressed genes involved in 
inflammation and mitochondrial (dys)function30. In the present study, we could not distinguish tissue resident 
macrophages from monocyte-derived macrophages31. It is noteworthy, however, MARCO was down-regulated 
in double negative macrophages (logFC = − 0.35, FDR = 0.021) compared to the other subtypes. MARCO is a 
marker of embryonically-derived resident macrophages, which raises the possibility that many of the double 
negatives originated from monocyte-derived macrophages32. Specific studies focused on cell lineages will be 
needed to pinpoint the exact source of these and other macrophage subtypes.

There were several limitations in this study. First, some of the up-regulated genes in M1 or M2 macrophages 
in our study did not fully align with classical patterns associated with M1- or M2-related genes. For instance, 
up-regulated genes in M1 macrophages included those encoding for proteins such as CCL22 and MMP12, which 
have been related to M2 macrophages33,34. Also, genes encoding CD40 and CD163 did not co-express with genes 
encoding other surface markers commonly used to characterize M1 or M2 macrophages such as CD80 or CD206, 
respectively5. However, these markers were identified using in vitro generated macrophages where M1-related 
markers were induced by LPS/IFN-γ and M2-related markers were induced by IL-4/IL-13. A comparative study 
of in vivo and in vitro macrophages showed that the gene signature of M1 macrophages activated by LPS in vivo 
shared many features of alternatively activated M2 genes in vitro including up-regulation of CCL2235. While not 
all M1 and M2 markers in vitro can be directly translated to the in vivo situation35, further studies are needed 
to validate our findings with other M1 and M2 markers  using technologies such as flow cytometry and single 
cell sequencing. Second, although the unique gene expression signature of double negative macrophages was 
interesting, we did not conduct functional studies to validate the potential mitochondrial dysfunction in these 
macrophages, which were suggested by the RNA sequencing data. Third, it is possible that some of our samples 
may have contained dendritic cells as they have similar morphology and share common surface markers such 
as HLA-DR and CD40 as macrophages36. Although dendritic cells generally constitute only 0.5% of total cells 
in BAL fluid, future studies should gate out these cells for more precise assessment of alveolar macrophages37,38.

In conclusion, approximately one out of four macrophages in human BAL fluid stain negatively for both 
M1/M2 cell surface markers. These double negative macrophages harbor gene expression signature that is 

Figure 4.   The top 3 GO biological processes at 10% FDR based on a weighted gene co-expression network 
analysis (WGCNA). The top 3 GO biological processes at 10% FDR for each module are shown. The circle size 
represents the number of overlapping genes between each GO process and genes in the module. The colour 
scale represents the extent to which the genes are significantly enriched in each module. Module 2 was most 
strongly associated with the function of ATP production in mitochondria. Module 3 was  associated with fatty 
oxidation and metabolism. Module 4 was associated with RNA splicing and mitotic nuclear division. Module 6 
was associated with regulation of protein localization to telomeres. Figure created with the R package ggplot2. 
https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2/​index.​html.

https://cran.r-project.org/web/packages/ggplot2/index.html
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pro-inflammatory and suggests dysfunction in cellular metabolism and homeostasis. These cells increase by 
threefold in the BAL fluid of COPD patients. Together, these data suggest that phenotypic shifts in alveolar 
macrophages may play a significant role in the pathogenesis and disease manifestations of inflammatory disease 
conditions such as COPD.

Methods
Study population.  Following informed consent, we performed bronchoscopy and collected bronchoal-
veolar lavage (BAL) fluid in 25 patients including those with COPD, who participated in a clinical trial: Dif-
ferential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM) (ClinicalTrials.gov identi-
fier: NCT02833480) or those who underwent clinical bronchoscopy because of a pulmonary nodule between 
November 2017 and June 2019 at St. Paul’s Hospital (SPH) in Vancouver, Canada. These studies were approved 
by the University of British Columbia Clinical Research Ethics Board (certificate numbers: H14-02277 and H15-
02166) and were conducted in accordance with the principles of the Declaration of Helsinki. COPD was defined 
based on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations: symptoms of 
cough, dyspnea or sputum production, ≥ 10 pack-years of smoking history and a post-bronchodilator FEV1/
FVC < 70% of predicted39. Asthma was defined based on the Global Initiative for Asthma (GINA) guidelines: 
symptoms of wheeze, cough or shortness of breath and airflow limitation that varied over time in individuals 
with a smoking history of less than 5 pack-years40. Patients were clinically stable and those who experienced an 
exacerbation of their COPD or asthma within at least four weeks of bronchoscopy were excluded.

Bronchoscopy procedure.  All procedures were performed by an experienced pulmonologist. Conscious 
sedation was first provided to the patient with the use of intravenous midazolam and fentanyl. Through the 
working channel of the bronchoscope (Olympus Corporation, Tokyo, Japan), topical 2% lidocaine was instilled, 
if needed, to prevent bronchospasm and cough. BAL was generally taken from the right middle lobe or lingula 
unless these lobes had disease noted on a pre-operative computed tomography (CT) imaging (e.g. pulmonary 

Figure 5.   Relative gene expression across macrophage subtypes (n = 10). Heat maps showing (a) genes in the 
gene ontology (GO) biological process of oxidative phosphorylation overlapping with genes in module 2 and 
(b) mitochondrial genes in module 12. Color scale represents the scaled mean expression level (log2 TPM) of 
each subtype (red indicates up-regulation, blue indicates down-regulation). The oxidative phosphorylation 
genes were down-regulated in the DN subtype, whereas the mitochondrial genes were up-regulated in the DN 
subtype. Figure created with the R package “NMF” (version 0.22.0). https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
NMF/​index.​html.

https://cran.r-project.org/web/packages/NMF/index.html
https://cran.r-project.org/web/packages/NMF/index.html
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nodule). For these cases, the right or left upper lobe was used. After the bronchoscope was fully wedged into 
the desired segment, 20 ml of 0.9% saline was instilled (with a dwell time of 10 s) and then the fluid was manu-
ally aspirated out using a vacuum syringe. The first aliquot of the recovered solution was discarded because of 
concerns over contamination by bronchial lining fluid or mucus secretions. Aliquots of 40 ml of saline were then 
sequentially instilled to a maximum volume of 200 mL or until 30-50 mL of BAL fluid was recovered, whichever 
came first.

Sample preparation.  The recovered BAL fluid was put in ice immediately after aspiration and filtered 
through sterile 70 µm DNase/RNase-free cell strainers to remove large clumps and debris. Cells were recovered 
by centrifugation at 500 g for 10 min at 4  °C and were washed twice with PBS. The concentration of viable 
cells was determined by trypan blue staining on a hemocytometer. These samples generally contained 5 × 105 to 
5 × 106 viable cells in 100uL of solution. These samples were then blocked with 10% human serum for 20 min 
and then stained with the following monoclonal antibodies against surface receptors (Biolegend, San Diego, 
US): anti-human HLA-DR antibody APC/Cy7 (Cat# 307,618, RRID: AB_493586), anti-human CD40 antibody 
Brilliant Violet 421 (Cat# 334,332, RRID: AB_2564211) and anti-human CD 163 Alexa Fluor 647 (Cat# 333,620, 
RRID: AB_2563475). The isotype control and compensation control for anti-human HLA-DR antibody APC/
Cy7 were prepared in 2 separate tubes. Cells were incubated with the antibodies for 30 min, re-suspended and 
then incubated for an additional 30 min. At the end of the incubation period, the samples were washed in PBS 
and re-suspended in 600uL of PBS. Prepared samples were then analyzed using flow cytometry.

Flow cytometry and cell sorting.  Flow cytometry was performed on a MoFlo Astrios-EQ cell sorter 
(Beckman Coulter, Brea, US). Single macrophage was gated by the forward and side scatter and the presence (or 
absence) of HLA-DR. Subsequently, the macrophage population was examined with CD40 (a M1 marker) or 

Table 1.   The demographic data of patients with or without chronic obstructive lung disease (COPD). Values 
are means ± standard deviation (SD) or numbers (%) of observations. Continuous and categorical variables are 
compared using a Student’s t-test or a Fisher’s exact test, respectively. COPD Chronic obstructive pulmonary 
disease, FEV1 Forced expiratory volume in 1 s, FVC Forced vital capacity, GOLD The Global Initiative for 
Chronic Obstructive Lung Disease, NA Not applicable. GOLD grade was defined as grade 1: FEV1 ≥ 80% 
predicted; grade 2: FEV1 50–79% predicted; grade 3: FEV1 30–49% predicted; grade 4: FEV1 < 30% predicted. 
a Other ethnicity included Asians, African Canadians, and First nations.

COPD non-COPD p value

n = 8 n = 17

Age, years 59.4 ± 11.3 61.2 ± 8.6 0.65

Male 8 (100) 6 (35.3) 0.003

Ethnicity 0.74

Caucasian 6 (75.0) 14 (82.4)

Othersa 2 (25.0) 3 (17.6)

Body mass index, kg/m2 (n = 23) 24.0 ± 4.5 27.7 ± 9.1 0.3

Smoking status (n = 24) 0.001

Current 4 (57.1) 0 (0.0)

Former 3 (42.9) 7 (41.2)

Never 0 (0.0) 10 (58.8)

Pack-year smoked (n = 13) 32.6 ± 23.1 43.5 ± 56.3 0.65

Pulmonary function test (n = 24)

FEV1/FVC, % 55.3 ± 15.5 69.5 ± 7.6 0.006

FEV1, % predicted 59.4 ± 23.6 73.9 ± 22.9 0.16

FVC, % predicted 87.5 ± 18.4 82.1 ± 20.6 0.54

GOLD stage

Stage 1/2 1 (12.5)/5 (62.5) NA

Stage 3/4 1 (12.5)/1 (12.5) NA

Asthma 0 (0.0) 13 (76.5)  < 0.001

Pharmacotherapy

Inhaled corticosteroid 1 (12.5) 7 (41.2) 0.21

Oral corticosteroid 0 (0.0) 3 (17.6) 0.53

Macrophage subtype

Double negative 46.7 ± 27.6 14.5 ± 9.2  < 0.001

Double positive 16.5 ± 12.0 44.3 ± 19.5 0.001

M1 14.0 ± 14.1 14.0 ± 18.5 0.99

M2 22.8 ± 22.2 27.3 ± 19.8 0.61
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CD163 (a M2 marker). We decided to use respective isotype controls for dividing the CD40/CD163 plot because 
their colors were separated by both the laser line and the emission spectra, while we used an anti-human HLA-
DR antibody APC-Cy7 single stain to adjust for spillover into anti-human CD163 Alexa Fluor 647. Positive 
expression of each marker was determined at > 2% compared to its isotype control. This procedure resulted in 
cells being grouped into 4 categories: double negative (DN)—CD40−/CD163−; double positive (DP)—CD40+/
CD163+; M1—CD40+/CD163−; and M2—CD40−/CD163+. All flow cytometry data were analyzed using the 
Kaluza analysis software (Beckman Coulter, Brea, US). Representative flow cytometry panels are shown in 
Fig. S3. Sorted cells were collected directly into a lysis buffer (350uL of Buffer RLT Plus). The Buffer RLT Plus 
was supplemented with 1% 2-mercaptoethanol as suggested by the manufacturer of the Allprep DNA/RNA Mini 
kit (Qiagen, Hilden, Germany). All samples were thoroughly homogenized by vortexing for 90 s in the presence 
of the lysis buffer and then stored in -80C freezer and thawed once for RNA extraction.

RNA preparation for Illumina Next Seq.  Total RNA was extracted using the Allprep DNA/RNA Mini kit. Sam-
ple quality control and sequencing was performed at the Biomedical Research Centre in University of Brit-
ish Columbia. Samples were evaluated for quality using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, US) and those that passed the quality test were then prepped for sequencing using a standard protocol 
for the NEBnext Ultra ii Stranded mRNA (New England Biolabs, Ipswich, US). Sequencing was performed on 
Illumina NextSeq 500 with Paired End 42 bp × 42 bp reads.

Statistical analysis and RNA sequencing data processing.  All statistical analyses were performed 
in R. For patient characteristics, continuous data including the distribution of macrophage subtypes were rep-
resented as mean ± standard deviation (SD) and categorical data as numbers (%) of observations. Statistical sig-
nificance between COPD and non-COPD patients was assessed using a student’s t-test for continuous variables, 
and a Fisher’s exact test for categorical variables. P values < 0.05 were considered significant.

In RNA-seq data processing, raw sequencing reads were quality controlled using FastQC41. STAR (Spliced 
Transcripts Alignment to a Reference) was used to align the reads to GENCODE GRCh37 (version 31) genome 
reference and RSEM (RNA-Seq by Expectation Maximization) was used for quantification to obtain the counts 
and the transcript per million (TPM)42,43. The principal component analysis was used to check for potential batch 
effect and confounding factors. No obvious batch effect was observed but smoking status showed a potential 
confounding effect on the gene expression data (Fig. S4). Limma voom was used to normalize the count to log2 
counts per million (CPM)44. Log2 CPM was used for the differential expression analysis while TPM, which nor-
malizes for gene-length was used for the weighted gene co-expression network analysis (WGCNA). Genes with 
low abundance (log2 CPM < 1 or TPM < 5 in more than one-fourth of the samples) were filtered out.

For differential expression analysis, limma’s mixed effect model with adjustment of smoking status was used 
to compare one macrophage subtype versus the rest of the subtypes to identify characteristic gene expression 
signatures for each macrophage subtype. The Benjamini–Hochberg procedure was used to correct for multiple 
hypothesis testing and to control the false discovery rate (FDR); 10% FDR was used in line with previous studies 
which also have used 10% FDR45–47. A Gene Ontology (GO) enrichment analysis was performed on the signifi-
cantly up-regulated genes at 10% FDR for each macrophage subtype using the R package, clusterProfiler48,49.

For the weighted gene co-expression network analysis (WGCNA), the R package WGCNA was used to con-
struct gene modules with genes that were co-expressed with each other. The R code for WGCNA is available at 
https://​github.​com/​yyola​nda/​macro​phage_​rnaseq. Given that gene length may have an effect on gene cluster-
ing, the gene-length normalized TPM was used for WGCNA48. We chose a soft-thresholding power (β) of 29 to 
obtain a scale free topology model fit index (R2) of > 0.8 (Fig. S5). The minimum module size was set to 15 genes 
and modules with a distance < 0.2 were merged together. A signed network with thirteen modules, excluding 
the “garbage” module which contained genes that did not co-express with any other genes, was constructed and 
each module was assigned a number. The “garbage” module was discarded and not included in the downstream 
analysis. The eigengene of each module was obtained by calculating the first principal component of the module 
and was considered as a representative of the expression profile of the module. Figure S6 shows a dendrogram 
of the clustering of the module eigengenes and a heatmap of the correlation between the module eigengenes. 
Limma’s mixed effect model was used to identify the module eigengenes that were associated with each mac-
rophage subtype after adjusting for smoking status. For modules that were significantly associated with any of 
the macrophage subtypes at 10% FDR, a Gene Ontology (GO) enrichment analysis was performed using the R 
package clusterProfiler to identify biological processes that were associated with the genes of each module. To 
further investigate these modules, we ranked the module genes by their module membership. The top genes with 
larger and positive module membership were highly connected to the other genes in the module and exhibited 
the same direction of effect as the module eigengene. As a sensitivity analysis, we performed the analyses using 
a 5% FDR; these results are shown in Tables S8, S9, S10 and S11.

 Data availability
The datasets used for the current study are available from the senior author (DDS) upon a reasonable request.
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