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Learning future terrorist targets 
through temporal meta‑graphs
Gian Maria Campedelli1*, Mihovil Bartulovic2 & Kathleen M. Carley2

In the last 20 years, terrorism has led to hundreds of thousands of deaths and massive economic, 
political, and humanitarian crises in several regions of the world. Using real-world data on attacks 
occurred in Afghanistan and Iraq from 2001 to 2018, we propose the use of temporal meta-graphs and 
deep learning to forecast future terrorist targets. Focusing on three event dimensions, i.e., employed 
weapons, deployed tactics and chosen targets, meta-graphs map the connections among temporally 
close attacks, capturing their operational similarities and dependencies. From these temporal meta-
graphs, we derive 2-day-based time series that measure the centrality of each feature within each 
dimension over time. Formulating the problem in the context of the strategic behavior of terrorist 
actors, these multivariate temporal sequences are then utilized to learn what target types are at 
the highest risk of being chosen. The paper makes two contributions. First, it demonstrates that 
engineering the feature space via temporal meta-graphs produces richer knowledge than shallow 
time-series that only rely on frequency of feature occurrences. Second, the performed experiments 
reveal that bi-directional LSTM networks achieve superior forecasting performance compared to other 
algorithms, calling for future research aiming at fully discovering the potential of artificial intelligence 
to counter terrorist violence.

After peaking in 2014, terrorism activity worldwide has been on the decline in the last five years, as a consequence 
of several major defeats suffered by the Islamic State and Boko Haram, two of the world’s most prominent jihadist 
organizations. Nonetheless, terrorism remains a persistent threat to the population of many areas of the world. 
Despite the decline in attacks and fatalities, in 2018 alone terrorist attacks worldwide led to 15,952 deaths1.

The multifaceted nature of terrorism, characterized by a myriad of ideologies, motives, actors, and objec-
tives, poses a challenge to governments, institutions, and policy-makers around the world. Terrorism, in fact, 
undermines states’ stability, peace, and cooperation between countries, in addition to economic development 
and basic human rights. Given its salience and relevance, the United Nations includes the prevention of terrorism 
(along with violence and crime) as a target of the sixteenth Sustainable Development Goal, which specifically 
frames the promotion of peaceful and inclusive societies.

Scholars have called for the development of a dedicated scientific field focusing on the computational study 
of conflicts, civil wars, and terrorism2,3. However, to date, attempts to exploit artificial intelligence for such 
purposes have been few and scattered. Whilst terrorism remains characterized by high levels of uncertainty and 
unpredictability4, trans-disciplinary research can help in providing data-driven solutions aimed at countering 
this phenomenon, exploiting the promising juncture of richer data, powerful computational models, and solid 
theories of terrorist behavior.

In light of this, the present study aims at bridging artificial intelligence and terrorism research by proposing a 
new computational framework based on meta-graphs, time-series, and forecasting algorithms commonly used in 
the fields of machine and deep learning. Retrieving event data from the Global Terrorism Database, we focus on 
all the attacks that occurred in Afghanistan and Iraq from 2001 to 2018 and construct 2-day-based meta-graphs 
representing the operational connections emerging from three event dimensions: utilized weapons, deployed 
tactics, and chosen targets. Once meta-graphs are created, we derive time-series mapping the centrality of each 
feature in each dimension. The generated time series are then utilized to learn the existing recurring patterns 
between operational features to forecast the next most likely central - and therefore popular  - targets.

A baseline approach assuming no changes in terrorist dynamics over time and five deep learning models 
(i.e., Feed-Forward Neural Networks, Long Short-Term Memory Networks, Convolutional Neural Networks, 
Bidirectional Long Short-Term Memory Networks, and Convolutional Long Short-Term Memory Networks) are 
assessed in terms of forecasting performance. The outcomes are compared in  by means of Mean Squared Error 
and two metrics that we introduce for this case study: Element-wise and Set-wise Accuracy. Furthermore, our 
graph-based feature engineering framework is compared against models that exploit shallow time-series simply 
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reporting the aggregate count of each tactic, weapon, and target in each 2 day-based time unit. The comparison 
aims at demonstrating that incorporating operational inter-dependencies through network metrics provides 
more information than merely considering event characteristics as independent from one another.

The statistical results signal that time-series gathered from temporal meta-graphs are better suited than 
shallow time-series for forecasting the next most central targets. Furthermore, Bidirectional Long Short-Term 
Memory networks achieve higher results compared to other modeling alternatives in both datasets. Forecasting 
outcomes are promising and stimulate future research designed to exploit the strength of computational sci-
ences and artificial intelligence to study terrorist events and behaviors. Our work and presented outcomes pave 
the path for further collaboration among different disciplines to combine the practical necessity to forecast and 
predict as well as the need to theoretically and etiologically understand how terrorist groups act to strategically 
maximize their payoffs.

Background
Related work.  The study of terrorist targets holds a prominent role in the literature: beyond its theoretical 
relevance, shining a light on individuals or entities at high risk of being hit can indeed help in designing preven-
tion policies and allocating resources to protect such targets5,6.

Studies investigating the characteristics and dynamics behind terrorist target selection have mainly employed 
traditional time-series methods, relying on yearly- or monthly-based observations7–10, mostly framing research 
in the spirit of inference, rather than forecasting or prediction. These works highlighted the high-level patterns 
occurring globally, signaling how, over the decades, terrorist actors have substantially changed their operational 
and strategical behaviors. Nonetheless, these analytical approaches have limited ability to provide actionable 
knowledge for practically solving the counter-terrorism problem of resource allocation and attack prevention, 
given their meso or macro temporal focus.

More recently, an increasing use of computational approaches favored by higher availability of data fostered 
the diffusion of works that focused on temporal micro scales. Scholars have applied computational models 
investigating attack sequences, analyzing the spatio-temporal concentration of terrorist events and testing novel 
algorithmic solutions aimed at predicting future activity, with a particular emphasis on hotspots or violent 
eruptions. Among the tested algorithmic solutions are the use of point process modeling11–13, network-based 
approaches14,15, Hidden Markov models16, near-repeat analysis17, and early-warning statistical solutions using 
partial attack sequences18. In this computationally-intensive strand of research, the attention on terrorist targets, 
however, has been overlooked.

Overall, most literature has modeled terrorist attacks treating all events without discriminating them by 
their substantial features. Yet, this simplification greatly underestimates the multi-layered complexity of terrorist 
dynamics. Besides being patterned in their temporal characterization, terrorist attacks may follow patterns also 
in their essential operational nature19,20. Ignoring this information and assuming all attacks are uni-dimensional 
fail to consider the hidden connections between temporally close events and the recurring operational similari-
ties of distinct campaigns or strategies.

Machine and deep learning algorithms can help to overcome the limitations of the extant research in terms 
of paucity of attention to the fine-grained temporal analysis of terrorist targets, answering the call for scien-
tific initiatives that should develop stronger connections between methodology and theory, rather than merely 
privileging one of the two21. The power, flexibility, ability to detect and handle non-linearity of these algorithmic 
architectures represent promising advantages that the field of terrorism research should explore. In the last 
years, few studies have attempted to exploit the strengths of artificial intelligence in this domain. Among these, 
Liu et al.22 presented a novel recurrent model with spatial and temporal components, and used data on terrorist 
attacks as one of two distinct experiments to evaluated the method’s performance. However, the authors do not 
address how data have been processed before the proper modeling part, nor sufficiently clarify the implications 
of their forecasts, largely affecting the theoretical value of the experiment for terrorism research purposes. Ding 
et al.23, instead, used data on terrorist attacks from 1970 to 2015 to forecast event locations in 2016, comparing 
the ability of three different machine learning classifiers in solving the task. While the authors interestingly 
combine several data sources trying to connect the methodological aspect with theory, the yearly scale of their 
predictions limits the usefulness of the results from a practical point of view, in line with issues already described 
in the literature employing more traditional statistical approaches.

More recently, Jain et al.24 presented the results of a study aimed at highlighting the promises of Convolutional 
Neural Networks in predicting long-term terrorism activity. However, the authors do not employ existing real-
world data, but instead evaluate their approach using artificially generated data. Furthermore, the models only 
employ univariate signals, excluding potential correlated signals that may impact forecasts.

In light of the paucity of works in this domain, this work on the one hand proposes a computational frame-
work aimed at bridging the two disciplines of terrorism research and artificial intelligence for forecasting most 
likely targets and fostering the use of machine and deep learning for social good, using  real-world data at a 
fine-grained temporal resolution. On the other hand, we seek to contribute to the theoretical study of terrorism 
by framing the problem in the context of the strategic theories of terrorist behavior.

Theoretical framework.  Different theories have been proposed to describe and explain terrorist actions. 
These can be mainly divided into three perspectives: (1) psychological, (2) organizational and (3) strategical. 
Psychological theories of terrorism aim at explaining the individual causes leading to join terrorist actions and 
are mostly concerned with considerations covering motivations, individual drivers, and personal traits. Organi-
zational theories, in turn, focus on the internal structure and the formal symbolism of each group as a way to 
read their behavior. Finally, strategic theories—which are derived from rationalist philosophy—address terrorist 
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groups’ decision-making and originate in the study of conflicts. Within this latter field, Schelling25 posited that 
the parties engaging in a conflict are adaptive strategic agents: they hence try to find the most suitable ways to 
win, ruling out the opponent, as in a game or a contest. This straightforward consideration has been widely 
adopted by terrorism researchers who have formalized terrorism as an instrumental type of activity carried 
out to achieve a given set of long and short-run objectives26. As noted by McCormick27, terrorist groups are 
organizations that aim at maximizing their expected political returns or minimizing the expected costs related 
to a set of objectives. Notably, besides this adaptive and adversarial characteristic, the strategic frame assumes 
that terrorist groups act with a collective rationality28,29: a terrorist group can be thought of as a unique actor, 
existing a unitary entity per se, in spite of its distinct internal components. Although this assumption simplifies 
reality, as terrorist groups can be structured in very different ways and these organizational features may impact 
decision-making processes, when considering historical events and their multidimensional characteristics, the 
assumption of collective rationality originated from Schelling in his studies on conflict adaptivity holds and 
actually helps in interpreting the life-cycle and behavior of a group.

Many constraints severely limit the strategic decision-making of a group (i.e., limited manpower)30, and such 
constraints have an impact on the type of attacks (as the ultimate and visible step of a decision-making process) 
that a terrorist group will plot. The strategic theoretical approach helps in unfolding some of the visible dynamics 
that data can reveal, including behavioral variations in combinations of tactics, weapons, and targets27.

Recently, empirical research has corroborated the strategical perspective, showcasing for instance that ter-
rorist violence follows specific patterns. To exemplify, terrorism is often characterized by self-excitability and 
self-propagation12,13,31. The occurrence of an attack increases the probability of subsequent attacks in the same 
area within a limited time window, similar to what happens with earthquakes and their aftershocks, as a way to 
rationally maximize the inflicted damages of the attack waves. Nonetheless, empirical evaluation of whether the 
non-random nature of attacks can be extended also to events’ operational characteristics is lacking.

The intuition behind this work builds on these theoretical propositions and seek to further scrutinize their 
ability to shed light on terrorism: we hypothesize that, given the complex adaptive and strategic decision-making 
processes in terrorist violence, we can exploit the temporal multi-dimensionality of the hidden operational con-
nections among temporally close events to learn what type of targets will be at highest risk of being hit in the 
immediate future.

Data
The analyses in this work rely on data drawn from the Global Terrorism Database (GTD), maintained by the 
START research center at the University of Maryland32. The GTD is the world’s most comprehensive and detailed 
open-access dataset on terrorist events and START releases an updated version of the dataset every year. The 
dataset includes now data on more than 200,000 real-world events. To be included in the dataset, an event has 
to meet specific criteria33. These criteria are divided into two different levels.

There are primarily three first-level criteria that all have to be verified. These are related to (1) the intentional-
ity and the violence (or immediate threat of violence) of the incident and (2) the sub-national nature of terrorist 
actors. There are also three second-level criteria, but the condition is that at least two of them are respected. Sec-
ond level criteria relate to (1) the specific political, economic, religious, or social goal of each act, (2) the evidence 
of an intention to coerce, intimidate or convey messages to larger audiences than the immediate victims, (3) the 
context of action which has to be outside of legitimate warfare activities. Finally, although an event respects these 
two levels and is included in the dataset, an additional filtering mechanism (variable doubter) is introduced to 
control for conflicting information or acts that may not be of exclusive terrorist nature. Each event is associated 
with dozens of variables, mapping geographic and temporal information, event characteristics, consequences 
in terms of fatalities and economic damages, and attack perpetrators.

Besides considering the information on the country where an attack has occurred and the day in which the 
attack was plotted, this work specifically considers three core dimensions describing each event, namely (1) 
tactics, (2) weapons, and (3) targets. Tactics, weapons and targets that have been rarely chosen or employed in 
terrorist attacks that occurred in Afghanistan and Iraq have been excluded by the analysis. For a detailed expla-
nation of the rationale of this filtering, see the Supplementary Material. Descriptive statistics on terrorist attacks 
in both countries are reported in Table 1.

Tactics.   In the GTD, each attack can be characterized by up to three different tactics. Specifically, a single 
attack may be plotted using a mix of different tactics, and this information generally pinpoints a certain amount 
of logistical complexity. In the period under consideration, attacks in Afghanistan and Iraq have deployed using 
“Bombing/Explosion”, “Hijacking”, “Armed Assault”, “Facility/Infrastructure Attack”, “Assassination”, “Hostage 
Taking (Kidnapping)”, “Hostage Taking (Barricade Incident)”, and “Unknown”.

Table 1.   Descriptive statistics of the Afghanistan and Iraq datasets reporting the total number of attacks 
that occurred between 2001 and 2018 and the total number of targets, weapons and tactics represented in the 
considered time frame.

Country/
dataset

Original N 
of attacks

Filtered N 
of attacks

Daily 
average

Daily St. 
Dev. Daily Min. Daily Max. N of targets

N of 
weapons

N of 
tactics

Afghanistan 14,371 12,106 1.841 2.722 0 68 18 5 9

Iraq 25,886 22,764 3.462 4.670 0 107 20 5 8
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Weapons.  For every event, the GTD records up to four different weapons. The higher the number of weap-
ons utilized in a single attack, the higher the probability that the actor possesses a high amount of resources. 
In the Iraq and Afghanistan datasets, the represented weapon types are “Firearms”, “Incendiary”, “Explosives”, 
“Melee”, and “Unknown”.

Targets.  Finally, each event can be associated with up to three different target categories. In the two data-
sets, the represented target types are the following: “Private Citizens and Property”, “Government (Diplomatic)”, 
“Business”, “Police’, “Government (General)”, “NGO”, “Journalists and Media”, “Violent Political Party”, “Reli-
gious Figures/Institutions”, “Transportation”, “Unknown”, “Terrorists/Non-State Militia”, “Utilities”, “Military”, 
“Telecommunication”, “Educational Institution”, “Tourists”, “Other”, “Food or Water Supply”, “Airports & Air-
craft”.

The analytical experiments are performed using all the data regarding terrorist attacks that occurred in 
Afghanistan and Iraq from January 1st 2001 to December 31st 2018. The time series reporting the daily number 
of attacks in the countries under consideration are visualized in Fig. 1.

Temporal meta‑graphs and graph‑derived time‑series
The main technical contribution of this work regards the representation of terrorist events through temporal 
meta graphs. The literature has shown that terrorist attacks do not occur at random. The associated core intuition 
is that, besides temporal clustering, there exist operational recurring patterns that can be learned to infer future 
terrorist actions. To capture the interconnections between events and their characteristics, framing the problem 
as a traditional time-series one is not sufficient.

In light of this, we introduce a new framework that exploits the advantages of graph-derived time series. First, 
per each time unit weighted graphs representing the meta-connections existing within the three data dimensions 
under consideration (tactics, weapons, and targets) are generated. Once this step is completed, we calculate, 
for each dimension and for each time unit, the normalized degree centrality of all the features. Normalized 
degree centrality maps the popularity of a certain weapon, tactic, or target in a given 2-day temporal window, 
by encapsulating it in a 1-dimensional space of complex information that emerged from a clustered series of 
attacks. By employing graph-derived time series we couple two layers of interdependence among events: the 
temporal and the operational one. Centrality not only portraits a certain target popularity: it may also aid in 
understanding the topological structure of a given set of attacks from the operational point of view, facilitating 
wide and distributed public safety strategies.

We start our data processing procedure by introducing a dataset DA×z that contains |A| terrorist attacks and |z| 
variables associated with each attack, exactly corresponding to the original format of the GTD. At this point, we 
filter out separately all the attacks that occurred in Afghanistan and Iraq in the time frame under consideration 
and we obtain two separate datasets: D AFG

t×z  and D IRA
t×z  . The two new datasets are composed of |t| observations 

(in this particular case one observation represents 1 day) and |z| features. Here, the value corresponding to each 
feature is simply the number of times that feature was present in attacks plotted in that time unit, i.e. a single day. 
By doing so, we transitioned from an event-based dataset DA×z to a time-based one. At this point, D AFG

t×z  and 
D

IRA
t×z  can be subset into m ≤ |z| theoretical dimensions. As anticipated, the dimensions here used are m = 3 : 

the set of tactics features (X), the set of weapon features (W), and the set of target features (Y). Using the general 
C superscript indicating the country of reference, the subsetting leads to DC =

{

DX,DW,DY

}

.
Further, for each 

{

DX ,DW ,DY

}

 we create U temporal slices, such that u = 2t . In other words, for each 
dimension, we collapse the data describing the attacks in time units made of 2 days each by summing the count of 
each feature in the same 2 days. The reason behind the creation of 2-day-based time units is two-fold. On the one 
hand, relying on single day-based time series raises the risk of having overly sparse series, with very small graphs 
that would carry little to no relational information. On the other hand, in the real world resource allocation 
problems require time to be addressed, and having a forecasting system that operates day by day would produce 
knowledge that would be hard to transform into concrete and meaningful decisions. Thus, for this application, 

Figure 1.   Time-series of terrorist attacks at the day level in Afghanistan (top) and Iraq (bottom). The figure has 
been created using Matplotlib version 3.1.3. Url: https://​matpl​otlib.​org/3.​1.3/​conte​nts.​html.

https://matplotlib.org/3.1.3/contents.html
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a 2-day architecture represents a good compromise. It reduces the sparsity guaranteeing that each time input is 
sufficiently rich in information and it provides predictions for the next 2 days, such that policymakers or intel-
ligence decision-makers would strive less in changing resource allocation strategies too often. The temporal 
slicing leads to a 4-dimensional tensor DC , as depicted in Fig. 2.

The tensor is composed of three tensors of rank 3, each representing one dimension i.e., tactics, weapons and 
targets. Each dimension is in turn composed  of U matrices. For instance, for the weapons dimension W, each 
matrix is composed of 2t rows and |W| columns, mapping all the weapons that have at least one occurrence over 
the entire history. To further exemplify, DW[1] is mapping the first temporal slice in the weapon dimension may 
be represented by:

At this point, to obtain the centrality of each feature in each matrix in the 4D-tensor, we first compute:

where I ∈ {X,W ,Y} . By multiplying the transpose DI [u]
T by DI [u] , we obtain a |I| × |I| square matrix whose 

entries represent the number of times every pair of features has been connected in the time unit under consid-
eration. This matrix is interpreted as a meta-graph in which the connections between entities are not directly 
physical or tangible. Instead, the meta-graph represents a flexible abstract conceptualization aimed at linking 
together entities, such as particular tactics, that have been employed together in a specific time frame, within a 
limited set of attacks and that can be part of a logistically complex terrorist campaign.

The final step of this procedure is the computation of ψi,Norm[u] which is the normalized centrality of each 
feature i ∈ I for each 2-day temporal unit u. Given that GI [u] can be interpreted as a weighted square graph, then 
the weighted degree centrality of the feature i in GI [u] is computed as:

where Gi,j[u] denotes the (i, j) entry of GI [u] . Consequently, the normalized value is obtained through:

Normalizing the degree centrality allows to relatively compare the importance of each feature across time 
units that may present high variation in terrorist activity.

Finally, this leads to the creation of multivariate time-series in the form:

where F is equal to the total number of features across all dimensions |X| + |W | + |Y | . For instance, in Afghani-
stan during the 2001–2018 time period attacks involved 5 weapons types, 9 tactics, and 18 targets making F = 32 . 
Each ψiNorm [u] maps the relative importance of each feature in its respective dimension in a specific u (a sample 
visualization of this process is reported in Fig. 3). Instead of only using the simple counts of occurrences of each 
feature, the computed centrality value embeds how prevalent was a specific feature compared to the others, taking 
into account the meta-connections resulting from the complex logistic operations put in place by the terrorist 
actors active in Afghanistan and Iraq.

Reshaping the data structure from a sequence of graphs to a sequence of continuous values in the range [0, 1] 
simplifies the problem while preserving the relevant relational information emerging from each meta-graph. 
Figure 4 depicts the Pearson’s correlation among all features in all dimensions, while the temporal evolution 
of centrality values for features in the targets dimension DY  is visualized in Fig. 5. For both countries, plots 

(1)GI [u] = DI [u]
T
DI [u]

(2)
ψi[u] =

|I|
∑

i
j �= i

Gi,j[u]

(3)ψi,Norm[u] =
ψi[u]

maxi∈I ψi[u]

(4)�[U] =
{

ψi,Norm[u]
}U

u=0
, i = 1, 2, . . . , F = |I|

Figure 2.   Graphic visualization sample of the 4d tensor resulting from the data processing. The figure has been 
created using Lucidchart. Url: https://​www.​lucid​chart.​com.

https://www.lucidchart.com
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Figure 3.   Sample visual depiction of the transformation of temporal meta-graphs in each dimension across 
u time-units in multivariate time-series capturing the normalized degree centrality of each feature in each 
dimension across the same u time units. The figure has been created using Lucidchart. https://​www.​lucid​chart.​
com.

Figure 4.   Pearson’s correlation of centrality values among all features F = |X| + |W | + |Y | for the entire time-
span U. The figures have been created using Matplotlib version 3.1.3. https://​matpl​otlib.​org/3.​1.3/​conte​nts.​html.

https://www.lucidchart.com
https://www.lucidchart.com
https://matplotlib.org/3.1.3/contents.html
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describing the characteristics and distributions of tactics, weapons and targets are available in the Supplementary 
Materials (Figures S1–S4 for Afghanistan, and Figures S5–S8 for Iraq).

Methods
Algorithmic setup and models.  We test the performance of six different types of models on our multi-
variate time-series forecasting task. Besides the computational contribution of the work in proposing the use of 
meta-graphs to model terrorist activity overtime, we are also interested in addressing relevant theoretical ques-
tions from a terrorism research standpoint. For this reason, the models are trained and fit using different input 
widths, i.e., a different number of time units. Algorithms performing better with shorter input widths would 
suggest that terrorist actors rapidly change their strategies and operations, indicating very low memory and 
thus making it inefficient to rely on large amounts of data. Contrarily, longer input widths would denote that 
algorithms have to be trained by taking into account relevant portions of recent events’ history given a relative 
degree of stability in attack operations.

In addition, to demonstrate the utility of our meta-graph learning framework, we train the same identical 
models (both in terms of architectures and input widths) on as many models using a shallow framework that 

Figure 5.   Temporal evolution of centrality in the target dimensions ( DY ) for the Afghanistan and Iraq cases. 
The figures have been created using Matplotlib version 3.1.3. https://​matpl​otlib.​org/3.​1.3/​conte​nts.​html.

https://matplotlib.org/3.1.3/contents.html
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learns target centralities from a feature space engineered simply using aggregate counts of every single weapon 
and tactics in every time unit. We will then compare the overall results of the two approaches to empirically 
assess which one better captures the inherent dynamics occurring across terrorist events.

All the models have been trained using TensorFlow 2.534 and have been initialized with the same random 
seed. For both datasets, the 70% of the time units (u = 2,300; ∼ 12.6 years) are used to train the model, the 20% 
(u = 658, ∼ 3.6 years) for validation and the remaining 10% (u =329, ∼ 1.8 years) for testing. Additional modeling 
details besides the ones presented below are available in the Supplementary Materials in Section S2.

Baseline.   The  first tested model is a simple baseline scenario in which the forecasted centrality values 
ψ i,Norm[u+ 1] in the next time unit will be equal to the current ground-truth centrality values ψi,Norm[u] . This 
trivial case assumes that terrorist dynamics do not change over time, pointing in the direction of low tendency 
of terrorist actors to innovate their operational behaviors.

Feedforward neural network.   The second model tested was a feed-forward dense neural network (FNN) that 
has two fully connected hidden layers. FNN is the most simple and straightforward class of neural networks and 
FNNs are not explicitly designed for applications that have time-series or sequence data35. In fact, FNNs are not 
able to capture the temporal interdependencies existing across inputs and thus treat each input sequence as inde-
pendent of one another. Their inclusion in our experiments is motivated by the interest in investigating whether 
our multivariate time series actually possess temporal autocorrelations or not through a comparison with other 
architectures that are designed to handle ordered inputs.

Long short‑term memory network.   Recurrent Neural Networks (RNN) are one of the algorithmic standards 
in research problems involving time series data or, more in general, sequences. In the present work, we employ 
an RNN with Long Short-Term Memory (LSTM) units36. LSTM networks have been proposed to solve the 
well-known problem of vanishing (or exploding) gradients in traditional RNN. They include memory cells that 
can maintain information in memory for longer periods, thus allowing the algorithm to more efficiently learn 
long-term dependencies in the data. We employ LSTM networks with dropout to avoid over-fitting37, using a 
two hidden layer structure.

Convolutional neural network.   Convolutional neural networks (CNNs) are extensively used in computer 
vision problems, operating on images and videos for prediction and classification purposes38. To handle such 
tasks, CNNs mostly work on 2-dimensional data such as images and videos. However, CNNs can also handle 
unidimensional signals such as time series39. A 1D-CNN incorporates a convolutional hidden layer that applies 
and slides a filter over the sequence, which can be generally seen as a non-linear transformation of the input.

Bidirectional LSTM.  Bidirectional LSTM (Bi-LSTM) are an extension of traditional LSTM models40. They train 
two distinct LSTM layers: the first layer uses the sequence in the traditional forward order, while the other layer 
is trained on the sequence passed backward. This mechanism allows the network to preserve both information 
on the past and information on the future, thus fully exploiting the temporal dynamics of the time series under 
consideration.

CNN‑LSTM.  To complement the strengths of FNNs, CNNs, and LSTMs, Sainath et  al.41 have proposed an 
architecture combining the three to solve speech recognition tasks. Since then, the approach has demonstrated 
many promises also in applications involving time-series data. We thus test the performance of a CNN-LSTM 
inspired by the work of Sainath et al.: the network has a first 1d convolutional layer, followed by a max pool-
ing layer. The information is passed through a dense layer and an LSTM one, respectively. Finally, the network 
involves an additional dense layer that processes the output.

Performance evaluation.  To evaluate the performance of the compared algorithms we first use a standard 
metric, i.e., mean squared error (MSE), computed as:

It is worth specifying that the evaluation is done on the test data and that in Eqs. (5)–(9), U denotes the length 
of the test data and u denotes one specific time slice of the test data. We keep this general notation to avoid 
confusion. We relied on MSE because we aimed at penalizing bigger errors. Furthermore, we then propose two 
alternative metrics. While centrality values are capturing correlational patterns across different attack dimen-
sions, they are not directly interpretable in real-world terms. For this reason, we shift to a set perspective and we 
test the models on their ability to learn the most central targets, i.e. the most popular, frequent, and connected 
ones, in two different ways.

Element‑wise accuracy.  Element-wise accuracy � (EWA) is the simplest metric between the two. Given 
the sequence of test data, the sets S[u] and Ŝ[u] represent the actual set of two most central targets and the pre-
dicted set of two most central targets at u. We define the element-wise accuracy φ[u] as:

(5)MSE =
1

U

u
∑

i=1

(

ψi,Norm[u] − ψ̂i,Norm[u]
)2
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Equation (6) means that if the sets have at least one element in common, then φui is equal to 1, while if the 
two sets are disjoint the value will be equal to zero. For the entire history of considered time units U, then, the 
overall EW accuracy �U is computed as:

with �U being the ratio between the sum of single unit binary accuracies φ[u] and the total number of time 
units U.

Set‑wise accuracy.  Set-wise accuracy Ŵ (SWA) is more challenging and further tests the ability of the deep 
learning models to identify and predict the correct set of targets S[u]. The cardinality of S[u] is bounded in the 
range 0 < |S[u]| ≤ 2 . Thus, for a given time unit u, single γ [u] is defined as:

In our particular case, γ [u] is equal to 1 if the two sets are perfectly identical (as in any set, it is worth noting, 
the order does not matter), is 0 when the two sets are disjoint and 0.5 when there is an intersection between S 
and Ŝ . Finally, the overall metric Ŵ for the sequence U is given by:

ŴU is then simply computed as the average value of all γ [u] over the entire sequence of time units U. The 
metric aims at providing more comprehensive information to researchers and intelligence analysts potentially 
interested in designing logistically wider prevention strategies.

In the analyzed time-series, there is a considerable amount of cases in which time units did not record any 
attack in both datasets. In Afghanistan, no-attack units account for a 20.54% of the total time units u, while for 
Iraq this percentage is higher (21.2%). No-attack units are most prevalent in the first years of the considered 
time span, but we needed however to consider this eventuality in the performance evaluation of the proposed 
models.

Correctly forecasting no-attack units is crucial. In a counter-terrorism scenario, avoiding forecasting likely 
targets (and therefore attacks) in time units that do not experience any terrorist action reduces the costs of 
policy and intelligence strategy deployment. A wrong prediction in a no-attack unit is defined as a case in which: 
S[u] = ∅ ∧ Ŝ[u] �= ∅ , meaning that the set of predicted targets at risk of being hit Ŝ[u] has at least one target 
y, while the actual set of hit targets S[u] is empty because no attacks were recorded.

Our forecasting framework involves a complex forecasting task. It is complex for two main interconnected 
reasons. First, we train our models to predict a relatively large set of time series characterized by sparsity and 
non-stationarity. Second, the number of time units is limited. Deep learning for time series prediction or clas-
sification has been deployed in many domains, including high-frequency finance applications42,43 or weather and 
climate prediction44–47. However, unlike these forecasting settings, open-access data on terrorist events cannot 
be measured using micro-scales such as minutes, seconds or hours, because data are collected at the daily level, 
hence leading to a significantly limited number of 2-day based time units u.

Therefore, the models have to quickly learn complex temporal and operational inter-dependencies without 
relying on massive amounts of data. Given these premises, it is highly unlikely that the forecasts can exactly 
predict centrality values ψiNorm [u] that are equal to 0 for each one of the features in the X, W and Y dimensions. 
Forecasts will contain noise, leading to very small centrality estimates for several features. When those very 
small ψiNorm [u] are produced as estimates, the element-wise and set-wise accuracy metrics will produce erro-
neous results. To accommodate the necessity to correctly forecast no-attack days, we have defined a rule that 
overcomes the likely presence of noise-driven values. Given ü , that is a time unit u with zero attacks, we have 
thus set a threshold ξ = 0.1 , such that:

Equation (10) means that the element-wise accuracy φ[ü] and the set-wise accuracy γ [ü] of the time unit ü 
are both equal to 1 if all the predicted centrality values ψ̂i,Norm[ü] are below the threshold ξ = 0.1.

Conversely, if ∃i such that ψ̂i,Norm[ü] > ξ , then the evaluation of both the metrics is equal to 0. Given the 
distributional ranges of all the values (see Supplementary Materials), the ξ threshold set at 0.1 resulted in the 
right compromise between an excessive penalization of the algorithm performance and a shallow assessment of 
the actual forecasting capabilities of the proposed framework. Figure 6 shows the temporal trend of counts of 
non-zero centrality values in the target dimension for Afghanistan and Iraq.

(6)φ[u]:=

{

1 if Ŝ[u] ∩ S[u] �= ∅

0 if Ŝ[u] ∩ S[u] = ∅

(7)�U =
1

U

U
∑

i=1

φ[u]

(8)γ [u]:=
|Ŝ[u] ∩ S[u]|

|S[u]|

(9)ŴU =
1

U

U
∑

u=1

γ [u]

(10)φ[ü], γ [ü]:=

{

1 ψ̂i,Norm < ξ , ∀i ∈ I
0 otherwise
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Results

The results reported in Table 2 overall showcase two relevant sets of results. First, the models clearly illustrate 
that structuring the problem of forecasting the next most central terrorist targets through a meta-graph learning 
framework outperforms an alternative scenario in which targets are forecasted simply using the shallow count 
of feature occurrences. This suggests that engineering the feature space by exploiting inter-dependencies among 
events in a network fashion allows capturing more information regarding the patterned nature of terrorist activity. 
In both the Afghanistan and Iraq cases, Ŵ and � are always higher when using graph-derived time-series. One 
exception is given by the MSE, which appeared to be lower in the shallow-learning case for the Iraq dataset and 
ex-aequo in the Afghanistan one. While a shallow learning approach works reasonably well in terms of regres-
sion, the meta-graph scenario works consistently better when forecasted targets need to be correctly ranked 
in terms of their ground-truth centrality. The comparison between meta-graph learning and shallow learning 
performances is provided in Fig. 7.

Second, the outcomes indicate that Bi-LSTM models always reach higher results in terms of � and Ŵ , regard-
less of the considered dataset and feature engineering approach. This convergence demonstrates that fitting a 
model that can rely on both backward and forward inputs enables the neural network to gather much richer 
contextual information, leading to superior forecasting performance.

Third, the outcomes also reveal that a baseline model with no learning component assuming no changes 
in terrorist strategies is highly inaccurate and, furthermore, the performance of Feedforward Dense Networks 
underscores that treating centrality sequences without taking into consideration the underlying temporal con-
nections across different time units leads to sub-optimal predictions.

We were also interested in assessing the model results not only across algorithmic architectures but also across 
different input widths, contributing both to the computational and the theoretical study of terrorism. Highly 
similar results emerged, with a notable exception. A Bi-LSTM model trained using 5 time units u as input widths 
have reached the highest performance in both datasets for what concerns � and in the Iraq case also in terms 
of Ŵ . However, in the Afghanistan dataset, the same model architecture using 30 time-units u as input width 
obtained the highest Ŵ . The need for six times more data points for obtaining optimal forecasts denotes the higher 
stability of terrorism in Afghanistan, and a more microcycle-like structure of events in Iraq48. This difference 
(although minimal) between the Afghanistan and Iraq cases might be explained by a higher heterogeneity of 
strategies and, ultimately, actors involved and opens new lines of inquiry to understand what factors are driving 
these dynamics (e.g., higher creativity, more resources, internal fighting).

Figure 6.   Temporal Trend of the count of non-zero centrality values ψkNorm
[u] in the target dimension for 

Afghanistan and Iraq. The figures have been created using Matplotlib version 3.1.3. https://​matpl​otlib.​org/3.​1.3/​
conte​nts.​html.

https://matplotlib.org/3.1.3/contents.html
https://matplotlib.org/3.1.3/contents.html
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Table 2.   Performance in terms of set-wise accuracy ( Ŵ ), event-wise accuracy ( � ) and mean squared 
error (MSE) across chosen algorithms with varying input widths. For Ŵ and � , higher values mean better 
performance. The contrary holds for MSE. Values in bold indicate the best performance obtained in each 
country overall (i.e., taking into consideration also Shallow datasets).

Model
Input 
Width

META-GRAPH LEARNING SHALLOW LEARNING

Afghanistan Iraq Afghanistan Iraq

Ŵ � MSE Ŵ � MSE Ŵ � MSE Ŵ � MSE

Baseline 1 0.1570 0.3140 0.7733 0.0701 0.1371 0.2371 0.1570 0.3140  0.7733 0.0701 0.1371 0.2371

FNN 1 0.6478 0.9146 0.0399 0.5594 0.9176 0.0275 0.6036 0.8658 0.0448 0.5183 0.8841 0.0527

LSTM 1 0.6753 0.9237 0.0395 0.5716 0.9237 0.0272 0.6265 0.8963 0.0410 0.5320 0.9024 0.0281

CNN 1 0.6204 0.8780 0.0414 0.5564 0.9176 0.0266 0.5807 0.8658 0.0485 0.5182 0.8963 0.0787

Bi-LSTM 1 0.6692 0.9238 0.0372 0.5442 0.9112 0.0261 0.6265 0.8871 0.0406 0.4969 0.8963 0.0268

CNN-LSTM 1 0.6494 0.9116 0.0393 0.5457 0.9146 0.0269 0.6189 0.8871 0.0382 0.5259 0.8993 0.0269

FNN 5 0.6204 0.8920 0.0415 0.5663 0.9228 0.0261 0.5432 0.8333 0.0569 0.5216 0.9012 0.0486

LSTM 5 0.6651 0.9136 0.0392 0.5771 0.9290 0.0254 0.5633 0.8395 0.0407 0.5370 0.9135 0.0248

CNN 5 0.6404 0.8889 0.0395 0.5524 0.9105 0.0265 0.5462 0.8364 0.0591 0.5000 0.8858 0.0541

Bi-LSTM 5 0.6836 0.9352 0.0366 0.5787 0.9290 0.0246 0.6404 0.9104 0.0370 0.5401 0.9104 0.0238

CNN-LSTM 5 0.6327 0.8920 0.0403 0.5370 0.8920 0.8920 0.5802 0.8488 0.0389 0.5201 0.8981 0.0249

FNN 15 0.6210 0.8885 0.0442 0.5478 0.8949 0.0286 0.6369 0.9044 0.0450 0.5207 0.8949 0.0567

LSTM 15 0.6768 0.9236 0.0376 0.5732 0.9267 0.0263 0.6257 0.8949 0.0370 0.5286 0.9012 0.0255

CNN 15 0.6322 0.8949 0.0441 0.5478 0.8980 0.0317 0.5859 0.8630 0.0503 0.5254 0.8949 0.0531

Bi-LSTM 15 0.6863 0.9331 0.0370 0.5573 0.9172 0.0240 0.6496 0.9171 0.0366 0.5000 0.8949 0.0248

CNN-LSTM 15 0.6433 0.8949 0.0440 0.5398 0.8917 0.0246 0.6114 0.8757 0.0384 0.4952 0.8789 0.0265

FNN 30 0.5335 0.8361 0.0520 0.5669 0.9163 0.0311 0.5785 0.8127 0.0485 0.5301 0.8996 0.0429

LSTM 30 0.6756 0.9298 0.0377 0.5735 0.9231 0.0263 0.6054 0.8795 0.0431 0.5301 0.9063 0.0250

CNN 30 0.6187 0.8829 0.0478 0.5619 0.9130 0.0331 0.5619 0.8361 0.0592 0.5317 0.8963 0.0451

Bi-LSTM 30 0.6890 0.9333 0.0369 0.5769 0.9230 0.0268 0.6572 0.9130 0.0376 0.5017 0.8862 0.0252

CNN-LSTM 30 0.5852 0.8729 0.0482 0.5585 0.9164 0.0250 0.5953 0.8662 0.0452 0.5183 0.8996 0.0301

Figure 7.   Comparison between Meta-Graph and Shallow Learning for Afghanistan and Iraq. Models are 
ordered based on descending difference in Ŵ (Set-wise Accuracy) performance. “IW” indicates “input width”. 
The figures have been created using Matplotlib version 3.1.3. https://​matpl​otlib.​org/3.​1.3/​conte​nts.​html.

https://matplotlib.org/3.1.3/contents.html
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To further inspect the quality and characteristics of the forecasting models, Fig.  8 conveys target-level infor-
mation for both datasets. Specifically, the bar charts report a comparison between the empirical number of time 
units |u| in which a certain target was among the highest two centrality values and the corresponding predicted 
number of time units in which the same target was forecasted to be in the top-two set, limiting the comparison to 
the outcomes of the model achieving the best Ŵ for each country. For Afghanistan and Iraq, Figures S9 and S10 in 
the Supplementary Materials also show the correlation between each vector �norm[u] and �̂norm[u] , representing 
respectively the empirical centrality values of each target feature at each time-stamp u and the corresponding 
predicted centrality values.

One common feature appears for both datasets: the Bi-LSTM models fail when dealing with time unit vectors 
having Unknown.2 as highly relevant target type (“Unknown.2” is used to distinguish unknown targets from 
unknown tactics, “Unknown”, and unknown weapons, “Unknown.1”, in the dataset). This is probably due to the 
peculiar mix of patterns associated with this specific target feature. Additionally, in Afghanistan the model poorly 
performs in predicting a central role for Military targets and in Iraq the Bi-LSTM model reaches unsatisfactory 
results when Business appears to be empirically relevant.

It is worth noting how the Afghanistan distribution of the top five empirical targets appears slightly more 
unbalanced compared to the Iraq one, possibly influencing the overall model results commented in Table 2, which 
are generally higher in Afghanistan. In both case studies, the forecasting models overestimate the prevalence 
of the most important empirical targets, calling for future efforts to engineer models that are more capable of 
capturing the nuances hidden under the different inter-connected dimensions of terrorist actions. Improving 
the model ability to handle these nuances will lead to a higher propensity of disentangling anomalous combina-
tions of tactics, weapons and targets that may be hard to learn for the algorithms in their present form (possibly 
due to the low amount of data used compared to standard deep learning applications and the underlying non-
stationarity of certain signals used in the datasets). This, in turn, would lead to forecasting distributions increas-
ingly resembling empirical ones, which is the ultimate aim as results could be meaningfully used and deployed 
also in reference to rare events, intended as the outcomes of rare operational combinations.

In spite of these limits, the satisfactory performance recorded for the two best models (Afghanistan: 
Ŵ = 0.6890 ; Iraq: Ŵ = 0.5787 ) along with the visualized distribution of the most central targets corroborates 
the position of Clarke and Newman5 who repeatedly claimed the importance of protecting a restricted number 
of possible terrorist targets as a meaningful way to counter and prevent terrorist violence. While, in principle, 
terrorists have an almost infinite number of possible targets to choose from, their choice is limited by a number 
of constraints and motivations (both material and immaterial): this translates into the shrinking of the options’ 
spectrum, and in the recurring consistency of a very limited number of target types. In line with Clarke and 
Newman’s argument, the presented models underscore how suboptimal models can still provide effective intel-
ligence knowledge given the patterned nature of terrorist actors, a mixed effect of the strategic character of their 
actions and the bounded portfolio of resources and options at their disposal.

Figure 8.   Bar chart comparing the number of time units |u| a feature was empirically ranked among the two 
highest centrality values in the test set and number of times the same feature was forecasted among the two 
highest centrality values. The graph reports the result for the model with the highest Ŵ for Afghanistan and Iraq, 
respectively (Afghanistan: Bi-LSTM with 30 as input width; Iraq: Bi-LSTM with 5 as input width) and shows the 
five most common targets in each dataset. The figures have been created using Matplotlib version 3.1.3. https://​
matpl​otlib.​org/3.​1.3/​conte​nts.​html.

https://matplotlib.org/3.1.3/contents.html
https://matplotlib.org/3.1.3/contents.html
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Discussion and conclusions
Artificial intelligence and computational approaches are increasingly gaining momentum in the study of societal 
problems, including crime and terrorism. To contribute to this developing area of research, this paper proposed a 
novel computational framework designed to investigate terrorism dynamics and forecast future terrorist targets. 
Relying on real-world data gathered from the GTD, we presented a method for representing the complexity and 
interdependence of terrorist attacks that relied on the extraction of temporal meta-graphs from thousands of 
events that occurred from 2001 to 2018. We further tested the ability of six different modeling architectures to 
correctly predict the targets to be at the highest risk of being chosen in the next 2 days. The work presented the 
outcomes of multiple experiments performed focusing on terrorist activity in Afghanistan and Iraq. We first 
compared our approach using temporal meta-graphs against a shallow learning scenario in which forecasts are 
obtained using a feature space that only considers the count of occurrences across operational features of ter-
rorist events. The comparison demonstrated that using temporal meta-graphs to construct time-series leads to 
superior forecasting performance, suggesting that embedding event inter-dependencies into temporal sequences 
offers richer context and information to capture terrorist complexity.

Additionally, results hint that Bidirectional LSTM (Bi-LSTM) models outperform the other architectures in 
both datasets, although differences arise across the two in terms of forecasting performance and optimal input 
width.

This work addressed an unexplored research problem in the growing literature that applies artificial intelli-
gence for social impact, highlighting the potential of machine and deep learning solutions in forecasting terrorist 
strategies. These promising results call for future research endeavors that should address some of the limitations 
of the current work, including the generalizability of the results in other geographical contexts, the discrimination 
between actors operating in the same country, and the use of alternative contextual information such as data on 
military campaigns or civil conflicts. In terms of limitations, we specifically highlight that our approach does 
not take into account geo-spatial information. This decision is justified by the assumption that events occurring 
in the same country are part of a high-level strategic decision-making process, and that this high-level process 
is decoded through unified event dynamics. While this assumption is more easily justifiable in countries where 
one or very few terrorist actors are active or where, in spite of large pools of active actors most events are associ-
ated with one or few of them (e.g., Afghanistan), we recognize that it becomes more problematic for countries 
experiencing activity from a higher number of groups or organizations, as it is the case for Iraq. Patterns that 
exist at a national level may hide existing dynamics at the regional or provincial level. Future work should thus 
consider a localized geographical dimension to provide forecasts that have a deeper practical value, as they would 
produce heterogeneous probabilistic risk scales for different territories, helping intelligence agencies in setting 
up more tailored counter-terrorism strategies.

Data availability
The data and code used to conduct the analyses here presented are made available at the following GitHub reposi-
tory: https://​github.​com/​gcamp​ede/​terro​rism-​metag​raphs.
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