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Hybrid quantum annealing 
via molecular dynamics
Hirotaka Irie1,2*, Haozhao Liang3,4, Takumi Doi2,3, Shinya Gongyo2,3 & Tetsuo Hatsuda2

A novel quantum–classical hybrid scheme is proposed to efficiently solve large-scale combinatorial 
optimization problems. The key concept is to introduce a Hamiltonian dynamics of the classical 
flux variables associated with the quantum spins of the transverse-field Ising model. Molecular 
dynamics of the classical fluxes can be used as a powerful preconditioner to sort out the frozen and 
ambivalent spins for quantum annealers. The performance and accuracy of our smooth hybridization 
in comparison to the standard classical algorithms (the tabu search and the simulated annealing) are 
demonstrated by employing the MAX-CUT and Ising spin-glass problems.

Combinatorial optimizations are ubiquitous and generally represented by the Ising spin-glass model, which is 
computationally classified as an NP-hard problem1. The quantum annealing with a transverse-field Ising model2,3 
as well as the adiabatic quantum computation4,5 provide metaheuristic quantum algorithms for such difficult 
combinatorial optimizations. They utilize adiabatic evolution of quantum bits (qubits) to find the ground state 
of Ising spin-glass models. Since quantum-annealing processors (quantum annealers) have become available6, 
practical usage as well as fundamental researches on quantum optimization has largely been developed in recent 
years (see e.g. Refs.7,8 and references therein).

Despite the great progress that has been taken place in the development of quantum optimization, the number 
of qubits as well as the noise control are still limited. To ulilize such noisy intermediate-scale quantum (NISQ) 
devices9, hybrid systems that are capable of dealing with large-scale optimization problems while using relatively 
small quantum optimization need to be developed. So far, various hybrid algorithms have been proposed in 
the literature (see, e.g. Refs.10–18 and references therein). Most of them are based on the idea of decomposing 
original large-scale problem into subproblems to be treated by available quantum devices, so that multiple itera-
tions between classical and quantum solvers are required, while some are based on identification of a plausible 
subproblem by fixing persistent variables in multiple sampling of classical solvers17,18.

In this paper, we propose a novel hybrid system of quantum optimization, Hybrid Quantum Annealing via 
Molecular Dynamics (HQA-MD, or HQA for short), based on a combination of the classical molecular dynam-
ics (MD)19 and the quantum annealing (QA)2. The concept of HQA is illustrated in Fig. 1. Consider the Ising 
spin-glass with N number of sites. Only a single run of the classical MD solver with continuous flux variables is 
capable of identifying a set of low-energy spin configurations with 2n-dimension indicated schematically by the 
region A in the full 2N-dimensional space, where n is an arbitrarily chosen number smaller than N. The quantum 
solver with quantum spin variables can then resolve the fine structure of the reduced 2n-dimensional subspace 
to find the minimum B. Thus, our classical MD solver acts as a powerful preconditioner to extract difficult spin 
variables automatically from the huge energy landscape and send them to the quantum annealer.

For HQA to work in practice, it is crucial to develop suitable classical Hamiltonian dynamics. The molecular 
dynamics of the classical fluxes can be used as a powerful preconditioner to sort out the “frozen” and “ambiva-
lent” spins for quantum annealers, as we see below. Since both classical and quantum Hamiltonians have the 
same roots, HQA constitutes a seamless scheme for quantum–classical hybridization, so that some of the various 
developments that improve the performance of QA can also be imported into HQA and be utilized in large-scale 
Ising spin-glass models. We note that the classical part of our HQA has some similarity with SVMC (Spin-vector 
Monte Carlo)20, CIM (coherent Ising machine)21,22, and SBM (simulated bifurcation machine)23. Therefore, it is 
natural to expect that our hybrid scheme can be also applied to such continuous optimizations schemes.

Results
A large class of combinatorial optimization problems can be mapped onto the Ising model
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with the Ising variables ( {si = ±1}Ni=1 ), the symmetric coupling ( Jij ) and the external field ( hi)24. The quantum 
annealing (QA) of transverse-field Ising model2 provides an efficient method to solve the ground state of the 
system through the quantum deformation of HIsing as

where σ x
i , σ

z
i  (and also σ y

i  ) are 2 × 2 Pauli matrices at each site i (= 1, 2, . . . ,N) , and τ is a fictitious time taken 
to be in an interval [0, 1]. The scheduling functions A(τ ) and B(τ ) are chosen so that HQA(τ ) interpolates adi-
abatically the non-interacting spins with transverse field at initial time ( A(0) ≫ B(0) ) and the classical Ising 
spin-glass at final time ( A(1) ≪ B(1) ). (The actual scheduling functions in our numerical experiments below are 
A = ADW/2 and B = BDW/2 where ADW and BDW are the scheduling functions given in Fig. 2 of Ref.25.) In the 
actual quantum annealing devices, quantum Ising spin is realized by the superconducting flux qubits described by 
a quantum Hamiltonian Hdevice(ϕ̂, p̂; τ) written by the flux operators ϕ̂i and their conjugates p̂i withthe canonical 
commutation, [ϕ̂j , p̂k] = i�δjk (see e.g. Ref.26).

Molecular dynamics for flux variables
To construct a seamless hybrid between quantum and classical solvers, we introduce a classical Hamiltonian 
for flux variables:

where “MD” stands for the Molecular Dynamics, {ϕi}Ni=1 ( {pi}Ni=1 ) are the continuous flux variables (continuous 
conjugate momenta) which are classical counter parts of {ϕ̂i}Ni=1 ( {p̂i}Ni=1 ). The MD evolution is parametrized by 
τ = t/tf ∈ [0, 1] with t ∈ [0, tf ] being the actual evolution time. The potential term V(ϕ) is a convex downward 
function of the form V(ϕ) = ϕM (M = 4, 6, 8, . . . ) . Shown in Fig. 2 are the actual scheduling functions ( α(τ) 
and β(τ) ) to be used in the present paper. The analytic forms are given in “Methods” section.

It is in order here to discuss the basic properties of the above classical Hamiltonian: The term proportional to 
α(τ) in Eq. (3) ensures that each classical flux variable oscillates around ϕi = 0 in early times. It plays a similar 
role as the transverse-field term proportional to A(τ ) in Eq. (2) which drives each spin state in early times to 
be an equal superposition of up and down. The term proportional to β(τ) in Eq. (3) is a direct analogue of the 
Ising model: By decomposing the flux variables as ϕi = |ϕi|sgn(ϕi) , one finds the “correspondence” between the 
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Figure 1.   Concept of hybrid quantum annealing via molecular dynamics.
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terms in Eqs. (2) and (3); BJij ↔ βJij|ϕiϕj| and Bhi ↔ βhi|ϕiϕi| . We note that the classical dynamical system 
achieves a faithful representation of the Ising model, only when all |ϕi| are frozen to a positive constant µ and the 
equality B = βµ2 gets satisfied. However, this cannot be achieved even for ideal MD solvers, and this is a generic 
problem of all classical solvers using continuous dynamical systems. On the other hand, our MD solver plays a 
role of a preconditioner for the quantum annealing, so that ϕi ’s need not to settle down to ±µ . This is also the 
reason why α(τ = 1) can be non-zero as shown in Fig. 2.

The Hamilton equations for the time evolution of the flux variables reads

where τ = t/tf ≡ gt . The motion of the flux variables becomes adiabatic for g → 0 . We solve the above equa-
tions by the leapfrog algorithm (“Methods” section) on a GPGPU machine. As the initial conditions, we take 
ϕi(τ = 0) = 0 , with pi(τ = 0) randomly chosen to be +1 or −1 . As for the convex potential, we have tested 
M = 4, 6, 8 and found that M = 6 shows the best performance in terms of the evolution time and the achieved 
accuracy, so that we use this value throughout this paper.

Sorting frozen and ambivalent variables
Shown in Fig. 3 are all trajectories {ϕi}Ni=1 ( N = 10,000 ) as a function of τ in a test MD evolution with a single 
set of Ising spin-glass parameters picked up randomly in the intervals, −1 ≤ Jij ≤ +1 and −2 ≤ hi ≤ +2 . The 
MD time step δτ is chosen to be 1/50,000. Moreover, we make an identification, g = δτ , so that the small time 
step corresponds to the adiabatic evolution. Although there is a tendency that ϕi fall into two categories with 
positive sign and negative sign, we need a criterion to separate them in a quantitative manner. For that purpose, 
let us introduce time-averaged flux variables,

(4)g
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Figure 2.   The actual scheduling functions in our MD run. See “Methods” section for their analytic forms.

Figure 3.   Trajectories of all flux variables {ϕi}Ni=1 for a typical Ising spin-glass model with N = 10, 000 and 
(δτ )−1 = 50,000.
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where the inter val  δ should be suf f icient ly larger than δτ  and suf f icient ly smal ler 
than 1.  Then al l  trajectories can be sorted by using their  magnitudes at  τ = 1 as 
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∣ where i′ is an index after the sorting 
and n is an arbitrarily chosen integer less than N. Then, we call the n low-lying trajectories, {ϕi′ }ni′=1 , as ambiva-
lent variables, and the rest is called frozen variables. Shown in Fig. 4a with δ = 100 · δτ are the time-averaged 
trajectories 

{

ϕi′(τ )
}n

i′=1
 with n = 400 , while Fig. 4b shows all the other 9600 trajectories. These figures indicate 

that most of the flux variables are frozen in sign after the MD evolution, while small number of ambivalent vari-
ables remains at τ = 1 . In Fig. 4c,d, we show the distributions of the would-be frozen and ambivalent variables 
at an early time ( τ = 0.1 ) and at a late time ( τ = 0.8 ). As the time goes by, the distinction between two categories 
becomes prominent.

Hybrid quantum annealing via molecular dynamics
Our MD evolution combined with the above sorting algorithm can extract the ambivalent variables efficiently. 
For instance, as is shown in Fig. 6 (the line labeled by “MD”), the obtained configurations successfully approach 
to the optimum. However, it takes an exponential time for those ambivalent variables to really settle down, and 
it is not guaranteed to converge to the optimum. Therefore, it is highly impractical to continue the MD evolution 
toward α = 0 . Our approach to circumvent this issue is a novel hybrid scheme (HQA) where MD is used as a 
powerful preconditioner for QA. Currently available quantum annealers as well as quantum hybrid solvers are 
still limited in size and accuracy. Nevertheless, as will be demonstrated below, the HQA complements the large-
scale capability of such quantum solvers and enhances the performance in solving large N optimization problems.

Our HQA is operated in the following way: We fix the frozen spins ( k′ = n+ 1, . . . ,N  ) by the projection 
sk′ = sgn

(

ϕk′(τ = 1)
)

 , while the ambivalent spins ( i′ = 1, . . . , n ) are sent to a reduced size Ising subsystem with 
the Hamiltonian,

Here the effective couplings read
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Figure 4.   (a) Trajectories of would-be ambivalent variables ϕi′ with i′ = 1, 2, . . . , n . (b) Trajectories of 
would-be frozen variables ϕi′ with i′ = n+ 1, . . . ,N . Here, n and N are taken to be 400 and 10,000, respectively. 
Distributions of would-be frozen and ambivalent variables at τ = 0.1 (c) and at τ = 0.8 (d).
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This small subsystem of n degrees of freedom can be solved by embedding it into a quantum annealer or other 
Ising solvers. Shown in Fig. 5 is an overall flowchart of our HQA starting from initial flux variables {ϕi , pi}Ni=1 
and ending with the final Ising-spin variables {si}Ni=1.

HQA for MAX‑CUT problem
To demonstrate how our HQA works, let us consider the MAX-CUT problem which is to find the size of the 
maximum cut (C) in a given undirected graph. We take an all-to-all connected graph with 2000-node ( K2000 ) 
having the random bimodal edge-weight wij = ±1 with zero-mean. This problem has been used for bench-
marking of various classical solvers including CIM21,22 and SBM23. Mapping this problem into the Ising model 
(“Methods” section) with Jij = wij , hi = 0 and N = 2000 , we compare the performance of three different cases; 
our MD solver alone, HQA(DW48) which is an HQA with the n = 48 subsystem solved by the D-Wave machine 
(DW_2000Q_525), and HQA(TS1000) which is an HQA with the n = 1000 subsystem solved by the classical 
tabu search implemented as QBSolv27.

For reference classical solvers, we consider the simulated annealing (SA) (dwave.neal28) and the tabu 
search (TS). The number of sweeps of SA is set to be Nsw =1000 with the inverse temperature β increasing 
geometrically from βI = 0.01 to βF = 1.0 at every single sweep. These values of βI,F are chosen as a result of 
optimization over the random 100 instances. In our classical computational system (“Methods” section), the 
computational cost of Nsw × N ( = 1000× 2000) SA steps is comparable to that of the 106 MD steps. TS in the 
present study (QBSolv implemented by D-Wave Systems, inc.) is already an optimized Tabu Search compared 
to a simple Tabu Search algorithm, and the computational time of TS is comparable to (or longer than) SA for 
more than a few thousands variables.

In Fig. 6, the horizontal axis represents the number of computational steps (δτ )−1 in MD, while the vertical 
axis is the number of maximum cut (C) obtained by different solvers. Colored solid curves are the results of 

Figure 5.   Flowchart of the hybrid quantum annealing (HQA) via molecular dynamics (MD).

Figure 6.   The maximum cut C in the MAX-CUT problem on a complete graph with 2000-node ( K2000 ) 
obtained by different solvers. Theoretical estimate of the maximum cut is C∗ = 33,933.
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different solvers, MD, HQA(DW48) and HQA(TS1000). Note that the figure only shows dependence of MD steps. 
The band associated with each line represents ±1σ confidence interval for 100 instances. (In actual numerical 
experiments, each Jij is combined with a mirror instance −Jij to ensure C0 ≡

1
4

∑

i �=j Jij = 0 .) In Supplementary 
Note 1, the initial-condition dependence of MD and HQA is shown with a single instance and 100 initial condi-
tions. Theoretical value of C using the finite size scaling analysis in statistical mechanics is C∗ = −E∗/2 ≃ 33,933
29 (“Methods” section) as shown by the dotted line. Here E∗ is the ground-state energy of the Ising model aver-
aged over instances. The results of SA and TS with the above setting are shown by the gray dashed line and the 
black dashed line, respectively.

From the figure, one finds that the MD alone reaches up to 0.4 % deviation from C∗ after 500, 000 MD steps. 
This is more accurate than the results of other classical solvers such as SA (0.6% deviation) and TS (0.8% devia-
tion) obtained under the comparable computational time. Moreover, HQA shows further improvement of the 
solution toward C∗ . Here with the same 500,000 MD steps, HQA(DW48) and HQA(TS1000) reach up to 0.3% 
and 0.2% accuracy, respectively. Note here that the primary computational time of HQA is consumed by the 
MD part in our computational systems (“Methods” section). For example, the ratio of the computational time 
between DW48 and MD (500,000 MD steps) is 0.007, excluding the cloud connection to D-Wave machine. Also, 
the ratio between TS1000 and MD (500,000 MD steps) is 0.24.

If one continuously proceeds with the classical solvers (such as MD, TS or SA) to achieve the improvement the 
computational time will grow substantially: For example, to achieve 0.2% accuracy in SA, we find it necessary to 
increase the number of sweeps 10 times, Nsw = 10,000 . Our HQA approach avoids such difficulty by extracting 
and solving a computationally hard subproblem by quantum annealer or its quantum–classical hybrid systems. 
It is worth noting that even HQA(DW48) shows the improvement. For such a small system (n = 48) , quantum 
annealer is not strong enough to be compared with other classical solvers. However, it is still surprising that such 
a small subsystem improves the performance.

HQA for Ising spin‑glass problem
Finally we consider a general Ising spin-glass model with 100 instances whose parameters Jij and hi are randomly 
chosen in the interval −1 ≤ Jij ≤ +1 and −2 ≤ hi ≤ +2 (where the uniform distribution is utilized). Total system 
sizes are taken to be N = 1000 , 2000, and 10, 000 for several different values of n in Fig. 7a,b,c. Results of the 
Ising energy averaged over instances E ≡

〈

H
(min)
Ising (s)

〉

 are plotted as a function of the MD steps (δτ )−1 ranging 
from 1000 to 500, 000. (See Supplementary Note 2 for the adiabaticity of MD evolution and its relation to the 
choice of the scheduling functions.) The colored solid curves are obtained by MD, HQA(DW48), HQA(TS500), 
HQA(TS800), HQA(TS1000) and HQA(TS4000). The band associated with each line represents ±1σ confidence 
interval for 100 instances.

Figure 7.   Results of the Ising energy E for the Ising spin-glass problem averaged over 100 instances by using 
different solvers with three different system sizes (a) N = 1000 , (b) N = 2000 , and (c) N = 10,000.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8426  | https://doi.org/10.1038/s41598-021-87676-z

www.nature.com/scientificreports/

The results of reference classical solvers, SA, and TS, are drawn by the gray and black dashed lines, respectively. 
The number of sweeps of SA is set to be Nsw = 1000 with the inverse temperature β increasing geometrically 
from βI = 0.01 to βF = 1.0 at every single sweep. This value of β is chosen as a result of optimization over ran-
dom 100 instances for the Ising spin-glass model. Similar to the MAX-CUT cases, the computational cost of 
Nsw × N (= 1000× 1000 ∼ 1000× 10,000) SA steps is comparable to the 106 ∼ 107 MD steps. Note that the 
computational time of TS is again comparable to (or longer than) SA for more than a few thousands variables.

If the system size N exceeds a few thousand, the accuracy of MD becomes better than that of other classi-
cal solvers. For example, in the case of N = 10,000 , the precision of SA with Nsw = 1000 and 10, 000 can be 
obtained by MD alone with 50,000 and 500,000 MD steps, respectively. Moreover, we find that HQA achieves 
better accuracy even further than the MD solution, where our MD solver acts as a powerful preconditioner to 
extract difficult spin variables even in the large-size problems.

Discussion
In this paper, we introduced a quantum–classical hybrid scheme (HQA-MD, or HQA for short) which utilizes 
the molecular dynamics as a preconditioner for quantum annealing. By taking a classical Hamiltonian for flux 
variables associated with spin variables, we have demonstrated that our HQA can solve combinatorial optimiza-
tion problems with high accuracy. Moreover, our HQA shows better performance as the system size becomes 
larger. There are various interesting questions to be studied further. Among others, generalization of HQA with 
non-stoquastic interactions needs to be developed e.g. by adding off-diagonal kinetic terms in the MD solver, 
∑

i<j ℓij pipj
30. Moreover, it is important to find proper classical dynamics applicable not only to the Z2 spin 

variable but also to the binary (0 and 1) and multi-valued variables. Also, the algorithmic difference between 
our HQA (which preserves the adiabaticity from the beginning to the end) and SBM23 (which breaks the adi-
abaticity at the point of bifurcation) should be clarified to understand the role of classical adiabaticity. It is also 
important to find a mathematical theorem which can quantify how close our MD solver can approach to the 
ground state. With all these future works, our quantum–classical hybrid scheme provides a promising method 
to obtain efficient and precise solutions for optimization problems in science and technology.

Methods
Computational systems.  For quantum annealing processor, we utilized the lower-noise D-Wave 2000Q 
quantum processor DW_2000Q_5 in our numerical experiments. The scheduling functions and the working 
graph of this processor is available in Ref.25. It enables us to embed the 48-node complete graph K48 to this pro-
cessor with the standard triangle clique embedding scheme (see e.g. Ref.31). Quantum annealing is conducted 
with chain_strength = 15, num_reads = 10,000, postprocess = ‘optimization’, and 
annealing_time = 20 [ µsec]. The chain_strength parameter is optimized with random instances 
associated with the Ising spin-glass. For classical computation, we utilized a system composed of Intel Xeon 
Platinum 8260 CPU @ 2.40 GHz (384 GB memory) and NVIDIA TeslaV100 GPU (32 GB memory). GPU accel-
eration is utilized in the case of MD calculations, for which parallel computation on GPU can be implemented 
in a straightforward manner.

Scheduling functions for MD.  We employ α(τ) = αf
(

τ + ρ1(1− τ)+ ρ2τ(τ − 1)
)

 and 
β(τ) = βf

(

τ + κ1(1− τ)+ κ2τ(τ − 1)
)

 , with (αf , ρ1, ρ2) = (0.008, 4, 3) and (βf , κ1, κ2) = (0.12, 0.05, 1) . In 
early times when α(τ) ≫ β(τ) , the flux variables {ϕi}Ni=1 oscillate around ϕi = 0 . This is a classical analogue of 
the initial quantum-superposition state of quantum annealing. If the motion of the flux variables is sufficiently 
faster than the evolution of scheduling functions, the system approaches adiabatically to the final state where 
most of the flux variables {ϕi}Ni=1 tend to be localized.

Leapfrog algorithm.  The Hamilton equations in Eq. (4) for i = 1, . . . ,N can be solved accurately by the 
leapfrog algorithm32. With a given initial condition at τ = 0 , {ϕi(0), pi(0)} , we integrate the Hamilton equations 
with the step size δτ being identified with g as follows:

together with the initial half step, p(
1
2 )
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i  . Here m denotes the temporal step with τ = m · δτ ( m = 0, 1, 2, . . . ). Also, we introduced 
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2 )
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2 ) · δτ) with f = ϕ , p, α and β . The leapfrog 

integrator has only O((δτ )2) error and is essential for our MD evolution to be accurate enough. (If the Hamilto-
nian does not have explicit τ-dependence which is not the case in the present situation, this integrator has nicer 
properties such as the time-reversibility and the symplectic property.)

MAX‑CUT and Ising spin‑glass.  For a given undirected graph G = (V , E) with an edge-weight {wij}(ij)∈E , 
the MAX-CUT is a problem of finding a partition of vertices, V = V+ ∪ V− with V+ ∩ V− = ∅ , which maxi-
mizes the sum of wij connecting the two sets, C ≡

∑

i∈V+ ,j∈V− ,(ij)∈E
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maximizing C(s) = 1
2

∑

(ij)∈E wij(1− sisj) with respect to the Ising spin variables si = ±1 . One can rewrite C(s) 
in terms of the Ising spin-glass model ( Jij = wij , hi = 0 ) as C(s) = − 1

2HIsing(s)+ C0 , with HIsing(s) =
1
2

∑

i �=j Jijsisj 
and C0 ≡

1
4

∑

i �=j Jij . Minimizing the Ising energy HIsing(s) corresponds to maximizing the cut configuration. 
The instances of our experiment are given on the 2000-node complete graph K2000 with randomly generated 
bimodal weights Jij = ±1 . Therefore, the constant C0 follows the normal distribution with zero-mean for large 
N. The ground-state energy averaged over instances, E∗ ≡

〈

H
(min)
Ising (s)

〉

 for the corresponding spin-glass model 
has been discussed in Ref.29: The finite-size scaling implies E∗/N

3
2 −−−−→

N→∞
e0 + A/Nω . Here 

e0 = −0.7631667265(6) is the Parisi energy33, while ω = 2/3 and A = 0.70(1) are a conjectured value and a fit-
ted value, respectively, of the numerical data for finite N. Combining all, the estimated value of the maximum-
cut C∗ on K2000 reads C∗ ≡ −E∗/2 = 33933(4) , which we refer in Fig. 6.
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