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The anisotropic field of ensemble 
coding
David Pascucci1,2*, Nadia Ruethemann1,2 & Gijs Plomp1

Human observers can accurately estimate statistical summaries from an ensemble of multiple 
stimuli, including the average size, hue, and direction of motion. The efficiency and speed with 
which statistical summaries are extracted suggest an automatic mechanism of ensemble coding that 
operates beyond the capacity limits of attention and memory. However, the extent to which ensemble 
coding reflects a truly parallel and holistic mode of processing or a non-uniform and biased integration 
of multiple items is still under debate. In the present work, we used a technique, based on a Spatial 
Weighted Average Model (SWM), to recover the spatial profile of weights with which individual stimuli 
contribute to the estimated average during mean size adjustment tasks. In a series of experiments, 
we derived two-dimensional SWM maps for ensembles presented at different retinal locations, 
with different degrees of dispersion and under different attentional demands. Our findings revealed 
strong spatial anisotropies and leftward biases in ensemble coding that were organized in retinotopic 
reference frames and persisted under attentional manipulations. These results demonstrate an 
anisotropic spatial contribution to ensemble coding that could be mediated by the differential 
activation of the two hemispheres during spatial processing and scene encoding.

Humans can accurately estimate the statistical properties of an ensemble of stimuli at a single  glance1. The average 
ripeness of a batch of apples, the direction of motion of a dense flock of birds, and the emotional expression of a 
whole crowd of people, are all estimates that require little effort and can be made within a fraction of a second. 
Representing ensembles by their statistical properties, or ensemble coding  (EC2,3), is an efficient way to optimize 
the processing of complex and redundant information, allowing for a coarse initial ‘gist’ of the  scene4,5.

In EC, a few milliseconds of presentation time are enough to estimate a variety of statistical features, 
including the average location of an ensemble of  stimuli6, their  centroid7, direction of  motion8, mean size and 
 orientation1,9,10, as well as higher-level aspects such as the average emotion of a group of human  faces11. For 
basic visual features like orientation and motion, EC can be explained by the simple pooling of low-level signals 
across populations of receptors sensitive to orientation and  motion2,10. For other features, particularly for size, 
the underlying mechanisms are less straightforward, in part because there are no known size receptors in the 
 brain12,13. Nevertheless, research on EC of size has shown that humans can reliably estimate the mean size of an 
ensemble of stimuli independently of their  duration14 and set  size1,14,15 (but  see16), even when attention is focused 
 elsewhere7,17 or when conscious access to part of the ensemble is  restricted18. This suggests that size averag-
ing occurs automatically and in parallel across the visual field, bypassing the capacity limits of our attentional 
 system19. Such an automatic and parallel mode of processing is generally assumed to operate in an holistic (i.e., 
all items in a group contribute equally to the estimated mean size) and isotropic fashion (i.e., all items contribute 
equally, independently of their position in the visual field).

Whether size averaging, and EC in general, is supported by truly holistic and isotropic modes of processing 
remains unclear. Several studies, for instance, indicate that stimuli may be weighted differently depending on their 
location in the visual  field20, their  saliency21 and their distance to the group  mean22. Investigating the presence 
of systematic biases, asymmetries, and anisotropies in EC is important, because such knowledge can be used to 
understand the underlying mechanisms. Indeed, perception and attention operate non-uniformly in space at 
many stages of processing. For example, anisotropies and eccentricity effects may arise early in the processing 
stream, due to the functional organization of the visual system itself, with a higher spatial resolution at the  fovea23 
and asymmetries in the processing of object and spatial information between the upper and lower visual  field24. 
Also, eye movements during picture  scanning25, as well as performance in attentional, perceptual, and memory 
 tasks26–29 are affected by systematic left-side biases, likely due to the right-hemisphere dominance in spatial 
 orienting30,31. A typical example is the pseudo-neglect effect, in which healthy subjects show a leftward bias in 
the perception of basic visual features, such as line segments, numerosity, and  brightness32. Hemispheric asym-
metries also exist in the perception of global and local features, with an advantage for representing global features 
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in the left visual field (right hemisphere) and local details in the right visual field (left hemisphere)33,34. Despite 
the ubiquity of these biases in perception and attention, no systematic investigation in the context of EC exists.

In this work, we use the Spatial Weighted Average  model35, to derive the contributions of different parts of the 
visual field to the reported average size of an ensemble. Typically, previous studies have used forced-choice and 
adjustment tasks to compare the estimated mean of an ensemble against the true  mean1,3. Here, we use trial-by-
trial variations in the individual size of an array of disks, along with their position in the visual field, to estimate 
two-dimensional maps (spatial weighting maps; SWMs). SWMs describe the distribution of weights with which 
local sensory signals contribute to the estimated summary statistic. In three experiments, we evaluate the pres-
ence of anisotropic fields in EC of size while presenting ensembles of disks with different degrees of dispersion, at 
different retinal locations, and under different attentional demands. Our results reveal highly anisotropic SWMs, 
that are centered in a retinotopic reference frame, and resemble well-known horizontal asymmetries and left-
side biases in spatial processing. Interestingly, the observed anisotropies were only gated, but not prevented by 
an explicit manipulation of spatial attention. We speculate that EC of size could be mediated by the unbalanced 
encoding of global vs. local information between the two hemispheres.

Results
Experiment 1. In a first experiment, we investigated whether participants give equal weight to all the items 
of an ensemble, independently of their location and dispersion in the visual field. To this aim, we derived SWM 
maps (see Fig. 1 and “General methods” section) in four conditions in which participants reported the average 
size (diameter) of an ensemble of twenty-five disks presented at the center of the screen with four levels of dis-
persion (see Fig. 1A). Figure 2 shows the SWM maps quantifying the weight assigned to each disk depending 

Figure 1.  Sequence of events in the ensemble coding tasks. (A) Example of one trial in Experiment 1. Stimuli 
were presented at the fovea with different degrees of dispersion (see “General methods” section). After the 
fixation cross, an ensemble of 25 disks was presented for 200 ms, followed by a blank interval. The task was to 
adjust the size (diameter) of a single central disk so that it reproduced the average size of the set of stimuli in the 
ensemble. (B) Example of one trial in Experiment 2, with the ensemble presented on the right side of the display. 
In this experiment, ensembles could randomly appear on the left, in the center or on the right side. (C) Example 
trial in Experiment 3. At the beginning of each trial, participants received a visual cue (here ‘IN’) indicating 
the region of the screen where the relevant ensemble was presented (here the internal region). After a fixation 
interval, two ensembles separated by colored frames were presented. Participants had to reproduce the average 
size of stimuli inside the relevant ensemble, indicated by a frame that matched the color of the initial cue. (D) 
Derivation of spatial weighting maps (SWMs). Local variations in the size of each disk across trials were used 
as multivariate regressors explaining the trial sequence of adjustment responses. Two-dimensional SWM 
were obtained by estimating the weight (regression coefficient) of each disk at each location on participants’ 
responses.
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on its location and dispersion in the visual field (Fig. 2A). The distribution of weights within ensembles deviated 
significantly from a theoretical uniform distribution, as evident in three out of four dispersion levels (all p < 0.01, 
except for dispersion = 3.33°, p = 0.37; permutation statistics).

To test whether the observed anisotropies were statistically different across dispersion levels, we compared 
the distribution of weights in the four conditions using the permutation F-statistic (see “General methods” sec-
tion). This analysis revealed no significant difference in the distribution of weights across dispersion levels (all 
p > 0.05). Thus, the presence of systematic spatial anisotropies was independent of the dispersion of disks in the 
visual field. To further characterize the nature of these biases, we collapsed across dispersion levels and com-
pared weights assigned to disks along the vertical and horizontal plane. This revealed a bias toward the center 
and left-hand side of the ensemble (center vs. lower and upper locations: t(31) = 4.17, p < 0.001, d′ = 0.74, Fig. 2B; 
center vs. left-side and right-side locations: t(31) = 2.12, p = 0.04, d′ = 0.37; leftmost column vs. rightmost column: 
t(31) = 3.25, p = 0.003, d′ = 0.57; all other p > 0.05; paired t-tests, Fig. 2C).

Figure 2.  Results of Experiment 1. (A) SWM maps for each dispersion condition. Grey-scale maps visualize 
the original weights in matrix coordinates, estimated through the spatial weighted averaging model. Red and 
blue maps are the corresponding smoothed heatmaps, in screen coordinates. Histograms show the results of the 
permutation statistic, comparing the observed distance of weights ( δ ) from a uniform distribution (black arrow) 
to that of randomly permuted surrogate maps (blue bars). (B) Comparison of weights along the vertical plane, 
collapsing columns of SWM maps. (C) Comparison of weights along the horizontal plane, collapsing rows of 
SWM maps. Error bars correspond to the standard deviation of the mean. * = p < 0.05; ** = p < 0.001.
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Experiment 1 indicated that during size averaging, human subjects tend to assign higher weights to the subset 
of items in the central-left portion of the ensemble, revealing an anisotropic and non-uniform spatial averaging 
field. This is in line with the hypothesis that EC operates through the preferential weighting of certain items over 
others in the  group21 and confirms previous reports of a left-side  bias20. In our experiment, however, ensembles 
were always presented at the center. This does not allow us to clarify whether the non-uniform weighting was 
due to a bias in a retinotopic reference frame, which may support anisotropies at the early stages of encoding, 
or to a bias in an object-based reference frame, which may support later stages (e.g., a bias to direct attention 
toward the center of an  ensemble36). To disentangle these two possibilities, we performed a second experiment in 
which ensembles were presented at three different spatial locations, randomly intermixed across trials (Fig. 1B).

Experiment 2. In Experiment 2, we presented ensembles of twenty-five disks at three locations randomly 
determined on each trial (left: − 6°, center: 0° and right: 6° off fixation). In line with Experiment 1, two out of 
three maps presented significant anisotropies (all p < 0.05, except for Center, p = 0.07; permutation statistics). 
However, as Fig. 3A shows, maps obtained for ensembles presented in the left and right side of the visual field 
had a qualitatively different distribution of weights compared to Experiment 1. For peripheral locations, larger 
weights were no longer distributed around the center of the ensemble but toward the side that was closer to the 
center of the visual field.

To directly test the presence of a leftward bias, we compared the averaged weights in the two leftmost columns 
of possible positions with those in the two rightmost columns, for each location separately. This comparison 
revealed a bias toward the left when ensembles were presented in the right visual field (Fig. 3B; leftmost columns 
minus rightmost columns: t(26) = 3.89, p < 0.001, d′ = 0.75; p > 0.05 for all other comparisons). The leftward 
bias followed a linear trend over ensembles location, increasing from the left to the right side of the visual field 
(Fig. 3C; linear slope over ensembles location: 0.019 ± 0.006, p = 0.002). This result confirmed a spatial bias toward 
the center-left of the visual field, organized in retinotopic coordinates and increasing as the items of the ensemble 
fall outside the preferential zone for averaging. An alternative possibility, however, is that participants may still 
have systematically paid more attention to the center of the screen since the exact location of the ensemble in 
each trial was unknown in advance. This, in turn, could have promoted a bias toward stimuli within the central 
focus of attention. Although this possibility does not fully account for the leftward bias, we performed a final 
experiment to evaluate the role of spatial attention in more detail, and to validate our findings.

Figure 3.  Results of Experiment 2. (A) SWM maps for ensembles presented on the left side, center and right 
side of the screen. (B) Comparison of weights in the two leftmost and two rightmost columns of each condition, 
collapsing across the rows of the SWM maps. (C) Linear regression on the leftward bias (weights on two 
leftmost columns minus weights on two rightmost columns) as a function of the ensemble location, showing the 
increase of the bias from left to right.
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Experiment 3. Our first two experiments revealed a systematic center-left bias in the distribution of weights 
during size averaging. One possibility is that participants maintained their focus of attention at the center of 
the display in both experiments. This, in turn, could have contributed to the differential weighting of items 
falling inside or outside the focus of attention. In this final experiment, therefore, we addressed the role of spa-
tial attention more directly, by evaluating whether the observed anisotropies can be modulated by an explicit 
manipulation of spatial attention. Participants performed a modified version of the size averaging task in which 
two ensembles (16 disks each), grouped by two colored frames (see “General methods” section and Fig. 1C), 
were presented at the same time. The two ensembles could appear either on the left or right side of fixation. At 
the beginning of each trial, a written cue instructed participants to attend only to the ensemble appearing on the 
internal or external part of the display while ignoring the other. The task was to report the average size of the 
disks in the attended ensemble. In this way, we were able to distinguish between three distinct hypotheses: (1) 
that the anisotropies originate from an involuntary and automatic bias in EC that cannot be prevented (i.e., items 
in the center-left region are given higher weights, even when task-irrelevant); (2) that the anisotropies reflect 
biases in how visual spatial attention is directed in the absence of specific instructions and thus should disappear 
in the present task; (3) that the anisotropies emerge early at the encoding stage but can be modulated by spatial 
attention (i.e., attention determines the region of the visual field that is selected for averaging, but within that 
region, center-left anisotropies persist).

Figure 4 shows the SWM obtained for each of the four conditions in Experiment 3, depending on whether 
the ensembles were presented to the left or right of fixation and whether participants attended the external or 
internal part of the display. As evident from these maps, participants selected and averaged only the size of the 
disks within the cued ensemble, with a large difference between the overall weights assigned to attended and 
non-attended disks (t(28) = 10.95, p < 0.001, d′ = 2.03, Fig. 4B). Moreover, weights assigned to non-attended 
disks were on average negative (t(28) = − 1.93, p = 0.031, d′ = 0.36, one-tailed t-test against zero). Crucially, even 
if our manipulation of spatial attention strongly determined the overall distribution of weights in the visual field, 
the left-side bias was still present, following a linear trend over the location of the attended ensemble, from the 
external left-hand side to the external right-hand side of the visual field (Fig. 4C, linear slope over ensembles 
location: 0.025 ± 0.007, p < 0.001). This result supported our third hypothesis, that spatial attention can gate, but 
not eliminate, the observed anisotropies in EC.

Discussion
In the present study, we used the Spatial Weighted Averaging models to investigate the contribution of individual 
stimuli during ensemble coding. By varying the dispersion, eccentricity, and relevance of an ensemble of stimuli, 
we demonstrated that EC operates in a strongly anisotropic and non-holistic field, with a larger contribution of 
stimuli in the center-left portion of the visual field. This anisotropic field was organized in a retinotopic coordi-
nate frame and persisted under explicit manipulations of spatial attention.

Our results challenge the notion of a holistic and uniform mode of statistical  processing15,37, by revealing 
that individual stimuli do not equally contribute to the mean. There is evidence in the literature of a preferential 
weighting in EC. For instance, it has been shown that salient stimuli contribute more to the  mean21 whereas 
outlier stimuli contribute  less22,38. Our work demonstrates that the retinal location is another important factor, 
independent of the salience and distributional properties of individual stimuli: EC operates in an anisotropic 
spatial field.

The anisotropic field of EC closely resembles well-known central and leftward biases in attention, perception, 
and viewing  behavior25–27,29. Typically, leftward biases find several explanations, the most obvious one being read-
ing scanning  habits39,40. There is reasonable evidence, however, to exclude the possibility that scanning habits are 
the only factor involved. Leftward biases are indeed also present in right-to-left  readers41, they become evident 
early in the development, and they are not limited to humans and  primates42,43.

A widely accepted alternative hypothesis is that leftward biases arise from brain asymmetries in the control 
of spatial  attention30,44. In line with this view, recent work by Li and Yeh (2017) indicated a leftward bias in EC 
that was modulated by spatial  attention20. In their study, mean size judgments were affected by whether the 
mean size on the left was larger or smaller than the mean size on the right. They found that the leftward bias 
disappeared when attention was pre-cued toward the right and was even reversed when items on the right were 
presented earlier. This led the authors to conclude that EC is affected by a bias in the automatic deployment of 
spatial attention, which causes the prior entry of stimuli on the left  side20. In our Experiment 3, we found that 
diverting attention from the center cannot entirely prevent the bias. We pre-cued participants’ attention toward 
either the external or the internal regions of the visual field and we observed that, within the attended regions, 
the leftward bias was still present (Fig. 4). This does not exclude the possibility that the bias can be counteracted 
by experimentally inducing attentional shifts toward the right, as in Li and  Yeh20. However, it shows that central 
and leftward biases are not simply due to the way in which attention is automatically deployed in space, in the 
absence of specific instructions and cues.

The results of Experiment 3 are also important for the role of attentional selection in EC. Previous work sug-
gests that the inclusion of irrelevant stimuli in summary statistics cannot be  prevented15,45. For instance, in a study 
where participants estimated the mean length of an ensemble of lines, with task-relevant stimuli (e.g., horizontal 
lines) spatially intermixed with irrelevant ones (e.g., vertical lines), Oriet and  Brand45 found that mean length 
judgments were systematically affected by the length of irrelevant lines. Our results, instead, demonstrate that 
relevant and irrelevant stimuli, with identical features and in close proximity, can be efficiently segregated into 
distinct sets, based on their location. Thus, when relevant and irrelevant stimuli are not spatially intermixed, EC 
can be highly selective and exclusive.
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An interesting and somewhat surprising finding is that the estimated mean size was slightly repelled away 
from the average size of the irrelevant ensemble (Fig. 4B). This suggests that the segregation of stimuli into 
distinct sets, and the encoding of their respective properties, occurs prior to attentional selection. The pres-
ence of repulsive biases may be evidence of a relational format in EC: in representing an ensemble’s mean, its 
difference from the mean of other ensembles in the scene is exaggerated. This possibility requires experimental 
investigation.

Figure 4.  Results of Experiment 3. (A) SWM maps for the four combinations of ensemble location (left and 
right) and relative position of the cued (relevant) ensemble (internal and external). (B) Overall weights assigned 
to stimuli in the relevant and irrelevant ensemble. (C) Linear regression on the leftward bias as a function of the 
actual location of the relevant ensemble.
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Taken together, our results present evidence for a systematic center-left bias in EC, similar to those observed 
in many other tasks, mostly involving spatial attention and spatial processing. This biased weighting appears 
compatible with a limited capacity attentional sampling  strategy16 affected by how attention is automatically 
deployed in space. Although we cannot directly rule out this possibility, however, the persistence of this bias 
under attentional manipulations and the gradual, retinotopically-centered increase from the left to the right side 
of the visual field, suggest that it may originate early during the encoding of statistical summaries. An interesting 
question for future studies is whether these anisotropies could vary with exposure time and may be followed by 
a more extended and uniform distribution of weights.

The exact nature of the anisotropy can be discussed in relation to known hemispheric asymmetries in visual 
processing. The lateralization and right-hemisphere dominance of functions like salience  detection44 and global 
 processing46, for instance, may lead to the unbalanced weighting of salient stimuli that appear abruptly (as 
the ensembles in our paradigm) and to global estimates that rely more on information on the left side. Hence, 
spatially distributed stimuli may trigger the selective activation of the right hemisphere, in turn, generating an 
anisotropic and leftward biased gradient of weights for summary statistics. More generally, it can be concluded 
that the right hemisphere has a fundamental role in recognizing the immediate gist of a  scene5, being specialized 
in the processing of its defining components, including global  shapes46, low-spatial frequency  content34 and, as 
suggested by our results, summary statistics.

General methods
Participants. Eighty-eight participants (Experiment 1: 32, Experiment 2: 27, Experiment 3: 29; 71 females; 
age range: 18–30) from the University of Fribourg participated in the study for course credits. All participants 
had normal or corrected-to-normal vision and were naïve as to the purpose of the experiments. Visual acuity 
was assessed using the Freiburg Visual Acuity  Test47. The study was approved by the local Ethical Committees 
of the University of Fribourg and carried out under the Declaration of Helsinki. Written informed consent was 
obtained from each participant before the experiment.

Apparatus. Stimuli were presented on a Philips 202P7 CRT (1,600 × 1,200 pixels, 85 Hz) and were generated 
with a set of custom-made programs written in MATLAB (R2017b) and the Psychophysics Toolbox 3.8, run-
ning on Windows-based machines. All experiments were performed in a dimly lit room, and participants sat at 
a distance of 70 cm away from the computer screen, with their head positioned on a chin rest. All stimuli were 
presented on a gray background.

Stimuli. In Experiment 1, stimuli were ensembles of light-gray disks arranged on a 5 × 5 square grid (see 
Fig. 1A). We used four logarithmically spaced grid sizes (8 × 8°, 11.53 × 11.53°, 16.64 × 16.64°, and 24 × 24°) to 
present ensembles at four different levels of dispersion (Dispersion levels: 2.3, 3.3, 4.8, 6.9). Disks were centered 
on each cell of the grid (sides of each cell: 1.6, 2.3, 3.3, 4.8°) with a random horizontal and vertical jitter (rang-
ing from 1 to 40 pixels). To calculate dispersion, we used a measure proportional to the root-mean-square of 
the distance of each disk from the mean  location48. Disks at adjacent positions did not overlap. The average size 
of each ensemble (e.g., the average diameter) was determined starting from four logarithmically spaced seeds 
(0.75, 0.85, 0.96, 1.10°). The individual sizes of the twenty-five disks were equally spaced on a log scale ranging 
from ± 0.4° around one of the seeds 1. Seeds were randomly selected on each trial and perturbed with a small 
variation (drawn from a uniform noise distribution with range 0–0.1°). The ensemble grids were always posi-
tioned around the center of the screen. Different dispersion levels were interleaved across trials.

Stimuli and task in Experiment 2 (Fig. 1B) were identical to Experiment 1, with the exception that a single 
grid size was used (12 × 12°) and the ensembles were randomly presented at three different locations, with their 
center located at either − 6° (left), 0° (Center) or 6° (right) off fixation. In Experiment 3 (Fig. 1C), the display 
contained two adjacent ensembles of 4 × 4 disks (grid size of 14 × 7° each), grouped by two rectangular frames of 
a different color (green and red). The two ensembles were centered at either − 12° and − 4° (left side) or 4° and 
12° (right side) on different trials.

Procedure. An example of a trial sequence in Experiment 1 is presented in Fig. 1A. Each trial started with a 
green fixation cross presented for 720 ms and followed by the ensemble of disks (200 ms). After a blank interval 
(250 ms), a dark-gray response disk appeared at the center of the screen with a random size (ranging from 0.5° to 
8°), and participants were asked to adjust the size to the perceived average diameter of the ensemble. The adjust-
ment response was performed by moving the computer mouse in the upward (increase) or downward (decrease) 
directions and then clicking the left button to confirm the response. After a variable interval (500–800 ms), a new 
trial started. The experiment consisted of four blocks of 130 trials each, for a total of 520 trials. The number of 
ensembles for each dispersion condition was balanced across trials (130 per condition).

In Experiment 2, the sequence and duration of events were identical to those in Experiment 1 and the experi-
ment consisted of four blocks of 120 trials each, for a total of 480 trials (160 trials for each of the three ensemble 
locations). In Experiment 3, each trial started with a written visual cue (IN or OUT, Fig. 1C) presented either in 
green or red for 1000 ms, which indicated the position (internal or external) of the relevant ensemble. After a blue 
fixation cross (720 ms), the two ensembles appeared either on the left or right of fixation, with the green and red 
surrounding frames serving as spatial cues for the relevant (attended) and irrelevant (non-attended) ensemble. 
The color assigned to relevant and irrelevant ensembles was fixed for each participant but counterbalanced across 
participants. To prevent disks from crossing the frames, their range of variation was reduced to ± 0.3° around 
the average seeds. All other aspects were the same as in Experiment 1–2. Experiment 3 consisted of four blocks 
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of 112 trials for a total of 448 trials, equally distributed between the side of the ensembles (left or right) and the 
position of the relevant disks (internal or external).

Before each experiment, participants underwent a brief practice session (~ 20 trials). The experiments lasted 
approximately one hour each.

Analysis. Before statistical analysis, trials containing absolute adjustment errors larger than 3.5 standard 
deviations from the mean and reaction times faster than 200 ms or slower than 10 s were removed from sub-
sequent analyses. The average absolute error and the adjustment times for each experiment and condition are 
reported in Table 1, along with the proportion of outlier trials excluded. In all experiments, we found no differ-
ence in performance across conditions (repeated measures ANOVA on absolute error and adjustment times, all 
p > 0.05).

Spatial weighted average maps (SWMs), describing the contribution of each disk to the reported average, 
were obtained by estimating a weighted average  model35,49 of the form:

where y is the adjustment response on trial j , a is a constant accounting for systematic biases in over- or under-
estimating the average, x is the size of each disk i  in the ensemble of n disks ( n = 25 ), and w is the vector of 
spatial weights that map the size of each disk at each location onto the reported average. The vector of estimated 
weights w was then reshaped into the original 5 × 5 matrix with the actual spatial ordering of disks in the ensemble 
(Fig. 1D). Heatmaps were generated by filling a matrix of the same size of the screen with the estimated w at the 
corresponding disk locations (including jitters). For the graphical purpose, the resulting images were smoothed 
with a two-dimensional Gaussian filtering kernel whose standard deviation was increased by a multiplicative 
factor (15) of the dispersion value.

In Experiment 1, maps were derived for each participant and dispersion condition separately and their ani-
sotropy was assessed through permutation statistic. A measure of deviation ( δ ) of the observed weights from a 
theoretical uniform map (equal weights at all locations) was computed as:

(1)yj = a+

n∑

i=1

wixij

(2)δ =

n∑

i=1

(w̃i − 1/n)2

Table 1.  Summary of the performance in size adjustment tasks. For each experiment and condition, the 
overall absolute adjustment error is reported in degrees (°) and the average adjustment times in seconds (s).

Experiment 1

Overall

Absolute error (°) 0.284 ± 0.102

Adjustment times (s) 1.917 ± 0.483

Proportion outliers 0.014 ± 0.026

Dispersion levels 2.3° 3.3° 4.8° 6.9°

Absolute error (°) 0.283 ± 0.118 0.283 ± 0.109 0.281 ± 0.094 0.289 ± 0.100

Adjustment times (s) 1.917 ± 0.505 1.925 ± 0.482 1.911 ± 0.498 1.916 ± 0.466

Experiment 2

Overall

Absolute error (°) 0.291 ± 0.174

Adjustment times (s) 2.120 ± 0.739

Proportion outliers 0.026 ± 0.068

Ensemble location Left Center Right

Absolute error (°) 0.291 ± 0.174 0.292 ± 0.172 0.290 ± 0.178

Adjustment times (s) 2.101 ± 0.732 2.150 ± 0.744 2.111 ± 0.750

Experiment 3

Overall

Absolute error (°) 0.391 ± 0.184

Adjustment times (s) 1.676 ± 0.550

Proportion outliers 0.023 ± 0.028

Target ensemble External left Internal left Internal right External right

Absolute error (°) 0.374 ± 0.182 0.410 ± 0.203 0.394 ± 0.182 0.384 ± 0.188

Adjustment times (s) 1.686 ± 0.537 1.663 ± 0.558 1.655 ± 0.538 1.699 ± 0.584
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where w̃ are the group-averaged estimated weights for each SWM. Statistical significance was assessed by com-
paring the observed δ to a surrogate null distribution. Surrogate δ were obtained by estimating w (Eq. 1) 5000 
times, shuffling the location of the disks ( x ) on each trial. This procedure preserved the true average size on 
each trial while removing any effect of the spatial organization of disks in the ensemble. To evaluate differences 
in the spatial distribution of weights across dispersion levels, we performed a permutation F statistic. Weights 
estimated at each location and for each subject were used in a repeated-measures ANOVA with dispersion levels 
as the main factor. The resulting F values were then compared to a null distribution of surrogate F values, obtained 
by shuffling labels of Dispersion levels across participants 5000 times. Statistical significance was computed as 
the proportion (p) of surrogate F values below the observed ones, adjusted for a false discovery rate of 5% 50. To 
estimate asymmetries in the contribution of disks presented in the upper/lower or left/right side of the ensemble, 
as well as to compare the weights of central with lateral disks, we separately averaged columns and rows of the 
estimated SWM maps for each participant. We then compared weights between specular locations in the upper 
and lower field (after column averaging, e.g., uppermost row vs. lowermost row) and between the left and right 
field (after row averaging, e.g., leftmost column vs. rightmost column) using paired t-tests. Similarly, weights on 
the central part of the ensemble were directly compared to weights in the upper/lower field (e.g., the central row 
vs. the average of all other rows, after column averaging) and in the left/right field (e.g., the central column vs. 
the average of all other columns, after row averaging).

In Experiment 2, we directly compared the averaged weights in the two leftmost columns with those in the 
two rightmost columns, separately for ensembles presented at different locations. This provided a measure of 
left-side bias for each ensemble (e.g., weights in the two leftmost columns minus weights in the two rightmost 
columns) that we submitted to a linear regression model, in order to evaluate increases in the left-side bias as 
a function of the ensemble location. Similarly, in Experiment 3 we derived a measure of the left-side bias by 
comparing averaged weights for the two leftmost and rightmost columns. This was done for both relevant and 
irrelevant ensembles, for each combination of the side of the ensembles (left or right) and the position of the 
relevant disks (internal or external). Following the analysis of Experiment 2, the measure of left-side bias for the 
relevant ensembles in Experiment 3 was then submitted to a linear regression model, to evaluate increases in 
the bias as a function of the ensemble location.

Data and Code Availability

The code used in this study, and the analysed dataset are available at https:// zenodo. org/ record/ 47719 01.
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