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Predicting anthropometric 
and metabolic traits with a genetic 
risk score for obesity in a sample 
of Pakistanis
Sobia Rana  * & Adil Anwar Bhatti

Obesity is an outcome of multiple factors including environmental and genetic influences. Common 
obesity is a polygenic trait indicating that multiple genetic variants act synergistically to influence 
its expression. We constructed a genetic risk score (GRS) based on five genetic variants (MC4R 
rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752) and 
examined its association with obesity-related traits in a sample of Pakistanis. The study involved 
306 overweight/obese (OW/OB) and 300 normal-weight (NW) individuals. The age range of the study 
participants was 12–63 years. All anthropometric and metabolic parameters were measured for each 
participant via standard procedures and biochemical assays, respectively. The genetic variants were 
genotyped by allelic discrimination assays. The age- and gender-adjusted associations between the 
GRS and obesity-related anthropometric and metabolic measures were determined using linear 
regression analyses. The results showed that OW/OB individuals had significantly higher mean ranks 
of GRS than NW individuals. Moreover, a significant association of the GRS with obesity-related 
anthropometric traits was seen. However, the GRS did not appear to affect any obesity-related 
metabolic parameter. In conclusion, our findings indicate the combined effect of multiple genetic 
variants on the obesity-related anthropometric phenotypes in Pakistanis.

Obesity is a multifactorial and complex metabolic disorder involving a chronic imbalance of energy homeosta-
sis that has adverse implications for health such as dyslipidemia, arterial hypertension, coronary heart disease, 
type 2 diabetes mellitus, ovarian polycystosis, gallbladder lithiasis, sleep apnea syndrome, arthropathy, cerebral 
vasculopathy, and some neoplasms1. The substantially increasing worldwide prevalence of obesity has made it 
one of the major global public health concerns2. It is generally ascribed to unhealthy lifestyle choices or envi-
ronmental factors but it is also known to have a strong genetic component. Thus, obesity is highly heritable and 
inherent genetic variations can confer augmented predisposition in some people while protection in others3, 4. 
In rare instances, genetic predisposition to obesity can be owing to a large-effect mutation that disrupts energy 
homeostasis5. Nevertheless, no such monogenic mutation can be indicated for the prevailing majority of severely 
obese people6–8. The genetic predisposition to obesity is but rather an outcome of the cumulative effects of sev-
eral genetic variants with individually modest effects. This polygenic inheritance involving numerous common 
genetic variants has been reported to account for the majority of inherited predisposition to complex and com-
mon diseases in addition to obesity9–11. Therefore, it can be said that a single genetic variant can significantly 
affect the risk of disease occurrence in case of monogenic Mendelian disorders while multiple genetic variants 
(that individually play only a modest role in conferring disease risk) collectively make a considerable contribu-
tion in manifestation of complex traits and common disorders. In this context, the concept of genetic risk score 
(GRS) has emerged by which the cumulative small effect sizes of multiple genetic variants can be exploited to 
generate an overall score for predicting these traits and disorders. The GRS has been shown to provide reliable 
risk prediction for many complex genetic traits12. In particular, the remarkable potential of GRS for identifying 
individuals at a higher risk of developing obesity has been revealed13, 14.

The GRS is based on simple counts of disease-causing alleles. Generally, the GRS of any complex genetic 
trait can be computed by adding up risk alleles. Calculating a GRS by uniting information for multiple genetic 
variants offers a tool for examining genetic contributions in the manifestation of obesity in samples much 
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smaller than are required for GWAS (genome-wide association studies)15, 16. Most GRS studies on obesity have 
been conducted on western populations so far14, 17. Thus at present, extending the scope of genetic studies to 
examine populations of other descents or under-represented populations is warranted18. Pakistani population 
is an under-represented population in this context.  Pakistan is a South Asian country and its population offers 
many advantages in revealing the obesity etiology, which are attributable to its distinctive features including its 
recent nutritional transition, complex demographic history, diversity, endogamy, and consanguineous marriage 
practices resulting in a high rate of inbreeding, and the presence of large families19. Moreover, Pakistan has been 
recently ranked among the top 10 most obese countries in the world as per the Global Burden of Disease Study 
201320. Therefore, the current study has been undertaken to compute the GRS based on five obesity-linked key 
loci including MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752 
in this at-risk and under-represented population. The aforementioned genetic variants were previously reported 
to be individually associated with overweight/obesity in large GWASs on western populations21, 22 as well as in 
a sample of Pakistani population23–26.

The FTO (fat mass and obesity-associated) gene is the first obesity-susceptibility locus identified by GWAS27, 28. 
The upregulation of FTO leads to increased fat mass and obesity possibly through hyperphagia and/or low energy 
expenditure29, 30. MC4R (melanocortin 4 receptor) and BDNF (brain-derived neurotrophic factor) play a crucial 
role in the central regulation of energy homeostasis via induction of satiety and increased energy expenditure31, 32. 
TMEM18 (transmembrane protein 18) has also been indicated to play a role in the central regulation of appe-
tite and energy expenditure as germline loss of TMEM18 in mice resulted in increased body weight driven by 
increased food intake and aggravated by high-fat diet while selective overexpression of TMEM18 in the para-
ventricular nucleus of wild-type mice decreased food intake and also enhanced energy expenditure33. NEGR1 
may affect body weight via influencing energy balance, fat production and transport, and the structure of brain 
areas involved in feeding behavior34–37. Thus, risk variants within or near the aforementioned genes, which 
either increase or decrease their expression and/or function can result in insatiable appetite and/or low energy 
expenditure; consequently, leading to weight gain and obesity.

Previously, we sought individual associations of the aforementioned five genetic variants with overweight/
obesity and related anthropometric and metabolic traits whereas now in the current study we seek the associa-
tion of the GRS based on all the aforementioned five genetic variants with the obesity-related anthropometric 
as well as metabolic measures in the same sample of Pakistani population.

Results
Sample description.  The ages of the sample population ranged from 12 to 63 years. The total sample popu-
lation was composed of 606 individuals including 270 females and 336 males. There were an equal number of 
males (n = 168) in both overweight/obese (OW/OB) and normal-weight (NW) groups. However, there were 138 
and 132 females in OW/OB and NW groups, respectively.

Significant differences in study variables including GRS between OW/OB and NW Individu-
als.  First, all anthropometric and metabolic parameters were compared between OW/OB and NW individu-
als. Anthropometric parameters included body weight, height, body mass index (BMI), waist circumference 
(WC), hip circumference (HC), skinfold thicknesses (SFTs), waist-to-hip ratio (WHR), waist-to-height ratio 
(WHtR), body fat percentage (%BF). Similarly, metabolic parameters encompassed systolic blood pressure 
(SBP), diastolic blood pressure (DBP), the product of triglycerides and glucose (TyG), fasting blood glucose 
(FBG), fasting insulin, homeostatic model assessment-insulin resistance (HOMA-IR), total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), 
very-low-density-lipoprotein cholesterol (VLDL-C), coronary risk index (CRI), atherogenic index (AI), triglyc-
eride-to-HDL-C ratio (TG/HDL-C). All anthropometric and metabolic parameters except height, HDL-C, and 
CRI differed significantly between OW/OB and NW individuals being higher in OW/OB as compared with NW 
individuals (Table 1). Similarly, the mean ranks of GRS were found to differ significantly between OW/OB and 
NW individuals being higher in OW/OB as compared with NW individuals (Table 2).

Allele frequencies and association of individual variants with overweight/obesity.  The risk 
allele frequencies (RAFs) of all the variants are given in Table 3. The RAFs for all the variants except rs6265 were 
higher in the OW/OB as compared to NW individuals; however, this difference was found to be statistically 
significant for the TMEM18 rs7561317 only. Consequently, the multinomial logistic regression analysis also 
revealed a significant association of only rs7561317 with overweight/obesity (Table 3).

Association of the GRS with obesity‑related anthropometric parameters.  A significant associa-
tion of the GRS with nearly all the anthropometric variables such as body weight, BMI, WC, HC, WHR, WHtR, 
SFTs (biceps, triceps, supra-iliac, abdominal, thigh, and sub-scapular), and %BF was observed (Table 4). The 
strongest association of the GRS was seen with augmented body weight, BMI, WC, and WHtR (p = 0.007) fol-
lowed by enhanced HC, biceps and thigh SFTs (p = 0.008), sub-scapular SFT (p = 0.018), WHR, triceps SFT and 
% BF (p = 0.02), and abdominal and supra-iliac SFTs (p = 0.04).

Association of the GRS with obesity‑related metabolic traits.  No significant association of the 
GRS with any of the obesity-related metabolic variables such as SBP, DBP, TyG, FBG, fasting insulin, HOMA-IR, 
TC, TG, HDL-C, LDL-C, VLDL-C, CRI, AI, and TG/HDL-C was seen (Table 5).
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Table 1.   Comparison of the obesity-related anthropometric and metabolic parameters between OW/
OB and NW individuals. OW/OB overweight/obese, NW normal-weight, BMI body mass index, WC waist 
circumference, HC hip circumference, WHR waist-to-hip ratio, WHtR waist-to-height ratio, SFT skinfold 
thickness, % BF body fat percentage, SBP systolic blood pressure, DBP diastolic blood pressure, TyG the 
product of triglycerides and glucose, FBG fasting blood glucose, HOMA-IR homeostatic model assessment-
insulin resistance, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C 
low-density lipoprotein cholesterol, VLDL-C very-low-density-lipoprotein cholesterol, CRI Coronary Risk 
Index, AI Atherogenic Index, TG/HDL-C triglyceride-to-HDL-C ratio, SD standard deviation, CI confidence 
interval, q-value corrected p value. The comparison of the obesity-related anthropometric and metabolic 
parameters between overweight/obese and normal-weight individuals was determined by Mann–Whitney U 
test. The mean ± SD and mean ranks were calculated to show the difference of parameters between overweight/
obese and normal-weight individuals. The analysis was corrected for multiple comparisons via the Benjamini–
Hochberg method of false discovery rate (FDR) control. A p value < 0.05 was considered statistically significant. 
The significant p values are indicated in bold.

Parameters (unit of measurement)

Overweight/obese 
individuals Normal-weight individuals

p value q-valueMean ± SD Mean ranks Mean ± SD Mean ranks

Weight (Kg) 89.01 ± 19.25 439.83 59.20 ± 7.91 164.45 < 0.001 < 0.001

Height (cm) 164.27 ± 9.36 296.39 164.10 ± 8.55 310.76 0.312 0.312

BMI (Kg/m2) 32.89 ± 6.07 453.44 21.70 ± 2.01 150.56 < 0.001 < 0.001

WC (cm) 110.73 ± 14.26 444.08 82.95 ± 8.24 160.11 < 0.001 < 0.001

HC (cm) 114.61 ± 12.02 440.34 94.89 ± 5.80 163.92 < 0.001 < 0.001

WHR 0.97 ± 0.06 405.91 0.87 ± 0.07 199.04 < 0.001 < 0.001

WHtR 0.99 ± 0.33 442.78 0.50 ± 0.05 161.43 < 0.001 < 0.001

Biceps SFT (mm) 19.21 ± 8.74 410.28 8.89 ± 4.94 194.58 < 0.001 < 0.001

Triceps SFT (mm) 31.36 ± 9.94 430.44 14.89 ± 6.74 174.02 < 0.001 < 0.001

Sub-scapular SFT (mm) 33.20 ± 11.18 425.03 17.26 ± 6.18 178.12 < 0.001 < 0.001

Abdominal SFT (mm) 47.26 ± 15.40 428.19 24.28 ± 9.36 176.32 < 0.001 < 0.001

Thigh SFT (mm) 47.11 ± 16.72 431.91 20.41 ± 9.10 172.52 < 0.001 < 0.001

Supra-iliac SFT (mm) 38.65 ± 14.83 422.04 19.13 ± 8.07 182.59 < 0.001 < 0.001

% BF 34.94 ± 6.19 437.13 20.34 ± 6.97 167.20 < 0.001 < 0.001

SBP (mmHg) 119.90 ± 14.93 340.85 113.40 ± 13.46 265.40 < 0.001 < 0.001

DBP (mmHg) 79.80 ± 11.05 342.52 74.51 ± 9.52 263.70 < 0.001 < 0.001

TyG index 8.74 ± 0.51 357.78 8.44 ± .49 248.14 < 0.001 < 0.001

FBG (mg/dL) 105.10 ± 24.50 329.17 99.51 ± 12.55 277.32 < 0.001 < 0.001

Fasting insulin (µl U/mL) 27.01 ± 14.49 366.18 18.83 ± 12.21 239.57 < 0.001 < 0.001

HOMA-IR 6.99 ± 3.95 368.39 4.76 ± 3.97 237.31 < 0.001 < 0.001

TC (mg/dL) 157.79 ± 39.26 328.59 145.87 ± 38.85 277.91 < 0.001 < 0.001

TG (mg/dL) 135.55 ± 75.42 353.42 104.48 ± 57.78 252.58 < 0.001 < 0.001

HDL-C (mg/dL) 30.974 ± 9.39 313.36 29.82 ± 9.17 293.45 0.161 0.161

LDL-C (mg/dL) 103.42 ± 37.09 362.64 79.51 ± 31.48 243.17 < 0.001 < 0.001

LDL-C (mg/dL) 27.00 ± 15.04 349.74 21.18 ± 11.41 255.16 < 0.001 < 0.001

CRI 5.46 ± 1.91 314.69 5.15 ± 1.52 292.08 0.122 0.131

AI 3.47 ± 1.26 351.10 2.81 ± 1.14 254.95 < 0.001 < 0.001

TG/HDL-C 4.72 ± 3.14 341.24 3.88 ± 2.98 265.00 < 0.001 < 0.001

Table 2.   Comparison of GRS between overweight/obese and normal-weight individuals. GRS genetic risk 
score, OW/OB overweight/obese, NW normal-weight. The p value for GRS was calculated by the Mann–
Whitney U test. The p value was considered significant and indicated in bold when p value < 0.05.

GRS OW/OB individuals (n = 306) NW individuals (n = 300) p value

Mean ranks 322.66 283.96 0.005

Minimum 2 1

Maximum 9 9
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Discussion
Overweight/obesity is a multifactorial metabolic disorder having a complex genetic background 38. In this con-
text, the estimated heritability of obesity ranges from 40 to 70%39. Numerous candidate gene studies and GWAS 
have discovered several obesity-related genetic variants40, however, the additive effect of these variants on obe-
sity risk has been reported in very few studies. In particular, the studies for exploring the combined effect of 
multiple genetic variants on the risk of obesity and related traits regarding Pakistani population are in their 
infancy. As common obesity has a polygenic inheritance, the assessment of cumulative effect based on GRS is 
very crucial to fully comprehend the components of genetic architecture and physiopathology of obesity. The 
striking potential of GRS for identifying individuals at a higher risk of developing overweight/obesity has been 
revealed in this regard13, 14.

The rs1421085 of the FTO gene (T > C) is anticipated as the causal variant for overweight/obesity and it has 
been linked with a higher total energy intake and more eating episodes per day41, 42. The obesity-increasing effect 
of FTO rs1421085 has been shown to disrupt ARID5B-mediated repression of IRX3 and IRX5 expression in pre-
adipocytes that in turn leads to the excessive accumulation of triglycerides, increased adipocytes size, reduced 
mitochondrial oxidative capacity, and reduced white adipocytes browning, resulting in reduced mitochondrial 
thermogenesis43. The variant rs17782313 (T > C) located 188 kb downstream of the MC4R gene is strongly linked 
with obesity and the disruption of the transcriptional control of MC4R has been proposed as the likely mechanism 
of this variant44. Likewise, the rs6265 variant (G > A) in the coding region of the BDNF gene that involves Valine 
to Methionine substitution at the 66th amino acid position (Val66Met) of the N-terminal domain of pro-BDNF 
has also been linked with obesity. The intracellular trafficking and depolarization-induced release of BDNF are 

Table 3.   Comparison of RAFs of the variants between OW/OB and NW individuals along with the 
association of the variants with overweight/obesity. OW/OB overweight/obese, NW normal-weight, RAFs 
risk allele frequencies, OR odds ratio, CI confidence interval. The data represents risk allele frequencies 
(RAFs) in overweight/obese and normal-weight individuals along with odds ratios and confidence intervals 
in parenthesis. Association was tested using multinomial logistic regression assuming an additive model. The 
analysis was performed by adjusting age and gender. An adjusted p value < 0.05 was considered significant. The 
significant p value is indicated in bold.

Gene/locus Variant Variant location Risk allele
RAFs OW/OB 
individuals

RAFs NW 
individuals OR (95% CI) p value

MC4R rs17782313 Intergenic C 43.8% 40.3% 1.144 (0.911–1.437) 0.246

BDNF rs6265 Missense A 19.8% 19.8% 0.995 (0.751–1.318) 0.972

FTO rs1421085 Intron C 33.8% 30.8% 1.151 (0.902–1.471) 0.259

TMEM18 rs7561317 Intergenic G 87.9% 81.8% 1.571 (1.146–2.153) 0.005

NEGR1 rs2815752 Intron A 66.8% 64.3% 1.137 (0.899–1.483) 0.284

Table 4.   Association of the genetic risk score with obesity-related anthropometric variables. BMI body 
mass index, WC waist circumference, HC hip circumference, WHR waist-to-hip ratio, WHtR waist-to-height 
ratio, SFT skinfold thickness, % BF body fat percentage, SE standard error, CI confidence interval, q-value 
corrected p value. The association of the genetic risk score with anthropometric traits was determined by 
linear regression. Effect size (β) and 95% confidence intervals were computed to seek rise or fall in the selected 
parameter per each risk allele increase. All association analyses were adjusted for age and gender and corrected 
for multiple comparisons via the Benjamini–Hochberg method. A p value < 0.05 was considered statistically 
significant. The significant p values are indicated in bold.

Parameters (unit of measurement) β (S.E.) 95% CI p value q-value

Weight (Kg) 1.863 (0.574) 0.736–2.989 0.001 0.007

Height (cm) − 0.230 (0.270) − 0.760 to 0.300 0.395 0.395

BMI (Kg/m2) 0.691 (0.203) 0.292–1.089 0.001 0.007

WC (cm) 1.651 (0.519) 0.633–2.670 0.002 0.007

HC (cm) 1.188 (0.403) 0.396–1.980 0.003 0.008

WHR 0.006 (0.002) 0.001–0.010 0.016 0.021

WHtR 0.029 (0.009) 0.010–0.047 0.002 0.007

Biceps SFT (mm) 0.682 (0.233) 0.224–1.140 0.004 0.008

Triceps SFT (mm) 0.798 (0.332) 0.145–1.450 0.017 0.021

Sub-scapular SFT (mm) 0.879 (0.339) 0.213–1.545 0.010 0.018

Abdominal SFT (mm) 1.015 (0.481) 0.070–1.960 0.035 0.041

Thigh SFT (mm) 1.558 (0.534) 0.510–2.606 0.004 0.008

Supra-iliac SFT (mm) 0.858 (0.421) 0.031–1.685 0.042 0.045

% BF 0.689 (0.275) 0.148–1.229 0.013 0.020
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hampered due to this risk variant (rs6265)45, 46. The rs7561317, located about 22 kb downstream of TMEM18 is 
also an obesity-associated genetic variant that may diminish the expression of the TMEM18 gene and thus play a 
role in the manifestation of obesity33, 47. The rs2815752 variant (G > A) positioned 20 kb upstream of the NEGR1 
gene presumably decreasing its expression is linked with increased risk of obesity48.

The current study computes the GRS based on the above-discussed five obesity-linked key loci (FTO 
rs1421085, MC4R rs17782313, BDNF rs6265, TMEM18 rs7561317, and NEGR1 rs2815752), which were previ-
ously found to be individually associated with obesity and related anthropometric and metabolic measures in 
the same sample of Pakistani population23–26. In our previous studies, the aforementioned individual associations 
were sought using multiple genetic models and in the case of obtaining association in more than one model, 
the h-index was calculated to indicate the relevant mode of inheritance (such as dominant, recessive, or over-
dominant). Also, associations of the two variants FTO rs142108524 and TMEM18 rs756131725 were obtained 
without gender stratification while those of the other two namely MC4R rs1778231323 and NEGR1 rs281575226 
were observed after gender stratification in females only. Moreover, no association was found for BDNF rs626549. 
However, in the current study, we used a single additive model for simultaneously encompassing all the afore-
mentioned five different genetic variants in the analysis to compute GRS for obesity-related anthropometric and 
metabolic phenotypes. Moreover, the sample population was not stratified based on gender in the current study. 
Therefore, the use of an additive model and non-stratification of the sample population might be the possible 
reasons that only rs7561317 was found to be associated with the overweight/obesity, when before computing 
GRS, individual associations of the aforementioned variants with obesity were sought in the current study.

The current study has been undertaken to determine the susceptibility when the combined effects of the 
above-mentioned five variants are considered because common obesity has a polygenic inheritance as indicated 
before. Moreover, the cumulative effect of these five variants for the increased risk of obesity has not been studied 
before in the Pakistani population. In the present study, the GRS based on the aforementioned five genetic vari-
ants appeared to be significantly associated with the obesity-related anthropometric parameters such as body 
weight, BMI, WC, HC, WHR, WHtR, SFTs, and BF% in a sample of Pakistanis regardless of age and gender. This 
indicates that individuals with high GRS may be more predisposed to the development of overweight/obesity. It 
must be noted that four out of five genetic variants could not exhibit any significant association with overweight 
or obesity when associations for individual variants were sought in the current study. However, the significant 
association of GRS based on a count of risk-associated alleles across a panel of five aforementioned genetic vari-
ants was observed, which point to the benefit of identifying a significant association based on the additive count 
of multiple genetic variants that individually may or may not appear to exhibit a significant association with 
the risk of overweight/obesity in a sample population. This implies that the use of GRS is comparatively a better 
approach to estimate the genetic risk of overweight/obesity based on different multiple common risk variants 
rather than individual risk variants especially when the sample size is not very large.

Previously, two studies also reported a significant association of GRS based on obesity-associated genetic 
variants with the increased risk of being obese in Pakistanis50, 51. However, the GRS in these aforementioned two 

Table 5.   Association of the genetic risk score with obesity-related metabolic traits. SBP systolic blood pressure, 
DBP diastolic blood pressure, TyG the product of triglycerides and glucose, FBG fasting blood glucose, 
HOMA-IR homeostatic model assessment-insulin resistance, TC total cholesterol, TG triglyceride, HDL-C 
high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, VLDL-C very-low-density-
lipoprotein cholesterol, CRI Coronary Risk Index, AI Atherogenic Index, TG/HDL-C triglyceride-to-HDL-C 
ratio, SE standard error, CI confidence interval, q-value corrected p value. The association of the genetic risk 
score with metabolic traits was determined by linear regression. Effect size (β) and 95% confidence intervals 
were computed to seek rise or fall in the selected parameter per each risk allele increase. All association 
analyses were adjusted for age and gender and corrected for multiple comparisons via the Benjamini–
Hochberg method. A p value < 0.05 was considered statistically significant.

Parameters (unit of measurement) β (S.E.) 95% CI p value q-value

SBP (mmHg) 0.757 (0.382) 0.006–1.508 0.048 0.168

DBP (mmHg) 0.565 (0.278) 0.019–1.112 0.043 0.168

TyG index − 0.030 (0.017) − 0.063 to 0.004 0.079 0.184

FBG (mg/dL) 0.308 (0.552) − 0.776 to 1.392 0.577 0.809

Fasting insulin (µL U/mL) − 0.122 (0.400) − 0.908 to 0.663 0.760 0.819

HOMA-IR − 0.017 (0.116) − 0.246 to 0.212 0.883 0.883

TC (mg/dL) − 0.939 (1.131) − 3.161 to 1.282 0.407 0.633

TG (mg/dL−1) − 3.899 (1.906) − 7.642 to − 0.156 0.041 0.168

HDL-C (mg/dL) 0.112 (0.265) − 0.408 to 0.632 0.673 0.819

LDL-C (mg/dL) − 1.428 (1.031) − 3.452 to 0.595 0.166 0.326

VLDL-C (mg/dL)  − 0.746 (0.376) − 1.485 to − 0.007 0.048 0.168

CRI − 0.015 (0.049) − 0.111 to 0.080 0.753 0.819

AI − 0.045 (0.034) − 0.112 to 0.022 0.186 0.326

TG/HDL-C − 0.155 (0.084) − 0.319 to 0.009 0.064 0.179
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studies were based on different sets of genetic variants, which differed not only between these studies but also 
differed with our study. This indicated the additive power of GRS over an individual variant because common 
obesity has a polygenic inheritance implying that various obesity-associated genetic variants act in concert to 
modulate the bodyweight52. Our and the two aforementioned studies50, 51 can be considered to create a panel of 
genetic variants for estimating the risk of an individual for developing obesity. The association of the GRS with 
almost all anthropometric traits (body weight, BMI, WC, HC, WHR, WHtR, skinfold thicknesses, and %BF) in 
our study showed the additive effect of these variants on fat distribution resulting in increased body weight. It 
is important to note that WC and WHtR are the main determinants of abdominal obesity, cardiovascular dis-
eases, and increased mortality risk53–56. Thus, the higher GRS (constructed in our study) may escalate the risk of 
cardiovascular disease and mortality via increasing WC and WHtR.

An interesting and important aspect of the current study is that we not only computed and sought the asso-
ciation of the GRS with the obesity-related anthropometric measures but also with obesity-related metabolic 
measures. Nevertheless, the GRS in the current study showed a lack of association with all metabolic traits 
including the parameters related to glucose and lipid metabolism, and blood pressure. Likewise, none of the 
aforementioned five genetic variants in our previous studies individually showed a significant association with 
any of the obesity-related metabolic traits in the same sample of the Pakistani population23–26, 49. However, it 
must be noted that the values of nearly all the metabolic parameters (like anthropometric variables) were found 
significantly higher in overweight/obese individuals as compared to normal-weight individuals. Moreover, the 
GRS computed in our study was based on the genetic variants mainly involved in energy homeostasis and body 
weight regulation via regulating appetite and energy expenditure as already mentioned in the introduction sec-
tion. Thus, it can be said that these variants may indirectly influence metabolism via increasing BMI and other 
obesity-related anthropometric measures.

In the end, it can be concluded that the cumulative or combined effect based on GRS may be valuable for 
better comprehension of the genetic susceptibility to obesity and may help researchers to better understand 
trait biology.

Material and methods
Study design, setting, and ethics.  It was an analytical observational study based on a case–control 
design and was performed at Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), Inter-
national Center for Chemical and Biological Sciences (ICCBS), University of Karachi (UoK), Pakistan. All pro-
cedures performed in the study involving human participants were in accordance with the ethical standards of 
the Independent Ethics Committee (IEC) of the ICCBS and Advanced Studies and Research Board (ASRB) of 
the University of Karachi, Pakistan, and with the 1964 Helsinki Declaration and its later amendments or compa-
rable ethical standards. The study was approved by the Independent Ethics Committee (IEC) of the ICCBS and 
Advanced Studies and Research Board (ASRB) of the University of Karachi.

Sample population and phenotypic traits.  The study involved a total of 606 participants including 306 
overweight/obese (OW/OB) and 300 normal-weight (NW) individuals. The participants were recruited from 
the general population of Karachi, a metropolitan city of Pakistan, including universities and colleges of the 
city using the simple random sampling without replacement technique. However, all the participants were not 
permanent residents of the city. All the participants or their parents/guardians (in the case of children or ado-
lescents) signed the written informed consent before participation in the study. The demographic information 
regarding the recruited participants was acquired through a questionnaire. The body mass index (BMI) refer-
ence ranges for adults were considered according to World Health Organization (WHO), whereas for children/
adolescents, BMI reference ranges were considered according to growth charts of the Center for Disease Control 
and Prevention (CDC). However, the individuals with a history of taking drugs such as antidepressants, phe-
nothiazine, and steroids, etc., and having any type of endocrinological disorder were not included in the study. 
Blood pressure (BP) was measured from the right-upper arm according to the standard procedure by using a 
mercury column sphygmomanometer (Certeza medical, Germany) while the individual was sitting comfortably. 
The BP of each individual was measured twice to calculate the average value. The body weight was measured in 
kilograms (kg) with the precision of up to 0.1 kg by using a mechanical weighing balance (Seca 755, Germany). 
Moreover, the body height was measured in centimeters (cm) with the precision of up to 0.1 cm by using a port-
able stadiometer (Seca 214, Germany). Both measurements were assessed without shoes and in light clothes. To 
calculate BMI, height was converted into meters (m) and then the value of weight (kg) was divided by the value 
of height in the square (m2). The waist circumference (WC) and hip circumference (HC) were measured with a 
non-elastic measuring tape. The skinfold thicknesses (SFTs) such as biceps, triceps, suprailiac, abdomen, thigh, 
and sub-scapular were measured in millimeters (mm) by using a skin-fold caliper (Slim Guide, MI, USA). All 
the measurements were taken thrice to compute the average value for each SFT. The waist-to-hip ratio (WHR) 
and waist-to-height ratio (WHtR) were calculated using the values of WC, HC, and height. The body fat percent-
age (%BF) was computed using the sum of SFTs by employing gender-specific formulae57. The fasting (8–12 h) 
blood samples from each participant were collected in two separate vacutainer tubes for subsequent serum and 
DNA isolation. Fasting blood glucose was measured using a glucose monitoring system (Abbott, UK) while 
fasting insulin levels were measured by ELISA (enzyme-linked immunosorbent assay) using a commercial kit 
(DIA source, Belgium). The values of fasting glucose and insulin were used to calculate homeostatic model 
assessment-insulin resistance (HOMA-IR) by applying relevant formula58. Moreover, lipid parameters (total 
cholesterol, triglycerides, HDL-C, and LDL-C) were determined on a chemistry analyzer (Hitachi 902, Japan) by 
consuming commercial kits (Merck, Germany) based on enzymatic endpoint assays. The values of triglycerides 
were divided by 5 to calculate VLDL-C. Also, coronary risk index (CRI), atherogenic index (AI), triglyceride-to-
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HDL-C ratio (TG/HDL-C) were calculated59. Furthermore, the product of triglyceride and glucose (TyG) index 
was also computed60.

DNA extraction and genotyping.  DNA was extracted from the collected blood samples by the spin 
column method consuming commercially available kits (Bio Basic, Canada). The genetic variants (MC4R 
rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752) were genotyped using 
TaqMan allelic discrimination assays (assay ID of the rs17782313: C__32 667060_10, cat. # 4351376, ABI, Foster 
City, CA, USA; assay ID of the rs6265: C__11592758_10, cat. # 4351379, ABI, Foster City, CA, USA; assay ID of 
the rs1421085: C__8917103_10, cat. # 4351379, ABI, Foster City, CA, USA; assay ID of the rs7561317: C__32 
667 060_10, cat # 4351376, ABI, Foster City, CA, USA; assay ID of rs2815752: C__26668839_10, cat # 4351379, 
ABI, Foster City, CA) containing specific primers and probes and TaqMan master mix (Applied Biosystems, 
USA) on a real-time PCR System (ABI 7500, USA). Every batch of PCR experiments consisted of positive con-
trol for each genotype of all the variants as well as two negative controls (no template controls). 20% of the 
samples were genotyped twice for reproducibility.

Statistical analysis.  All statistical analyses were performed utilizing the Statistical Package for Social Sci-
ences version 21 (SPSS, IBM statistics). Hardy–Weinberg Equilibrium (HWE) test was applied to determine 
whether the genotypic distributions of all the variants were in HWE. The Shapiro–Wilk test was availed to check 
the normality of the data. The obesity-associated risk alleles of MC4R rs17782313, BDNF rs6265, FTO rs1421085, 
TMEM18 rs7561317, and NEGR1 rs2815752 were C, A, C, G, and A, respectively. The homozygous wild type 
(non-risk), heterozygous (risk), and homozygous mutant (risk) genotypes were coded as 0, 1, and 2, respectively. 
The GRS was constructed by summing the number of risk alleles (0, 1, and 2) of the aforesaid genetic variants. 
Since we included five bi-allelic variants, an individual may have a minimum of 0 and a maximum of 10 risk 
alleles. However, none of the individuals was found to have either 0 or 10 risk alleles. The study individuals were 
found to have a minimum of 1 and a maximum of 9 risk alleles. The GRS and the other continuous variables 
were compared between overweight/obese and normal-weight individuals by employing Mann–Whitney U test. 
Allelic frequencies of all the variants were calculated by direct count. The association of each variant with over-
weight/obesity was sought by assuming an additive model. Multinomial logistic regression was applied and the 
odds ratio (OR) along with 95% confidence intervals (CI) was calculated to predict the overweight/obesity risk 
associated with each variant as well as with GRS. The association of GRS with obesity-related anthropometric 
and metabolic parameters was determined by linear regression. For conformity to the linearity assumption of the 
linear regression, all non-normal data were transformed into normal distribution through a rank-based inverse 
normal transformation. The effect sizes (β) along with 95% CI were determined for all anthropometric and 
metabolic parameters. All analyses were adjusted for confounders such as age and gender and also corrected for 
multiple comparisons by the Benjamin-Hochberg method as per requirement61. A p value < 0.05 was considered 
statistically significant for all analyses.

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 17 September 2020; Accepted: 1 April 2021

References
	 1.	 De Lorenzo, A. et al. Why primary obesity is a disease?. J. Transl. Med. 17, 169. https://​doi.​org/​10.​1186/​s12967-​019-​1919-y (2019).
	 2.	 Hruby, A. & Hu, F. B. The epidemiology of obesity: a big picture. Pharmacoeconomics 33, 673–689. https://​doi.​org/​10.​1007/​s40273-​

014-​0243-x (2015).
	 3.	 Elks, C. E. et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. 

(Lausanne) 3, 29. https://​doi.​org/​10.​3389/​fendo.​2012.​00029 (2012).
	 4.	 Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body 

mass index. Nat. Genet. 47, 1114–1120. https://​doi.​org/​10.​1038/​ng.​3390 (2015).
	 5.	 Barsh, G. S., Farooqi, I. S. & O’Rahilly, S. Genetics of body-weight regulation. Nature 404, 644–651. https://​doi.​org/​10.​1038/​35007​

519 (2000).
	 6.	 Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 

253–262. https://​doi.​org/​10.​1172/​jci92​38 (2000).
	 7.	 Larsen, L. H. et al. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men 

with juvenile-onset obesity. J. Clin. Endocrinol. Metab. 90, 219–224. https://​doi.​org/​10.​1210/​jc.​2004-​0497 (2005).
	 8.	 Stutzmann, F. et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in mul-

tigenerational pedigrees. Diabetes 57, 2511–2518. https://​doi.​org/​10.​2337/​db08-​0153 (2008).
	 9.	 Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525. https://​

doi.​org/​10.​1038/​ng.​823 (2011).
	10.	 Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl. 

Acad. Sci. 111, E5272–E5281. https://​doi.​org/​10.​1073/​pnas.​14190​64111 (2014).
	11.	 Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. 

Genet. 96, 377–385. https://​doi.​org/​10.​1016/j.​ajhg.​2015.​01.​001 (2015).
	12.	 Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic 

mutations. Nat. Genet. 50, 1219–1224. https://​doi.​org/​10.​1038/​s41588-​018-​0183-z (2018).
	13.	 Khera, A. V. et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177, 587-596.e589. https://​

doi.​org/​10.​1016/j.​cell.​2019.​03.​028 (2019).
	14.	 Hung, C.-F. et al. A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in 

people with major depressive disorder. BMC Med. 13, 86. https://​doi.​org/​10.​1186/​s12916-​015-​0334-3 (2015).

https://doi.org/10.1186/s12967-019-1919-y
https://doi.org/10.1007/s40273-014-0243-x
https://doi.org/10.1007/s40273-014-0243-x
https://doi.org/10.3389/fendo.2012.00029
https://doi.org/10.1038/ng.3390
https://doi.org/10.1038/35007519
https://doi.org/10.1038/35007519
https://doi.org/10.1172/jci9238
https://doi.org/10.1210/jc.2004-0497
https://doi.org/10.2337/db08-0153
https://doi.org/10.1038/ng.823
https://doi.org/10.1038/ng.823
https://doi.org/10.1073/pnas.1419064111
https://doi.org/10.1016/j.ajhg.2015.01.001
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1016/j.cell.2019.03.028
https://doi.org/10.1016/j.cell.2019.03.028
https://doi.org/10.1186/s12916-015-0334-3


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8320  | https://doi.org/10.1038/s41598-021-87702-0

www.nature.com/scientificreports/

	15.	 Plomin, R., Haworth, C. M. A. & Davis, O. S. P. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878. https://​
doi.​org/​10.​1038/​nrg26​70 (2009).

	16.	 Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348. https://​doi.​org/​10.​1371/​journ​al.​
pgen.​10033​48 (2013).

	17.	 Belsky, D. W. et al. Development and evaluation of a genetic risk score for obesity. Biodemogr. Soc. Biol. 59, 85–100. https://​doi.​
org/​10.​1080/​19485​565.​2013.​774628 (2013).

	18.	 Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328. 
https://​doi.​org/​10.​1038/​s41467-​019-​11112-0 (2019).

	19.	 Pigeyre, M., Saqlain, M., Turcotte, M., Raja, G. K. & Meyre, D. Obesity genetics: insights from the Pakistani population. Obes. Rev. 
19, 364–380. https://​doi.​org/​10.​1111/​obr.​12644 (2018).

	20.	 Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a 
systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781. https://​doi.​org/​10.​1016/​s0140-​6736(14)​
60460-8 (2014).

	21.	 Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of 
European ancestry. Hum. Mol. Genet. 27, 3641–3649. https://​doi.​org/​10.​1093/​hmg/​ddy271 (2018).

	22.	 Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and 
expenditure in obesity. Nat. Genet. 50, 26–41. https://​doi.​org/​10.​1038/​s41588-​017-​0011-x (2018).

	23.	 Rana, S., Rahmani, S. & Mirza, S. MC4R variant rs17782313 and manifestation of obese phenotype in Pakistani females. RSC Adv. 
8, 16957–16972. https://​doi.​org/​10.​1039/​C8RA0​0695D (2018).

	24.	 Rana, S. & Bhatti, A. A. Association and interaction of the FTO rs1421085 with overweight/obesity in a sample of Pakistani indi-
viduals. Eat. Weight Disord. 25, 1321–1332. https://​doi.​org/​10.​1007/​s40519-​019-​00765-x (2020).

	25.	 Rana, S. & Sultana, A. Association of the variant rs7561317 downstream of the TMEM18 gene with overweight/obesity and related 
anthropometric traits in a sample of Pakistani population. Biochem. Genet. 58, 257–278. https://​doi.​org/​10.​1007/​s10528-​019-​09940-
2 (2020).

	26.	 Rana, S. & Mobin, M. Association of the NEGR1 rs2815752 with obesity and related traits in Pakistani females. Upsala J. Med. Sci. 
125, 226–234. https://​doi.​org/​10.​1080/​03009​734.​2020.​17569​96 (2020).

	27.	 Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to child hood and 
adult obesity. Science (New York, N.Y.) 316, 889–894. https://​doi.​org/​10.​1126/​scien​ce.​11416​34 (2007).

	28.	 Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. 
PLoS Genet. 3, e115. https://​doi.​org/​10.​1371/​journ​al.​pgen.​00301​15 (2007).

	29.	 Church, C. et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 42, 1086–1092. https://​
doi.​org/​10.​1038/​ng.​713 (2010).

	30.	 Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898. https://​doi.​org/​10.​1038/​natur​e07848 
(2009).

	31.	 Krashes, M. J., Lowell, B. B. & Garfield, A. S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206–219. 
https://​doi.​org/​10.​1038/​nn.​4202 (2016).

	32.	 Xu, B. & Xie, X. Neurotrophic factor control of satiety and body weight. Nat. Rev. Neurosci. 17, 282–292. https://​doi.​org/​10.​1038/​
nrn.​2016.​24 (2016).

	33.	 Larder, R. et al. Obesity-associated gene TMEM18 has a role in the central control of appetite and body weight regulation. Proc. 
Natl. Acad. Sci. U.S.A. 114, 9421–9426. https://​doi.​org/​10.​1073/​pnas.​17073​10114 (2017).

	34.	 Boender, A. J., van Gestel, M. A., Garner, K. M., Luijendijk, M. C. M. & Adan, R. A. H. The obesity-associated gene Negr1 regulates 
aspects of energy balance in rat hypothalamic areas. Physiol. Rep. 2, e12083. https://​doi.​org/​10.​14814/​phy2.​12083 (2014).

	35.	 Lee, A. W. S. et al. Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice 
causes a body mass phenotype. PLoS ONE 7, e41537–e41537. https://​doi.​org/​10.​1371/​journ​al.​pone.​00415​37 (2012).

	36.	 Kim, H. et al. The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann–Pick disease 
Type C (NPC2)-mediated cholesterol trafficking. Biochem. Biophys. Res. Commun. 482, 1367–1374. https://​doi.​org/​10.​1016/j.​bbrc.​
2016.​12.​043 (2017).

	37.	 Joo, Y., Kim, H., Lee, S. & Lee, S. Neuronal growth regulator 1-deficient mice show increased adiposity and decreased muscle mass. 
Int. J. Obes. 2005(43), 1769–1782. https://​doi.​org/​10.​1038/​s41366-​019-​0376-2 (2019).

	38.	 Herrera, B. M. & Lindgren, C. M. The genetics of obesity. Curr. Diab. Rep. 10, 498–505. https://​doi.​org/​10.​1007/​s11892-​010-​0153-z 
(2010).

	39.	 Lobstein, T. & McPherson, K. Nothing new in UK’s strategy on childhood obesity. Lancet 388, 853–854. https://​doi.​org/​10.​1016/​
s0140-​6736(16)​31471-4 (2016).

	40.	 Pigeyre, M., Yazdi, F. T., Kaur, Y. & Meyre, D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiol-
ogy of human obesity. Clin. Sci. (Lond.) 130, 943–986. https://​doi.​org/​10.​1042/​cs201​60136 (2016).

	41.	 Harbron, J., van der Merwe, L., Zaahl, M. G., Kotze, M. J. & Senekal, M. Fat mass and obesity-associated (FTO) gene polymorphisms 
are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index 
in overweight/obese Caucasian adults. Nutrients 6, 3130–3152. https://​doi.​org/​10.​3390/​nu608​3130 (2014).

	42.	 McCaffery, J. M. et al. Obesity susceptibility loci and dietary intake in the look AHEAD trial. Am. J. Clin. Nutr. 95, 1477–1486. 
https://​doi.​org/​10.​3945/​ajcn.​111.​026955 (2012).

	43.	 Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907. https://​
doi.​org/​10.​1056/​NEJMo​a1502​214 (2015).

	44.	 Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775. 
https://​doi.​org/​10.​1038/​ng.​140 (2008).

	45.	 Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hip-
pocampal function. Cell 112, 257–269. https://​doi.​org/​10.​1016/​s0092-​8674(03)​00035-7 (2003).

	46.	 Chen, Z.-Y. et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-
dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 24, 4401–4411. https://​doi.​org/​
10.​1523/​JNEUR​OSCI.​0348-​04.​2004 (2004).

	47.	 Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. 
Nat. Genet. 41, 18–24. https://​doi.​org/​10.​1038/​ng.​274 (2009).

	48.	 Jarick, I. et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a 
genome-wide analysis. Hum. Mol. Genet. 20, 840–852. https://​doi.​org/​10.​1093/​hmg/​ddq518 (2011).

	49.	 Rana, S., Mirza, S. & Rahmani, S. The BDNF rs6265 variant may interact with overweight and obesity to influence obesity-related 
physical, metabolic and behavioural traits in Pakistani individuals. Ann. Hum. Biol. 45, 496–505. https://​doi.​org/​10.​1080/​03014​
460.​2018.​15619​47 (2018).

	50.	 Shabana, Shahid, S. U. & Hasnain, S. Use of a gene score of multiple low-modest effect size variants can predict the risk of obesity 
better than the individual SNPs. Lipids Health Dis. 17, 155–155. https://​doi.​org/​10.​1186/​s12944-​018-​0806-5 (2018).

	51.	 Ahmad, S. et al. Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan: the PROMIS study. BMC 
Med. Genet. 16, 114. https://​doi.​org/​10.​1186/​s12881-​015-​0259-x (2015).

https://doi.org/10.1038/nrg2670
https://doi.org/10.1038/nrg2670
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1080/19485565.2013.774628
https://doi.org/10.1080/19485565.2013.774628
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1111/obr.12644
https://doi.org/10.1016/s0140-6736(14)60460-8
https://doi.org/10.1016/s0140-6736(14)60460-8
https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1038/s41588-017-0011-x
https://doi.org/10.1039/C8RA00695D
https://doi.org/10.1007/s40519-019-00765-x
https://doi.org/10.1007/s10528-019-09940-2
https://doi.org/10.1007/s10528-019-09940-2
https://doi.org/10.1080/03009734.2020.1756996
https://doi.org/10.1126/science.1141634
https://doi.org/10.1371/journal.pgen.0030115
https://doi.org/10.1038/ng.713
https://doi.org/10.1038/ng.713
https://doi.org/10.1038/nature07848
https://doi.org/10.1038/nn.4202
https://doi.org/10.1038/nrn.2016.24
https://doi.org/10.1038/nrn.2016.24
https://doi.org/10.1073/pnas.1707310114
https://doi.org/10.14814/phy2.12083
https://doi.org/10.1371/journal.pone.0041537
https://doi.org/10.1016/j.bbrc.2016.12.043
https://doi.org/10.1016/j.bbrc.2016.12.043
https://doi.org/10.1038/s41366-019-0376-2
https://doi.org/10.1007/s11892-010-0153-z
https://doi.org/10.1016/s0140-6736(16)31471-4
https://doi.org/10.1016/s0140-6736(16)31471-4
https://doi.org/10.1042/cs20160136
https://doi.org/10.3390/nu6083130
https://doi.org/10.3945/ajcn.111.026955
https://doi.org/10.1056/NEJMoa1502214
https://doi.org/10.1056/NEJMoa1502214
https://doi.org/10.1038/ng.140
https://doi.org/10.1016/s0092-8674(03)00035-7
https://doi.org/10.1523/JNEUROSCI.0348-04.2004
https://doi.org/10.1523/JNEUROSCI.0348-04.2004
https://doi.org/10.1038/ng.274
https://doi.org/10.1093/hmg/ddq518
https://doi.org/10.1080/03014460.2018.1561947
https://doi.org/10.1080/03014460.2018.1561947
https://doi.org/10.1186/s12944-018-0806-5
https://doi.org/10.1186/s12881-015-0259-x


9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8320  | https://doi.org/10.1038/s41598-021-87702-0

www.nature.com/scientificreports/

	52.	 Hinney, A., Vogel, C. I. G. & Hebebrand, J. From monogenic to polygenic obesity: recent advances. Eur. Child Adolesc. Psychiatry 
19, 297–310. https://​doi.​org/​10.​1007/​s00787-​010-​0096-6 (2010).

	53.	 Shen, S. et al. Waist-to-height ratio is an effective indicator for comprehensive cardiovascular health. Sci. Rep. 7, 43046. https://​
doi.​org/​10.​1038/​srep4​3046 (2017).

	54.	 Zhu, S. et al. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition 
Examination Survey: clinical action thresholds. Am. J. Clin. Nutr. 76, 743–749. https://​doi.​org/​10.​1093/​ajcn/​76.4.​743 (2002).

	55.	 Hsieh, S. D., Yoshinaga, H. & Muto, T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and 
metabolic risk in Japanese men and women. Int. J. Obes. Relat. Metab. Disord. 27, 610–616. https://​doi.​org/​10.​1038/​sj.​ijo.​08022​59 
(2003).

	56.	 Ashwell, M., Mayhew, L., Richardson, J. & Rickayzen, B. Waist-to-height ratio is more predictive of years of life lost than body 
mass index. PLoS ONE 9, e103483. https://​doi.​org/​10.​1371/​journ​al.​pone.​01034​83 (2014).

	57.	 Jackson, A. S. & Pollock, M. L. Practical assessment of body composition. Phys. Sportsmed. 13, 76–90. https://​doi.​org/​10.​1080/​
00913​847.​1985.​11708​790 (1985).

	58.	 Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and 
insulin concentrations in man. Diabetologia 28, 412–419 (1985).

	59.	 Kazemi, T., Hajihosseini, M., Moossavi, M., Hemmati, M. & Ziaee, M. Cardiovascular risk factors and atherogenic indices in an 
Iranian population: Birjand East of Iran. Clin. Med. Insights Cardiol. https://​doi.​org/​10.​1177/​11795​46818​759286 (2018).

	60.	 Simental-Mendia, L. E., Rodriguez-Moran, M. & Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate 
for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6, 299–304. https://​doi.​org/​10.​1089/​
met.​2008.​0034 (2008).

	61.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. 
Soc. Ser. B (Methodol.) 57, 289–300 (1995).

Acknowledgements
The authors are thankful to Ms. Soma Rahmani, Mr. Saad Mirza, Ms. Ayesha Sultana, and Ms. Maha Mobin 
for their contribution to genotyping. This study was funded by a research grant from the Higher Education 
Commission (HEC) of Pakistan (Ref. No. 5740/Sindh/NRPU/R&D/HEC/2016); and a recurring grant from the 
International Center for Chemical and Biological Sciences (ICCBS) (Grant No. Recurring grant No. 0808-2015), 
University of Karachi, Pakistan. The funding bodies did not participate in the study design, sample collection, 
data analysis and interpretation, and manuscript writing.

Author contributions
S.R. conceived and designed the study, acquired funding, contributed to data collection, analysis, and inter-
pretation of the data, and wrote and critically revised the manuscript for important intellectual content. A.A.B. 
performed the experiments, contributed to data collection, analysis, and interpretation of the data, and wrote 
the manuscript. Both authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1007/s00787-010-0096-6
https://doi.org/10.1038/srep43046
https://doi.org/10.1038/srep43046
https://doi.org/10.1093/ajcn/76.4.743
https://doi.org/10.1038/sj.ijo.0802259
https://doi.org/10.1371/journal.pone.0103483
https://doi.org/10.1080/00913847.1985.11708790
https://doi.org/10.1080/00913847.1985.11708790
https://doi.org/10.1177/1179546818759286
https://doi.org/10.1089/met.2008.0034
https://doi.org/10.1089/met.2008.0034
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Predicting anthropometric and metabolic traits with a genetic risk score for obesity in a sample of Pakistanis
	Results
	Sample description. 
	Significant differences in study variables including GRS between OWOB and NW Individuals. 
	Allele frequencies and association of individual variants with overweightobesity. 
	Association of the GRS with obesity-related anthropometric parameters. 
	Association of the GRS with obesity-related metabolic traits. 

	Discussion
	Material and methods
	Study design, setting, and ethics. 
	Sample population and phenotypic traits. 
	DNA extraction and genotyping. 
	Statistical analysis. 

	References
	Acknowledgements


