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Full‑length SMRT transcriptome 
sequencing and microsatellite 
characterization in Paulownia 
catalpifolia
Yanzhi Feng1,2,3,4,5, Yang Zhao1,2,3,4,5, Jiajia Zhang1,2,3,4, Baoping Wang1,2,3,4, 
Chaowei Yang1,2,3,4, Haijiang Zhou1,2,3,4 & Jie Qiao1,2,3,4*

Paulownia catalpifolia is an important, fast‑growing timber species known for its high density, color 
and texture. However, few transcriptomic and genetic studies have been conducted in P. catalpifolia. 
In this study, single‑molecule real‑time sequencing technology was applied to obtain the full‑
length transcriptome of P. catalpifolia leaves treated with varying degrees of drought stress. The 
sequencing data were then used to search for microsatellites, or simple sequence repeats (SSRs). A 
total of 28.83 Gb data were generated, 25,969 high‑quality (HQ) transcripts with an average length 
of 1624 bp were acquired after removing the redundant reads, and 25,602 HQ transcripts (98.59%) 
were annotated using public databases. Among the HQ transcripts, 16,722 intact coding sequences, 
149 long non‑coding RNAs and 179 alternative splicing events were predicted, respectively. A total of 
7367 SSR loci were distributed throughout 6293 HQ transcripts, of which 763 complex SSRs and 6604 
complete SSRs. The SSR appearance frequency was 28.37%, and the average distribution distance was 
5.59 kb. Among the 6604 complete SSR loci, 1–3 nucleotide repeats were dominant, occupying 97.85% 
of the total SSR loci, of which mono‑, di‑ and tri‑nucleotide repeats were 44.68%, 33.86% and 19.31%, 
respectively. We detected 112 repeat motifs, of which A/T (42.64%), AG/CT (12.22%), GA/TC (9.63%), 
GAA/TTC (1.57%) and CCA/TGG (1.54%) were most common in mono‑, di‑ and tri‑nucleotide repeats, 
respectively. The length of the repeat SSR motifs was 10–88 bp, and 4997 (75.67%) were ≤ 20 bp. This 
study provides a novel full‑length transcriptome reference for P. catalpifolia and will facilitate the 
identification of germplasm resources and breeding of new drought‑resistant P. catalpifolia varieties.

Paulownia, one of the most important fast-growing timber species around the world, is native to China and 
widely grown in subtropical and warm temperate regions, which have acted an important part of timber supply, 
ecological environmental construction, soil improvement and so  forth1. Paulownia catalpifolia is a typical and 
important species of Genus Paulownia in northern China, it exhibits some drought resistance and is renowned 
for its high density, good color, and beautiful texture. Recently, droughts and water shortages have seriously 
affected P. catalpifolia growth, causing mass deaths in some P. catalpifolia plantations. Therefore, high-quality 
and drought-resistant P. catalpifolia varieties are urgently needed. Conventional plant breeding methods, such 
as cross-breeding and selection breeding, have yielded little success in improving the traits of plants; this is due 
to genetic resistance, reproductive isolation and long generation cycles, among other  factors2,3. Previous studies 
on P. catalpifolia have focused on the chemical composition of its fruits and seeds, as well as on tissue  culture4–6; 
however, molecular studies of P. catalpifolia are lacking.

Microsatellites, also known as simple sequence repeats (SSRs), are DNA sequences consisting of continu-
ously repeating motifs, which are composed of 1–6  bases7,8. The type and number of repeat motifs differ among 
SSRs, resulting in polymorphisms at each SSR locus. SSR molecular markers are widely distributed throughout 
plant  genomes9 and are characterized by codominance, high polymorphism and good repeatability. SSR loci are 
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conserved within and among  genera10. Depending on their origin, SSR markers can be categorized as genomic 
SSRs or expressed sequence tag (EST) SSRs. EST-SSR markers are easier to obtain for a large number of plants 
that have no reference genome, although the polymorphism of EST-SSR is lower than that of genomic SSR mark-
ers. As functional molecular markers, EST-SSRs are more conserved, better universality, lower cost and more 
interspecific  transferability11,12. Moreover, EST-SSR polymorphisms may be directly related to gene  function13 
and can be used for researches of other related  species14,15. In recent years, EST-SSR markers have been developed 
and applied in various tree species, including Eucalyptus globulus16, Euphrates Poplar17, the rubber  tree18, Robinia 
pseudoacacia19, Fraxinus velutina20, and Pinus koraiensis21.

Single-molecule real-time (SMRT) sequencing technology (Pacific Biosciences), also known as third genera-
tion sequencing technology, can efficiently and accurately obtain high-quality (HQ), long and intact transcripts 
containing 5′- and 3′-untranslated regions and polyadenosine tails without  assembly22,23. SMRT sequencing can 
be used to accurately identify features such as fusion genes, gene families, long non-coding RNAs (lncRNAs) and 
alternative splicing (AS)  events24,25. SMRT sequencing technology is a reliable method for obtaining full-length 
transcripts that can be used to study the transcriptomes of non-model plants which lack reference genomes, such 
as Paulownia and Chinese catalpa. SMRT sequencing technology has been successfully applied to full-length 
transcriptome sequencing studies in animals, plants and  insects26–28. Furthermore, full-length transcriptome 
sequences obtained using SMRT sequencing contain numerous EST  SSRs29,30, which can be used for genetic 
analyses of the sequenced species and their related species, as well as for studies of conservation biology and 
molecular assisted  breeding23,31,32. To the best of our knowledge, no full-length transcriptome sequence of P. 
catalpifolia has been reported.

In this study, we performed a full-length transcriptomic analysis of mixed P. catalpifolia leaves treated with 
varying degrees of drought stress using SMRT sequencing. We then performed function annotation analyses 
using publicly available databases and used various bioinformatics software to predict AS, lncRNAs and SSRs 
and to further analyze SSRs characteristics deeply. In the absence of Paulownia reference genome, the full-length 
transcriptome sequence acquired in our study not only can be used as a reference sequence for transcriptome 
sequencing, but also will support further genetic analyses in Paulownia species. In addition, the SSRs predicted 
in our study will facilitate the development of drought-resistant SSR markers, the discovery of drought-resistant 
genes and the study of the genetic relationships between P. catalpifolia and other related species.

Results
SMRT sequencing of the full‑length transcriptome. We acquired full-length transcriptomic of P. 
catalpifolia using SMRT sequencing technology and obtained 28.83 Gb sequencing data. After removing the 
adapter sequences, approximately 454,554 polymerase reads remained, which then formed 19,052,345 subreads 
with an average read length of 1470 bp. After self-correction and merging, the subreads formed 405,034 circular 
consensus sequences (CCSs) (Fig. 1a) with an average length of 1693 bp, and 349,745 full-length non-chimeric 
sequences (FLNCs) (Fig. 1b). A total of 30,953 transcripts were obtained after clustering and removal of redun-
dant sequences using the PacBio SMRT LINK Cluster tool, and 30,928 HQ transcripts with ≥ 99% accuracy and 
a full-length read support ≥ 2 were sequenced (Fig. 1c). The length range of the HQ transcripts was 362–7922 bp, 
the N50 was 1768 bp, and the mean transcript length was 1618 bp. Of the HQ transcripts, 10.47% and 86.07% 
were 362–900 bp and 1000–3000 bp in length, respectively. Long-length HQ transcripts (> 3000 bp) constituted 
3.46% of the total HQ transcripts. After error correction and removal of all 100% identical sequences, 25,969 HQ 
transcripts remained, its individual transcript length ranging from 362 to 7922 bp, the average length of 1624 bp, 
and N50 of 1781 bp, which were used in subsequent analyses.

Functional annotation of the full‑length transcriptome sequences. The functional annotation 
of the HQ transcripts was then performed. Of the 25,969 transcripts analyzed, 367 could not be functionally 
assigned by any of the databases used (Table 1). A total of 25,591 (98.54%) HQ transcripts were annotated using 
the NCBI non-redundant protein database and exhibited homology with known proteins of various species, 
including Sesamum indicum (75.38%), Erythranthe guttata (12.87%) and Dorcoceras hygrometricum (1.71%) 
(Fig. 2). The HQ transcripts were then searched against the gene ontology (GO) database to analyze their func-
tions; 18,501 (71.24%) of the HQ transcripts were categorized into 50 GO group, which were divided into three 
broad classes: biological processes (37,536 HQ transcripts, 38.38%), cellular components (38,888, 39.76%) and 
molecular functions (21,377, 21.86%) (Fig. 3a). Following searches against the eukaryotic orthologous groups 
(KOG) database, the HQ transcripts were clustered into 26 KOG terms (Fig.  3b). Furthermore, 13,829 HQ 
transcripts were identified in the Kyoto encyclopedia of genes and genomes (KEGG) database and grouped into 
129 KEGG pathways, which were divided into five broad categories: cellular processes (779 HQ transcripts, 
5.63%), environmental information processing (523, 3.78%), genetic information processing (3207, 23.19%), 
metabolism (8962, 64.81%) and organismal systems (358, 2.59%) (Fig. 3c). Using Swiss-Prot, 22,606 (87.05%) 
HQ transcripts were annotated.

Identification of long non‑coding RNAs, coding sequences and alternative splicing. The long 
non-coding RNAs (lncRNAs) are not translated into protein and its length are more than 200 nucleotides. LncR-
NAs are vital for regulating the neighboring gene  expression33. A total of 149 common lncRNAs were identified 
in P. catalpifolia Using four methods (CPC2, CPAT, PLEK and CNCI) (Fig. 4a). TransDecoder software was used 
to predict 24,982 coding sequences (CDSs), of which 16,722 were intact. The lengths of the amino acids encoded 
by the intact CDSs were in the range of 100–1840, with the number of amino acids decreasing as the length 
increased except 100–300 (Fig. 4b). Alternative splicing (AS) is one of crucial biological phenomenons, and it 
is helpful to produce different mature transcripts using the same RNA  sequence34. AS is highly correlated with 
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biological function and a major source of proteomic diversity. A total of 179 AS events were predicted without 
reference to genomic information in our research.

Identification and characteristic analysis of SSRs. SSR loci were identified within the P. catalpifolia 
full-length transcriptome using MISA microsatellite software. A total of 7367 SSRs were identified, including 

0

15000

30000

45000

60000

s
C

NLFfo
reb

mun
ehT

The length of FLNCs (bp)

0

15000

30000

45000

60000

sS
C

Cfo
reb

mun
ehT

The length of CCSs (bp)

The length of high quality transcripts (bp)   

hgihfo
reb

munehT
stpircsnart

ytilauq

a

b

c

Figure 1.  SMRT sequencing of P. catalpifolia leaf transcriptomes. (a) Length distribution of CCSs. (b) Length 
distribution of FLNCs. (c) Length distribution of high-quality transcripts. Figure was made by Microsoft Office 
Excel 2013 software.

Table 1.  Results of the functional annotation of 25,969 HQ transcripts.

Database Number of HQ transcripts Percentage (%)

Annotated in NR 25,591 98.54

Annotated in GO 18,501 71.24

Annotated in KOG 12,350 47.56

Annotated in Swiss-Prot 22,606 87.05

Annotated in KEGG 13,829 53.25

Unannotated 367 1.41

Total HQ isoforms 25,969 100
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763 complex SSRs and 6604 complete SSRs. The total number of HQ transcripts containing SSRs was 6293, of 
which 747 contained ≥ 2 SSRs. SSRs occurred at a frequency of 24.23% (100% × total number of HQ transcripts 
containing SSRs/total number of HQ transcripts examined). The average distribution distance was 5.59 kb and 
the SSR appearance frequency was 28.37% (100% × total number of SSRs identified / total number of HQ tran-
scripts examined) (Table 2).

The number of complete SSRs was 6604 in total and accounted for 89.64% of the total SSR loci, which included 
2951 mononucleotide (44.68%), 2236 dinucleotide (33.86%), 1275 trinucleotide (19.31%), 50 tetranucleotide 
(0.76%), 24 pentanucleotide (0.36%) and 68 hexanucleotide SSRs (1.03%) (Fig. 5). The complete SSR lengths 
ranged from 10 to 88 bp, with a mean of 15.99 bp. The number of repeat SSR motifs ranged from 5 to 44, with 
a mean of 10.03. We found that SSRs with 6 motif repeats were the most common and accounted for 13.64% 
(901) of all SSRs, followed by SSRs with 10 repeats (897, 13.58%), 5 repeats (834, 12.63%) and 11 repeats (757, 
11.46%), respectively. Furthermore, 4997 SSRs had motif repeat numbers ≤ 12, accounting for 75.67% of all SSR 
loci identified (Table 3).

A total of 112 repeat motifs were identified among the complete SSRs, of which there were 2 mononucleotides, 
8 dinucleotides, 30 trinucleotides, 24 tetranucleotides, 12 pentanucleotides and 36 hexanucleotides, respectively 
(Table 3). Although SSR repeat types from mononucleotide to hexanucleotide all existed and they were also 
abundant, their occurrence frequency was quite different. The proportion of mononucleotide repeats dominated 
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Figure 2.  The Homologous species distribution of P. catalpifolia HQ transcripts. Figure was made by Microsoft 
Office Excel 2013 software.
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Figure 3.  Gene ontology (GO), eukaryotic orthologous groups (KOG) and Kyoto encyclopedia of genes and 
genomes (KEGG) functional classifications of high-quality (HQ) transcripts. (a) GO classification of HQ 
transcripts. (b) KOG classification of HQ transcripts. (c) KEGG classification of HQ transcripts.
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Figure 4.  The identification of lncRNAs and the proteins length distribution of the P. catalpifolia transcriptome. 
(a) The Venn diagram of the number of lncRNAs predicted by CPC2, CPAT, PLEK and CNCI. (b) The length 
distribution of the proteins translated using predicted intact CDSs.

Table 2.  Occurrence of microsatellites in the full-length transcriptome of P. catalpifolia. 

Item Number

Total number of HQ transcripts examined 25,969

Total size of the examined HQ transcripts (bp) 42,183,906

Total number of HQ transcripts containing SSRs 6293

Total number of SSRs identified 7367

Total number of complex SSRs identified 763

Number of HQ transcripts containing more than one SSR 747

2951

2236 1275

92

24

68
50

Mononucleotide Dinucleotide
Trinucleotide Tetranucleotide
Pentanucleotide hexanucleotide

Figure 5.  The types and numbers of complete SSRs in P. catalpifolia. Figure was made by Microsoft Office Excel 
2013 software.
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Repeat motif length

Repeat number

Total number Frequency (%)5 6 7 8 9 10 11 12  > 12

A/T 704 577 403 1132 2816 42.64

C/G 16 26 18 75 135 2.04

AC/GT 35 28 32 44 27 13 14 41 234 3.54

CA/TG 78 33 33 15 7 16 5 28 215 3.26

AG/CT 230 121 93 52 58 46 37 170 807 12.22

GA/TC 180 96 66 56 48 38 22 130 636 9.63

AT/AT 45 22 19 31 13 14 14 13 171 2.59

TA/TA 38 34 29 21 12 10 9 12 165 2.50

GC/GC 2 2 4 0.06

CG/CG 4 4 0.06

AAC/GTT 2 3 1 1 7 0.11

AAG/CTT 49 11 5 5 1 1 4 1 1 78 1.18

AAT/ATT 8 5 5 1 1 1 21 0.32

ACA/TGT 4 1 5 0.08

ACC/GGT 26 14 5 2 1 48 0.73

ACG/CGT 1 2 3 6 0.09

ACT/AGT 12 4 1 17 0.26

AGA/TCT 42 14 5 7 5 2 4 1 2 82 1.24

AGC/GCT 34 5 5 5 1 50 0.76

AGG/CCT 27 8 5 1 41 0.62

ATA/TAT 11 2 1 1 1 16 0.24

ATC/GAT 26 5 9 1 1 42 0.64

ATG/CAT 34 17 1 5 3 60 0.91

CAA/TTG 13 2 2 2 1 20 0.30

CAC/GTG 30 17 6 5 2 60 0.91

CAG/CTG 40 12 3 19 4 2 1 81 1.23

CCA/TGG 72 17 4 5 3 1 102 1.54

CCG/CGG 34 24 11 5 4 78 1.18

CGA/TCG 2 6 8 0.12

CGC/GCG 26 1 2 5 1 35 0.53

CTA/TAG 9 1 10 0.15

CTC/GAG 38 16 4 1 1 60 0.91

GAA/TTC 50 25 13 8 2 3 1 1 1 104 1.57

GAC/GTC 7 2 1 10 0.15

GCA/TGC 24 5 6 5 40 0.61

GCC/GGC 35 18 4 1 58 0.88

GGA/TCC 26 10 6 3 3 48 0.73

GTA/TAC 1 1 2 0.03

TAA/TTA 6 5 1 5 1 18 0.27

TCA/TGA 49 6 6 6 1 68 1.03

ATCA/TGAT 1 1 0.02

TTTG/CAAA 3 3 0.05

AAAT/ATTT 2 1 3 0.05

GGAA/TTCC 1 1 0.02

CCCT/AGGG 1 7 8 0.12

TTTA/TAAA 2 2 0.03

TGTA/TACA 1 1 0.02

TTCT/AGAA 2 2 0.03

ACAG/CTGT 2 2 0.03

GAAA/TTTC 2 1 3 0.05

TGAA/TTCA 4 4 0.06

TCTT/AAGA 1 1 0.02

ATGT/ACAT 1 1 0.02

CGTG/CACG 1 1 0.02

GATT/AATC 4 4 0.06

Continued
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Repeat motif length

Repeat number

Total number Frequency (%)5 6 7 8 9 10 11 12  > 12

TCTA/TAGA 1 1 0.02

CTTT/AAAG 2 1 3 0.05

ATAC/GTAT 1 1 0.02

TTGT/ACAA 1 1 0.02

GCCC/GGGC 1 1 0.02

GGAG/CTCC 2 1 3 0.05

CAAC/GTTG 1 1 0.02

AATA/TATT 1 1 0.02

AAAC/GTTT 1 1 0.02

CCACC/GGTGG 9 9 0.14

TGATG/CATCA 1 1 0.02

TCCTC/GAGGA 2 2 4 0.06

CCACA/TGTGG 1 1 0.02

CTTTT/AAAAG 1 1 2 0.03

CACTT/AAGTG 1 1 0.02

TTCTT/AAGAA 1 1 0.02

TATTT/AAATA 1 1 0.02

CACCC/GGGTG 1 1 0.02

CCCAC/GTGGG 1 1 0.02

CTCTT/AAGAG 1 1 0.02

AGCTT/AAGCT 1 1 0.02

AAA AAG /CTT TTT 2 2 0.03

AAG AGA /TCT CTT 8 8 0.12

ACA GGG /CCC TGT 2 2 0.03

ACT CCG /CGG AGT 3 3 0.05

AGG AAA /TTT CCT 1 1 0.02

AGG AGA /TCT CCT 3 3 0.05

AGG CTC /GAG CCT 2 2 0.03

ATG GGC /GCC CAT 1 1 0.02

ATT TTC /GAA AAT 3 3 0.05

CAC CAG /CTG GTG 2 2 0.03

CAC CCC /GGG GTG 1 1 0.02

CAC GCA /TGC GTG 1 1 0.02

CAG CAA /TTG CTG 1 1 0.02

CAT CTT /AAG ATG 1 1 0.02

CCA TCT /AGA TGG 2 2 0.03

CCC ACT /AGT GGG 1 1 0.02

CCC TTT /AAA GGG 1 1 0.02

CCG CCA /TGG CGG 2 1 3 0.05

CCG GGA /TCC CGG 3 3 0.05

CCT CCC /GGG AGG 3 3 0.05

CCT CTC /GAG AGG 1 1 0.02

CCT CTT /AAG AGG 1 1 0.02

CTC AAC /GTT GAG 1 1 0.02

CTC CAC /GTG GAG 1 1 0.02

CTC CAT /ATG GAG 1 1 2 0.03

GAA CCA /TGG TTC 2 2 0.03

GAG CCG /CGG CTC 2 2 0.03

GAG GAT /ATC CTC 1 1 0.02

GGA ATG /CAT TCC 1 1 0.02

GGA GCA /TGC TCC 1 1 0.02

GGT GGA /TCC ACC 1 1 0.02

TCC GCC /GGC GGA 1 1 0.02

TCC TTT /AAA GGA 1 1 0.02

TTT CTT /AAG AAA 6 6 0.09

Continued
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by A/T type was the highest (2951, 44.68%), and then dinucleotide repeats dominated by AG/CT and GA/TC 
(2236, 33.86%), trinucleotide repeats dominated by GAA/TTC and CCA/TGG (1275, 19.31%) and hexanucleo-
tide repeats (68, 1.03%). Tetranucleotide and pentanucleotide repeat motifs exhibited relatively low frequen-
cies, accounting for 0.76% and 0.36% of the total motif types, respectively. The statistical analysis of all SSR loci 
showed that the 5 repeat motif types with the highest occurrence frequency were in order as follows: A/T (2816, 
42.64%), AG/CT (807, 12.22%), GA/TC (636, 9.63%), AC/GT (234, 3.54%) and CA/TG (215, 3.26%) (Table 3).

In P. catalpifolia, A/T was the most common mononucleotide repeat motif, accounting for 95.43% (2816) of all 
mononucleotide repeats, while C/G represented only 4.57% (135) (Fig. 6a). Of the dinucleotide repeats, AG/CT 
motif was the most frequent (807, 36.09%), followed by GA/TC (636, 28.44%), AC/GT (234, 10.47%) and CA/TG 
(215, 9.62%). The fewest dinucleotide motifs were GC/GC and CG/CG, each representing 1.79% (4) of the total 
dinucleotide repeats (Fig. 6b). There were 30 trinucleotide motifs present, of which GAA/TTC and CCA/TGG 
were the most frequent, accounting for 8.16% (104) and 8.00% (102) of the trinucleotide motifs, respectively, 
followed by AGA/TCT (82, 6.43%), CAG/CTG (81, 6.35%), AAG/CTT (78, 6.12%), CCG/CGG (78, 6.12%) and 
TCA/TGA (68, 5.33%). The fewest trinucleotide motifs were ACG/CGT (6, 0.47%), ACA/TGT (5, 0.39%) and 
GTA/TAC (2, 0.16%) (Table 3). Of the 24 tetranucleotide repeat motifs, CCCT/AGGG was the most frequent 
(8, 16%), followed by TGAA/TTCA (4, 8%) and GATT/AATC (4, 8%). The number of TTTG/CAAA, AAAT/
ATTT, GAAA/TTTC, CTTT/AAAG and GGAG/CTCC all had 3 and accounted for 6%, 3 tetranucleotide motifs 
all with the number of 2 and another 13 repeat motif all with the number of 1. Within the 12 pentanucleotide 
repeat motifs, CCACC/GGTGG was the most frequent (9, 37.50%), followed by TCCTC/GAGGA (4, 16.67%) 
and CTTTT/AAAAG (2, 8.33%); the number of remaining 9 repeat motifs all were 1. Of the 36 hexanucleotide 
repeat motifs, AAG AGA /TCT CTT  was the most frequent (8, 11.76%), followed by TTT CTT /AAG AAA  (6, 
8.82%). The number of 6 repeat motif types were all 3, 8 each were 2 and the remaining 20 each were 1 (Table 3).

Discussion
The lack of reference genome has impeded basic genetic research in P. catalpifolia and its related species. However, 
SMRT sequencing technology can generate full-length transcript sequences without a reference  genome35–37 and 
has been widely used to predict and validate gene models related to some unique traits in  species38. In this study, 
we used the SMRT technique to perform full-length transcriptome sequencing in P. catalpifolia using PacBio 
RS II platform. In total, 28.83 Gb sequencing data were obtained including 349,745 full-length non-chimeric 
sequence reads, which was similar to the number of FLNC reads in Rhododendron lapponicum39. After subject-
ing the reads to clustering, error correction and redundant sequence removal, a total of 25,969 HQ transcripts 
were finally obtained. Very-long-read sequences were generated using the SMRT sequencing technology, and 
one read is considered a full-length transcript under normal  circumstances40. The HQ transcripts generated 
using SMRT sequencing were longer in length than those generated using an Illumina system. In this study, the 
average length of the HQ transcripts in P. catalpifolia was 1624 bp, while the mean unigene length was 945 bp 
in tung  tree41, 683 bp in Pueraria lobata42 and 690 bp in Eucommia ulmoides43, each of which were sequenced 
using an Illumina system. In addition, we found that HQ transcripts > 1000 bp in length accounted for 84.04% of 
all HQ transcripts in our research, which was much higher than that in P. australis (40.09%)44 and P. tomentosa 
(42.16%)45 using Illumina sequencing technique. Our results demonstrated that SMRT sequencing is a reliable 
and efficient method to obtain full-length transcript sequences in species without an annotated reference genome.

Repeat motif length

Repeat number

Total number Frequency (%)5 6 7 8 9 10 11 12  > 12

TTT TCT /AGA AAA 1 1 0.02

TTT TGC /GCA AAA 1 1 0.02

Total number 834 901 456 378 247 897 757 527 1607 6604 100.00

Frequency (%) 12.63 13.64 6.90 5.72 3.74 13.58 11.46 7.98 24.33 100.00

Table 3.  The six types of SSR repeat motifs and their frequency in P. catalpifolia. 
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We annotated 25,602 HQ P. catalpifolia transcripts using five public databases. The annotated HQ transcripts 
accounted for 98.59% of all HQ transcripts, a similar rate to those of transcriptomics studies in R. lapponicum39 
and Medicago sativa46. The 367 HQ transcripts with no predicted functions are likely to be species-specific or 
unknown genes in P. catalpifolia. GO classification of the HQ transcripts indicated that the majority were associ-
ated with the GO terms metabolic processes, binding, catalytic activity, cellular processes, cell and cell part. HQ 
transcript annotation using KOG indicated that a large number of transcripts were involved in posttranslational 
modifications, protein turnover, chaperones, translation, and ribosomal structure and biogenesis. A total of 
13,829 HQ transcripts were assigned to specific KEGG pathways, such as carbohydrate metabolism, energy 
metabolism, translation, folding, sorting and degradation. We also found that many HQ transcripts exhibited 
multiple molecular functions and participated in diverse biological pathways. Our study provides a wealth of 
genetic information for molecular research into the growth and development of P. catalpifolia leaves, particularly 
in response to drought stress.

In recent years, SSR molecular markers have been widely used for genetic map construction, genetic diversity 
analyses and functional gene mining. However, the traditional methods of SSR primer development are time-
consuming, complex and costly, thus hindering their development seriously. While the SSR primers developed 
on the basis of transcriptome sequencing data information are economical, efficient, and abundant, which has 
gradually become one of important methods. Furthermore, SSR molecular markers are rapidly being developed 
alongside recent advancements in transcriptome sequencing  technology47,48. In our study, a total of 7367 SSR loci 
were detected from 25,969 HQ transcripts, including 763 complex SSRs and 6604 complete SSRs. The frequency 
of the SSRs was 28.37%, and the average distribution distance was 5.59 kb. Among the 6604 complete SSRs, the 
most abundant and frequent mononucleotide, dinucleotide and trinucleotide motifs were A/T, AG/CT and GAA/
TTC, respectively; studies examining SSRs in Hevea brasiliensis49, Chinese  cabbage50 and R. lapponicum39 pro-
duced similar results. A/T was the most abundant mononucleotide motif (2816, 95.43%), which was consistent 
with a study performed by Lagercrantz et al51. AG/CT (807, 36.09%) and GA/TC (636, 28.44%) were the most 
abundant dinucleotide motifs, and CT repeats usually existed in transcriptional regions that might take part in 
antisense transcription and have an effect on gene  regulation39,52. There were differences in SSR abundance of 
different plant species in diverse researches, and repeat number of 6, 10, 5, 11, and 12 occupied 59.30% of the 
total complete SSR loci in our study. The SSR markers that we have developed in this work will facilitate mining 
for drought resistance genes, breeding drought resistant varieties, genetic diversity analyses and genetic map 
construction in P. catalpifolia. Of course, the SSRs found in this study were predicted theoretically and should 
be verified experimentally before further using.

Materials and methods
Plant materials and RNA extraction. P. catalpifolia seedlings were planted in separate pots at Mengzhou 
Forest Farm at the Paulownia Research and Development Center of State Administration of Forestry and Grass-
lands (Jiaozuo, Henan, China, 112° 42′ 58″ E, 34° 51′ 38″ N). The third and fourth fully expanded functional 
leaves from the top of the stem were collected at 0, 8 and 16 days after drought stress, respectively. The leaves 
were immediately frozen in liquid nitrogen and stored at − 80 °C until the  experiment23. The Paulownia catal-
pifolia used in this study were identified by Paulownia Research and Development Center of State Administra-
tion of Forestry and Grassland, and the collection and use of Paulownia catalpifolia samples in our experiment 
comply with the guidelines of Paulownia Research and Development Center of State Administration of Forestry 
and Grassland. Total RNAs extraction were performed using the EZ-10 DNAaway RNA mini-prep kit (Sangon 
Biotech Co., Shanghai, China) following the manufacturer’s instructions. The total RNAs of three samples above 
were mixed equally according to the method of  Diao53 to form the sample S for transcriptome sequencing. The 
degrees of RNA degradation and contamination were evaluated using 1% agarose  gels39. The RNA purity and 
concentration were checked using the NanoPhotometer spectrophotometer (Implen, CA, USA) and Qubit RNA 
Assay Kit (Life Technologies, CA, USA),  respectively22. RNA integrity was analyzed using an Agilent Bioana-
lyzer 2100 system (Agilent Technologies, CA, USA)22. The resulting high-quality RNA was used for full-length 
transcriptome sequencing.

cDNA library construction and SMRT sequencing of the full‑length transcriptome. Full-length 
cDNA was synthesised from 1.0 μg purified mRNA using the SMARTer PCR cDNA Synthesis Kit (Clontech, 
USA) according to the manufacturer’s protocol, its size were selected using the BluePippin Size-Selection System 
(Sage Science, USA) and then PCR amplified again. The cDNA library was constructed after repairing the ends, 
connecting dumbbell-shaped SMRT adapters, performing exonuclease digestions and conducting a secondary 
screening using BluePippin. After the cDNA library had passed quality control using the Qubit 2.0 and Agilent 
2100, full-length transcriptome sequencing of P. catalpifolia was performed using the PacBio RS II platform, 
based on the target data  volume23.

Quality control and functional annotation of the full‑length transcriptome. The raw SMRT data 
were pre-processed using the SMRT Pipe analysis workflow within the PacBio SMRT Analysis software suite. 
Examination of the polyadenosine signal and 5′ and 3′ adaptors, as well as error correction, were performed 
following the methods similar to the one  described54. Full-length SMRT transcripts were identified, and non-
redundant HQ transcripts were acquired using CD-HIT-EST  software55. Clustering and removal of redundant 
sequences were performed using the PacBio SMRT LINK Cluster tool, and all HQ transcripts were aligned to 
nucleotide and protein databases using  BLASTX54. The databases used in this study were NCBI non-redundant, 
gene ontology (GO), eukaryotic orthologous groups (KOG), Kyoto encyclopedia of genes and genomes (KEGG) 
and Swiss-Prot.
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Identification of lncRNAs, coding sequences (CDSs) and AS variants. LncRNA candidates were 
identified using the following software: coding potential calculator 2 (CPC2), coding potential assessment tool 
(CPAT), predictor of long non-coding RNAs and messenger RNAs based on an improved k-mer scheme (PLEK), 
and the coding–non-coding index (CNCI), respectively. LncRNAs with > 200 nucleotides were selected. Trans-
Decoder version 3.0.0 was used to identify candidate coding sequences (CDSs) in the full-length transcriptome 
of P. catalpifolia. All non-redundant HQ transcripts were aligned using a previously described  method56. Candi-
date AS events were identified using the selection criteria described by Diao et al.53.

Identification and characterization of SSRs. The microsatellite identification tool (MISA) was used 
to identify SSRs within the 25,969 HQ transcripts, and the characteristics of the repeated motif types were fur-
ther analyzed statistically. In this study, the SSR locus were identified according to the criteria below: the repeat 
number of mononucleotide motifs was ≥ 10 and the repeat numbers of di-, tri-, tetra-, penta- and hexanucleotide 
motifs were ≥ 6, 5, 5, 5 and 5, respectively.

Data availability
The raw data from SMRT sequencing are accessible at NCBI under bioproject (PRJNA565572).
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