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Dependence of the escape 
from an axially symmetric galaxy 
on the energy
Juan F. Navarro

The escape of a particle from a dynamical system depends on the intersection between the ingoing 
and outgoing asymptotic trajectories to certain periodic orbits placed at the openings of the curves of 
zero velocity of the system. Although many efforts have been devoted to the analysis of the escape 
from potentials presenting multiple openings, there are still few studies on potentials with only 
one opening. In this article, we clarify the way in which the energy affects the escape in this type of 
systems, showing that, contrary to what one could expect, there are several bifurcations for certain 
values of the energy.

The motion of a particle in a gravitational potential and its possibility of escape from it has been extensively 
studied1–20. In these systems, the motion of the particle is limited by the curves of zero velocity. These curves, for 
certain values of the energy of the system, open creating windows, and particles can leave the system through 
them. There is one unstable periodic orbit, called Lyapunov orbit, located at any of the openings of the curves 
of zero velocity of the system. If the test particle crosses one of these orbits, then the particle leaves the potential 
well. In particular, the escape of a particle from a system depends on the relation of its initial conditions with 
respect to the stable manifolds to the Lyapunov orbits. If the initial conditions belong to the inner part of these 
structures, then the orbit will escape and, if not, it will remain trapped forever.

Most of the works devoted to escapes from dynamical systems analyze systems that present multiple open-
ings. In these systems, the way in which the escape occurs depends on the energy of the system, since a variation 
in its value makes the intersections of the asymptotic curves of the different Lyapunov orbits vary considerably. 
However, few works have been dedicated to the study of systems with only one exit channel. We think that this 
type of potentials have the property of showing in a simple way the logic that explains the escape of a particle 
from the system. It remains to be studied if the variation of the energy produces a variation in the form in which 
the escape takes place in this type of systems. The object of this paper is to clarify this question.

To this end, we study the escape from a galactic model with axial symmetry. This type of galactic system has 
been previously studied by Zotos19 and Navarro12,13. In a companion paper, Navarro13 investigates the geometry 
of the curves that delimite the escape domains by determining the intersection of the ingoing and outgoing 
asymptotic trajectories to the Lyapunov orbit with an apropiate surface of section, for a fixed value of the energy. 
In this paper, we describe how these limiting curves evolve as the energy of the system varies, showing that the 
intersection between the ingoing and outgoing asymptotic trajectories to the Lyapunov orbit takes place in a 
way that relies on the energy of the system.

The equations of motion
We analyze the motion of a particle in the (r, z) meridian plane near the central part of an axially symmetric 
galaxy modeled by a galactic type potential of the form

which is made up of perturbed harmonic oscillators with frequency ω along the r and z axis, where r and z are 
cylindrical coordinates, µ is the perturbation strength and α and ρ are parameters13,19. The potential (1) can be 
derived by expanding global galactic potentials near the central stable equilibrium point of the system, located 
at the center of the galaxy. This type of potentials appears when the density distribution near the center of the 
galaxy is an analytic function of the coordinates and the Taylor series for the corresponding potential is truncated 
at fourth order. We must remark at this point that our galactic potential is truncated at rmax = 1.5 kpc, otherwise 
the mass density increases outwards from the center, a fact that is practically never observed in galaxies.
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As V(r, z) is axially symmetric and the Lz component of the angular momentum is conserved, the dynamical 
structure of the galactic system can be described by the effective potential19

and the equations of motion are

The Hamiltonian corresponding to the effective potential given by Eq. (2) is

where H is the numerical value of the energy of the system, which is conserved. We can obtain the curves of zero 
velocity by substituting ṙ = ż = 0 into Eq. (4), to get

For small values of the energy of the system, the curves of zero velocity are closed curves, and test particles can 
not escape from the system. But there exists a value of the energy, known as energy of escape and denoted by 
Hc , such that if the energy of the test particle exceeds Hc , then the curves of zero velocity open at one place and 
particles may escape from the system. For those values of H, there is an unstable periodic orbit at the exit of the 
potential.

In our work, we use a system of galactic units, where the unit of length is 1 kpc, the unit of time is 107 yr, 
the unit of velocity is ( 1 kpc)/(107 yr) = 97.8 km/s , and the unit of energy is 1 kpc2/(107 yr)2 . Throughout this 
paper, we have taken the following values for the parameters: ω = 1 (107 yr)−1 , µ = 1 (107 yr kpc)−2 , α = 0.2 , 
ρ = −1.2 and Lz = 0.1 . Then, the energy of escape is given by Hc = 0.312513. In Fig. 1, we show the curves of 
zero velocity for some values of the energy larger than Hc , as well as the Lyapunov orbit “guarding” the escape 
from the system. As the value of the energy of the system grows, the size of the opening becomes bigger.

Analysis of the asymptotic trajectories to the Lyapunov orbit
As we have stated above, the asymptotic trajectories to the Lyapunov orbit constitute the limit of the set of 
escaping orbits. It is common to use an adequate surface of section in order to unveil the geometry of these 
complex sets by analyzing their successive intersections on it. These crossings between the stable manifold to 
the Lyapunov orbit and the surface of section define the contour of the basins of escape, that is, the set of initial 
conditions leading to escape. For the computation of the initial part of these asymptotic curves, we follow the 
method suggested by Deprit and Henrard21. The selection of the initial conditions of these curves have been 
determined by following the procedure described by Navarro13. We have computed and integrated backward a 
set of 1 000 000 initial conditions taken in the ingoing asymptotic orbits to the Lyapunov orbit, until they intersect 
the surface of section r = r̄ ( ̇r > 0 ), where r̄ is an adequate constant value. For our numerical exploration, we 
have taken r̄ = 0.6.

In the following, φ denotes the periodic orbit placed at the exit channel, Ws,ν(φ) denotes the ν-th intersection 
between the ingoing asymptotic trajectories to φ and the hyperplane r = r̄ , and Wu,ν(φ) the ν-th intersection of 
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Figure 1.   Curves of zero velocity for ω = 1 , µ = 1 , α = 0.2 , ρ = −1.2 , Lz = 0.1 and H1 = 0.32 (left panel), 
H2 = 0.36 and H3 = 0.4 (right panel). The almost straight line barring the opening of the potential is the 
Lyapunov orbit. This graphic has been generated by using Gnuplot Version 5.2. http://​www.​gnupl​ot.​info.
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the outgoing asymptotic trajectories with r = r̄ . Here, ν ∈ N . We have calculated these structures for a sequence 
of values of the energy given by H = H0 + n�H , where H0 = 0.32 , �H = 0.0001 and n ∈ N0 , 0 ≤ n ≤ 800 . For 
all these values, we have computed the sets Ws,ν(φ) , for ν = 1, 2, 3, 4 , and Wu,1(φ) . For any value of the energy 
considered, we have

as Wu,1(φ) takes place for ṙ < 0 , while Ws,1(φ) for ṙ > 0 . Orbits with initial conditions in the region bounded by 
Ws,1(φ) straightaway leave the potential well through the exit channel, while initial conditions inside the domain 
enclosed by Wu,1(φ) correspond to orbits coming from the infinity.

The sets Ws,2(φ) and Wu,1(φ) (both with ṙ < 0 ) are shown in Fig. 2, for several values of the energy of the 
system ( H = 0.32, 0.36 and 0.4). We can observe that these sets have four points in common, marked with black 
dots in Fig.  2, belonging to four homoclinics to the Lyapunov orbit. Each of these homoclinics intersects the 
hyperplane defined by r = r̄ at two different instants of time13. Orbits with initial conditions belonging to the 
area enclosed by Ws,2(φ) and Wu,1(φ) , colored in a dark grey tone in Fig. 2, come from the infinity and leave the 
galaxy after intersecting the hyperplane r = r̄ two times. Furthermore, orbits starting in the area delimited by 
one of the pair of “tongues”, colored in blue in Fig. 2, can be integrated backward until they intersect again the 
hyperplane r = r̄ , and leave the galaxy in the future by the opening of the curves of zero velocity.

Thus, we can integrate backward the two tongues colored in blue in Fig. 2 up to their next intersection with 
the surface of section r = r̄ , to obtain Ws,3(φ) . These sets are shown in Fig. 3 for H = 0.32, 0.36 and 0.4. We 
can observe that, for any of the values of H considered, Ws,3(φ) is made up of two tongues that rotate infinitely 
around Ws,1(φ) . Each of these infinite tongues is the result of the backward integration of the tongues colored in 

Ws,1(φ) ∩Wu,1(φ) = ∅ ,

Figure 2.   Intersection between Ws,2(φ) and Wu,1(φ) for H = 0.32, 0.36 and 0.44 (from left to right, 
respectively). Orbits starting in the area enclosed by Wu,1(φ) , colored in light or dark grey, come from the 
infinity. Orbits with initial conditions belonging to the area enclosed by Ws,2(φ) and Wu,1(φ) , colored in a dark 
grey tone, come from the infinity and leave the galaxy after intersecting the hyperplane r = r̄ two times. Orbits 
starting in the area delimited by one of the pair of tongues colored in blue can be integrated backward until 
they intersect again the hyperplane r = r̄ , and leave the galaxy in the future by the opening of the curves of zero 
velocity. This graphic has been generated by using Gnuplot Version 5.2. http://​www.​gnupl​ot.​info.

Figure 3.   Ws,3(φ) for H = 0.32, 0.36 and 0.4 (from left to right, respectively). The area enclosed by Ws,3(φ) is 
colored in light and dark blue. These two blue colored infinite tongues are the result of the backward integration 
of the tongues colored in the same shade of blue in Fig. 2. This graphic has been generated by using Gnuplot 
Version 5.2. http://​www.​gnupl​ot.​info.

http://www.gnuplot.info
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the same shade of blue in Fig. 2. Ws,3(φ) does not intersect Wu,1(φ) , as both sets have a different sign for ṙ . As a 
result, orbits starting inside one of these two infinite tongues have a preceding intersection with the surface of 
section, and the structure of the fourth crossing of the ingoing asymptotic trajectories to φ with the hyperplane 
r = r̄ is the same as that of Ws,3(φ) , that is, is composed of a pair of tongues infinitely spiraling around Ws,2(φ) . 
In Fig.  4, we depict Ws,4(φ) for H = 0.32, 0.36 and 0.4. As with the third intersection, orbits starting in the area 
delimited by one of these two infinite tongues leave the central part of the galaxy through the opening of the 
potential well, after intersecting the surface of section r = r̄ at three points.

Contrary to what happens with Ws,3(φ) , Ws,4(φ) does intersect Wu,1(φ) . In order to unveil the mode in 
which it does and analyze the concurrence of some bifurcation in the way this intersection takes place, we show 
in Fig. 5 a sequence of joint representations of the sets Ws,4(φ) and Wu,1(φ) , for values of the energy given by 
H = H0 + n�H , where H0 = 0.32 , �H = 0.01 and 0 ≤ n ≤ 8 . In these graphs, we have colored the interior of 
Wu,1(φ) in light gray. To show the variation in both the shape and the size of the windows, we have represented 
all the sets using the same framework: z ∈ [−0.4, 0.4] and ż ∈ [−0.5, 0.5] . In Fig. 5, we can observe that the way 
Ws,4(φ) intersects Wu,1(φ) is the same in the most of the cases: in the part of Ws,4(φ) that stays outside the area 
enclosed by Wu,1(φ) , we find a pair of tongues and a pair of sequences of “bridges”, as it has been described in 
detail by Navarro13. However, we can clearly observe that for a range of values of the energy in a neighborhood 
of H = 0.35 , the pair of tongues disappears, since they remain contained within the area enclosed by Wu,1(φ) 
and, therefore, we only find, outside Wu,1(φ) , a pair of sequences of bridges. In fact, there is also a range of 
energy values in a neighborhood of H = 0.323 in which the same occurs, although it can not be appreciated in 
the sequence given in Fig. 5.

Orbits starting in the area delimited by Wu,1(φ) and one of the two infinite tongues of Ws,4(φ) enter the central 
part of the galaxy from the infinity and, after intersecting the surface of section r = r̄ at four points, leave the 
potential well.

Next, we will show how the hiding of the “tip” of the infinite tongues that make up Ws,4(φ) occurs, for values 
of H near H = 0.323 and H = 0.35 . To that end, we have analyzed the intersection between Ws,4(φ) and Wu,1(φ) 
for values of the energy given by H = H0 + n�H , where H0 = 0.32 , �H = 0.0001 and n ∈ N0 , 0 ≤ n ≤ 800 . 
The conclusions of this numerical exploration are described in the following paragraphs.

In Fig. 6, we show a detail of Ws,4(φ) and Wu,1(φ) , for values of the energy given by H = 0.322 , 0.3229, 0.3233 
and 0.324, in order to unveil the way in which the intersection between these sets takes place. In the upper-left 
panel of Fig. 6, we can observe that the tip of one of the tongues belonging to Ws,4(φ) , colored in light blue, is 
not contained in the region defined by Wu,1(φ) , when H = 0.322 . If we examine the evolution of the tongues as 
the energy grows, we find that there exists a value Hν,1 of the energy, slightly larger than H = 0.3229 , such that 
the tip of each of the infinite tongues that make up Ws,4(φ) is tangent to Wu,1(φ) , that is, the tip of each tongue 
intersects Wu,1(φ) at just one point. In the upper-right panel of Fig. 6, we observe how the tip of one of the tongues 
belonging to Ws,4(φ) , colored in light blue, is very close to be tangent to Wu,1(φ) . If the value of the energy is 
slightly larger than Hν,1 , the tip of each tongue enters the region enclosed by Wu,1(φ) , as depicted in the lower-
left panel of Fig. 6. There is a value Hν,2 of the energy, barely smaller than H = 0.3233 , such that the tip of each 
tongue of Ws,4(φ) , now contained in the area enclosed by Wu,1(φ) , is tangent to Wu,1(φ) at one point. For values 
of the energy slightly larger than Hν,2 , the tip of each tongue goes out of the region defined by Wu,1(φ) , as we can 
observe in the lower-right panel of Fig. 6. Therefore, for values of the energy in the interval Iν = (Hν,1,Hν,2) , the 
tip of each tongue belonging to Ws,4(φ) is contained in the area enclosed by Wu,1(φ) and, consequently, the area 
delimited by these two sets (the tip of each tongue and Wu,1(φ) ) corresponds to initial conditions of orbits coming 
from the infinity and escaping from the galaxy after intersecting the surface of section at four different points. 
In the same way, for values of the energy that are not in the interval Iν , the tip of each of the infinite tongues that 
make up Ws,4(φ) is outside the area enclosed by Wu,1(φ) , so the initial conditions inside this part of the tongue 
have an antecedent, that is, we can integrate these initial conditions backward up to the fifth intersection.

Figure 4.   Ws,4(φ) for H = 0.32, 0.36 and 0.4 (from left to right, respectively). The area enclosed by Ws,4(φ) is 
colored in blue. The two infinite tongues colored in light and dark blue are the result of the backward integration 
of the tongues colored in the same shade of blue in Fig. 3. This graphic has been generated by using Gnuplot 
Version 5.2. http://​www.​gnupl​ot.​info.

http://www.gnuplot.info
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We observe this same phenomenon for values of H in a neighborhood of H = 0.35 . In Fig. 7, we show a detail 
of Ws,4(φ) and Wu,1(φ) , for values of the energy given by H = 0.347 , 0.349, 0.351 and 0.354. In the upper-left 
panel of Fig. 7, we can observe that the tip of one of the tongues belonging to Ws,4(φ) , colored in dark blue, is 
not contained in the region defined by Wu,1(φ) , when H = 0.347 . If we examine the evolution of the tongues 
as the energy grows, we find that there exists a value Hα,1 of the energy, slightly larger than H = 0.349 , such 
that the tip of each of the infinite tongues that make up Ws,4(φ) is tangent to Wu,1(φ) , that is, the tip of each 
tongue intersects Wu,1(φ) at just one point. In the upper-right panel of Fig. 7, we observe how the tip of one of 
the tongues belonging to Ws,4(φ) , colored in dark blue, is very close to be tangent to Wu,1(φ) . If the value of the 
energy is slightly increased over Hα,1 , the tip of each tongue belonging to Ws,4(φ) enters the region enclosed 
by Wu,1(φ) , as depicted in the lower-left panel of Fig. 7. There is a value Hα,2 of the energy, barely smaller than 
H = 0.351 , such that the tip of each tongue of Ws,4(φ) , now contained in the area enclosed by Wu,1(φ) , is tangent 
to Wu,1(φ) at one point. For values of H slightly larger than Hα,2 , the tip of each tongue belonging to Ws,4(φ) 
goes out of the region defined by Wu,1(φ) , as we can observe in the lower-right panel of Fig. 7. Therefore, for 
values of the energy in the interval Iα = (Hα,1,Hα,2) , the tip of each tongue belonging to Ws,4(φ) is contained 

Figure 5.   Ws,4(φ) and Wu,1(φ) for H = H0 + n�H , where H0 = 0.32 , �H = 0.01 and 0 ≤ n ≤ 8 . Orbits 
starting in the area enclosed by Wu,1(φ) are colored in light grey. Orbits with initial conditions belonging to the 
area enclosed by Ws,4(φ) and outside the area enclosed by Wu,1(φ) are colored in blue. This graphic has been 
generated by using Gnuplot Version 5.2. http://​www.​gnupl​ot.​info.

http://www.gnuplot.info
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in the area enclosed by Wu,1(φ) and, consequently, the area delimited by these two sets (the tip of each tongue 
and Wu,1(φ) ) corresponds to initial conditions of orbits coming from the infinity and escaping from the galaxy 
after intersecting the surface of section at four different points. In the same way, for values of the energy that are 
not in the interval Iα , the tip of each of the infinite tongues that make up Ws,4(φ) is outside the area enclosed 
by Wu,1(φ) , so the initial conditions inside this part of the tongues have an antecedent, that is, we can integrate 
these initial conditions backward up to obtain Ws,5(φ).

Thus, we can conclude that we can find two different scenarios, both depicted in Fig. 8. Let us define 
I = Iν ∪ Iα . 

1.	 If H  ∈ I , the part of Ws,4(φ) that stays outside the area enclosed by Wu,1(φ) is composed of a pair of infinite 
sequences of bridges and a pair of tongues. In the left panel of Fig. 8, we show the tip of one of the tongues 
that make up Ws,4(φ) , colored in blue, for H = 0.347.

Figure 6.   Detail of Ws,4(φ) and Wu,1(φ) for H = 0.322, 0.3229, 0.3233 and 0.324. The area enclosed by 
Ws,4(φ) is colored in green or blue, depending on whether it is contained in the area enclosed by Wu,1(φ) or 
not, respectively. Orbits starting in the green colored area enter the central part of the galaxy from the infinity 
and, after intersecting the surface of section r = r̄ at four points, leave the potential well. This graphic has been 
generated by using Gnuplot Version 5.2. http://​www.​gnupl​ot.​info.

http://www.gnuplot.info
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2.	 If H ∈ I , the part of Ws,4(φ) outside the area enclosed by Wu,1(φ) is defined by a pair of infinite sequences of 
bridges. In this case, the tip of each of the tongues belonging to Ws,4(φ) is contained in the area enclosed by 
Wu,1(φ) , so the tip of the tongue ends the infinite chain of bridges, as it can be observed in the right panel 
of Fig.  8. We have colored in blue the bridge that ends the sequence of bridges and, in green, the part of the 
tongue contained in the area enclosed by Wu,1(φ).

Figure 7.   Detail of Ws,4(φ) and Wu,1(φ) for H = 0.347, 0.349, 0.351 and 0.354. The area enclosed by Ws,4(φ) 
is colored in green or blue, depending on whether it is contained in the area enclosed by Wu,1(φ) or not, 
respectively. Orbits starting in the green colored area enter the central part of the galaxy from the infinity and, 
after intersecting the surface of section r = r̄ at four points, leave the potential well. This graphic has been 
generated by using Gnuplot Version 5.2. http://​www.​gnupl​ot.​info.

http://www.gnuplot.info
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Therefore, depending on whether H ∈ I or not, the part of Ws,4(φ) that have an antecedent on the surface of 
section if we integrate backward is different.

Finally, we observe that when we increase the energy of the system, the amount of orbits that escape varies 
substantially. To show this, we have calculated the percentage of orbits that escape directly without intersecting 
the surface of section, by considering a mesh of 1024× 1024 equally spaced initial conditions belonging to the 
surface of section r = r̄ , ṙ > 0 , and enclosed by the limit curve defined by

in the (z, ż) plane. The integration has been carried out up to a maximum time of 6 units of time, to ensure that 
the initial conditions escape directly without crossing the surface of section, due to the fact that the time at 
which the first intersection of the ingoing asymptotic trajectories to φ with the surface of section occurs never 
exceeds 5 units of time for any of the values of the energy considered. Moreover, the following intersection of the 
ingoing asymptotic trajectories with the hyperplane r = r̄ , that is, Ws,2(φ) , takes place for a time of integration 
larger than 7 units of time.

In the right panel of Fig.  9, we show the percentage of area that the region enclosed by Ws,1(φ) occupies in 
the domain bounded by the limit curve described in Eq.  (6), for values of the energy given by H = H0 + n� , 
where H0 = 0.32 , �H = 0.01 and 0 ≤ n ≤ 8 . In the three panels in the left of Fig. 9, we represent Ws,1(φ) together 
with the limit curve given by (6), for H = 0.32, 0.36 and 0.4 (from the top to the bottom, respectively). The initial 
conditions of orbits colored in grey correspond to orbits that escape directly from the potential well. We have 
marked the set of initial conditions outside the limit curve, and prohibited by the value of energy, in red color.

Conclusions
The study of escapes in dynamical systems presenting one sole exit channel is a topic that has not received much 
attention by the scientific community. However, we think that these systems can exhibit very clearly the logic 
that explains the escape of a particle from the system. In this paper, we analyze this question, clarifying if the 
variation of the energy produces a variation in the way in which the escape takes place in this type of systems. 
To this end, we have studied the escape from a galactic model with axial symmetry, by investigating the geom-
etry of the limiting curves of the escape domains by determining the intersection of the ingoing and outgoing 
asymptotic trajectories to the Lyapunov orbit with the surface of section. We have shown that, in fact, there are 
two intervals of values of the energy where the intersection between the ingoing and the outgoing asymptotic 
trajectories to the Lyapunov orbit takes place in a different way.

(6)2H = ż
2 + ω2(r̄2 + z

2)− 2µ
(

α(r̄4 + z
4)+ 2ρ r̄2z2

)

+ L
2
z/r̄

2

Figure 8.   Tip of one of the tongues belonging to Ws,4(φ) , for H = 0.347 (left panel) and H = 0.35 (right panel). 
The area enclosed by Ws,4(φ) is colored in green or blue, depending on whether it is contained in the area 
enclosed by Wu,1(φ) or not, respectively. This graphic has been generated by using Gnuplot Version 5.2. http://​
www.​gnupl​ot.​info.
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