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On the shape of cicada’s wing 
leading‑edge cross section
Rachel M. Starkweather1, Svetlana V. Poroseva1* & David T. Hanson2 

An important role that the leading‑edge cross‑section shape plays in the wing flight performance is 
well known in aeronautics. However, little is known about the shape of the leading‑edge cross section 
of an insect’s wing and its contribution to remarkable qualities of insect flight. In this paper, we 
reveal, in the first time, the shape of the leading‑edge cross section of a cicada’s wing and analyze its 
variability along the wing. We also identify and quantify similarities in characteristic dimensions of this 
shape in the wings of three different cicada species.

Insects’ wings appear simple and fragile. Yet, thin, translucent, and essentially weightless compared to the body 
it carries, the wing works admirably from an aerodynamic perspective. Many aspects of insect flight have previ-
ously been  investigated1–21, but little is known about the shape of the insect’s wing leading-edge cross section. On 
the other hand, it is well known that the leading-edge cross-section shape plays an important role in controlling 
the flow separation and transition to turbulence in all wings, including those of  insects16,22–28, and in all aspects 
of multidisciplinary aircraft design.

These considerations motivated the current study, which goal is to determine the shape of the leading-edge 
cross section of the forewings (hereafter, wings) of a common North American insect, a cicada, and how this 
shape varies along the wing. We chose a cicada for the study based on our previous  research29–31, where we dem-
onstrated aerodynamic benefits of implementing some of the features of cicada’s wing and body into designs of 
the rotor blade and the proprotor-nacelle assembly.

Previously, cross sections of veins in the forewings of the Manduca sexta  species18,19 and the Monarch 
 butterflies20,21 were analyzed, with images and dimensions being provided  in18–20 for the Manduca sexta hawk-
moth and the Monarch butterfly, respectively. However, the leading-edge cross-section area was not well resolved 
in either of the previous works, and its cross section was assumed as circular for the measurements and the 
analyses, even though it is clearly non-circular and non-elliptical18. Detailed structural analyses of the wings 
were conducted  in18–21 and of aerodynamic performance of the Monarch butterfly wing with rectangular and 
circular vein models  in20,21. No effects of the leading-edge cross-section shape on the insect’s wing aerodynamics 
were previously investigated, and no realistic shape is currently available, to our best knowledge. Thus, the pur-
pose of the current paper is to provide a broad community of professionals with the leading-edge cross-section 
shape of cicada’s wings to enable future studies of its aerodynamic effects. We also hope that our research with 
motivate similar studies on the leading edge of the wings of other insects to facilitate their comparative analysis 
and stimulate collection of data of the dimensions of insects’ bodies and wings along with the insect’s masses 
by a broader community of entomologists and enthusiasts to advance our understanding of insect flight. The 
methodology presented in the paper is applicable to investigating the wings of any insect.

Results
Specimen of three cicada species: Megatibicen dealbatus (commonly known as a Plains Cicada or the Plains 
Harvest-Fly), Cacama valvata (also a Cactus Dodger), and Tibicen duryi (Fig. 1a) were collected for the study 
from June to September 2019 in various regions of the state of New Mexico, U.S.A. The collection ascertained 
that wings of different cicadas and cicada species shared common features in their leading edge. Hereafter, the 
species will be referred to as Cicada 1, Cicada 2, and Cicada 3, respectively.

We conducted a visual inspection of specimen from a pool of insects to identify a set representative of its 
species. We then selected one insect per species from the sets and sectioned and examined their wings over the 
course of several months. Whereas slicing more wings may reveal more similarities and differences among the 
wings of different species, this is not the goal of our study. We are looking for obvious similarities, which would 
be statistically impossible events as accidental mutations in randomly picked specimen from 3 different species.

Figure 1b shows the left wing of Cicada 1 as an example with characteristic lengths, which will be used for 
the data analysis:
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• the wing length, Lw , defined as the distance between the middle point of the wing root (the body-wing joint 
location) and the wing tip (location farthest from the body);

• the distance between the wing root and the farthest vein projected on the axis aligned with the wing length 
(hereafter, the wing length axis, x), Lv;

• the wing width, Ww , defined as the largest distance between the leading and rear (trailing) edges in the direc-
tion normal to the wing length axis; and

• the distance between the wing root middle point and the location of the wing width measurement, Lww.

Table 1 and Supplementary Fig. 1 online provide values of these lengths for individual wings. For comparison, 
the insect bodies and their dimensions are also given in Table 1 and Supplementary Fig. S2 online. The body 
dimensions, such as width, Wb , and length, Lb , are those for the body planform. The body length is defined as 
the largest distance between the body tip and rear, and the body width is the largest distance between the body 
planform edges in the direction normal to the axis aligned with the body length (hereafter, the body length axis).

In the wing part closest to the insect body, the wing leading edge is composed of two veins: costa and sub-
costa (Fig. 1b). Moving away from the body towards the wing tip, the two veins merge into the single vein, costa. 
Absorption of the subcosta into the costa is typical for cicada  wings7. In the study, the location of the costa and 
subcosta merging point, Lm , (Fig. 1b) was determined in the three wings (Table 1).

We obtained images of the leading edge cross sections and measured characteristic dimensions of the costa 
and the subcosta at different locations along the leading edge (Supplementary Tables S1–S4 online). Figure 2 
demonstrates evolution of the leading-edge cross-section shape along the Cicada 1 wing. Examples for the wings 
of Cicada 2 and 3 are shown in Supplementary Fig. S4 online. In the figures, labels from 1 to 6 correspond to the 
samples in the direction from the wing root to the wing tip.

The three wings exhibited similarities. One was the lack of circularity in the costa and subcosta profiles 
along the wing. The subcosta shape can be approximated by an ellipse (green line in Fig. 3a), with its major axis 
normal to the wing membrane and its minor axis in the wing membrane plane at all locations where the images 
were available.

The shape of the costa cross section is the most perplexing one, and it is also common in the wings of different 
cicada species. This feature is best described as an ellipse (blue line in Fig. 3a), which major axis is aligned with 
the wing membrane plane and its top is pinched. Hereafter, the “pinched” costa ellipse top is called the costa tip 

Figure 1.  Cicadas considered in the study with one of their removed forewings displayed to the right. Images: 
(a) the species used in the study from top to bottom: Megatibicen dealbatus, Cacama valvata, and Tibicen duryi, 
(b) the characteristic parts and dimensions of a cicada’s wing.

Table 1.  Cicada wing and body dimensions.

Dimension Cicada 1 Cicada 2 Cicada 3

Body length, Lb, mm 33.7 26.6 27.1

Body width, Wb, mm 16.2 13.2 10.5

Wing length, Lw, mm 44.6 35.3 27.4

Wing width, Ww, mm 16 11.6 9.6

Costa and subcosta merging point location, Lm, mm 24.5 19.3 16.0

Distance from the wing root to the farthest vein, Lv, mm 43.3 32.3 27.1

Distance from the wing root to the location of the wing width measurement, Lww, mm 22.3 19.0 16.9

Body volume, Vb,  mm3 4630.8 2426.8 1564.4

Wing area, Sw,  mm2 560.5 321.6 206.6
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and is located within the area marked by yellow line in Fig. 3b. The costa tip is rigid and persists along the lead-
ing edge. Although measurements of the tip dimensions were not possible everywhere along the wing leading 
edge, it appears that the tip tends to become wider and shorter in the direction from the wing root to the costa 
and subcosta merging point and then becomes again more pointed towards the wing tip.

Since the cross sections of veins inside the wing membrane tend to be circular (purple circle in Fig. 3c), the 
shape of the cicada wing leading-edge cross section is likely to be a response to aerodynamic forces experienced 
by the wing during flight. It is interesting to note that this shape is very different from that of the leading edge 
of airfoils, which are cross sections of man-made wings and blades. The airfoil leading edge usually has a simple 
smooth  shape32–38 that can be approximated by a single circle or ellipse similar to the costa shape (blue line in 
Fig. 3a) without its tip.

We measured dimensions of the costa, subcosta, and costa tip along the leading edge (where possible) in 
the three wings. These are the total height of the leading edge, Ht , heights of the costa, Hc , and the costa tip, 
Hct , widths of the costa, costa tip, and subcosta: Wc , Wct , and Ws . The subcosta height, Hs , was calculated as the 
difference between Ht and Hc.

Data were also collected for the wall thicknesses of the costa and subcosta: Tc and Ts . Additional information 
on the variation of the wall thickness along the wing can be obtained by considering the difference of the vein 
outer and inner perimeters. For this reason, outer and inner perimeters were also measured for the costa and 
subcosta. The perimeter data were converged to equivalent diameters,Dco and Dci for the costa and Dso and Dsi for 

Figure 2.  Cross sections of the Cicada 1 wing leading edge at different locations.

Figure 3.  The Cicada 1 wing leading-edge cross section. Images: (a) a cross section with the costa and the 
subcosta approximated by ellipses (blue and green, respectively), (b) a cross section with the costa tip located 
within the area marked by yellow line, (c) a cross section with the marked internal vein (purple circle).
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the subcosta, with indices o and i corresponding to “outer” and “inner” values, where D is defined as D = P/π 
(here, P is any perimeter). Figure S5 shows the measured dimensions and Supplementary Tables S1–S4 online 
provide the data for these parameters.

Epistemic uncertainty in all measurements presented in this paper is due to natural asymmetries present in 
organic bodies and those caused by the process of separation of wings from the bodies affecting the wing root 
conditions, body drying, wing rehydration and processing. However, this uncertainty does not prevent extracting 
the common features that can be recognized in the three wings of different cicada species including the shape of 
the wing leading-edge cross section. Such features would be statistically impossible events as accidental mutations 
in randomly picked specimen from 3 different species. The following section provides discussion of our findings.

Discussion
In aerodynamics, non-dimensional parameters are normally used. This is the approach adopted in the current 
study as well. Several such parameters were identified in the study and are presented in Table 2. They were selected 
based on their numerical values in individual cicada wings, which deviate less than 10% of their average values 
for the three cicadas.

In the table, all deviation values are absolute. The cicada body volume, Vb , and the wing area, Sw , were 
approximated as those of an ellipsoid and an ellipse, respectively (Table 1), with their major and minor axes 
being the body/wing length and width; hw is the nominal thickness of the wing membrane introduced for the 
unit’s consistency and assumed to be the same for all cicadas. The wing leading-edge cross-section area, St , was 
calculated as the sum of the two veins areas: St = Sc + Ss . The vein area was approximated as by an ellipse using 
the vein height and width as the lengths of the major and minor axes, respectively.

We considered the evolution of the leading edge cross section dimensions along the wing with respect to 
the leading-edge projection on the wing length axis, x. All dimensions and respective locations along x were 
normalized by the wing length. The wing was partitioned into several sections along the axis: Root, Medial, 
Lateral (Lateral I and Lateral II for Cicada 1), and Tip, in the direction from the wing root to the wing tip (Sup-
plementary Fig. S2 online), to facilitate the discussion. The costa and subcosta merging point was located in the 
wing Lateral (Lateral I for Cicada 1) section.

The heights and widths of the costa and the subcosta vary differently in the wing Root section of different 
cicadas (Fig. 4a). Nevertheless, general tendencies can be recognized even in this section; the costa height is 
larger and the costa width is smaller than the corresponding dimensions of the subcosta (Fig. 4a). The differences 
between the costa and subcosta heights and widths tend to reduce away from the insect body, with the width 
changing more than the height in the wing Medial section. In fact, the costa and subcosta heights are close to 
each other in this wing section.

In the proximity of the costa and subcosta merging point, the widths of the costa and the subcosta are approxi-
mately equal to each other and so are their heights. That is, the veins tend to restore their circularity to merge. 
The width value, where Wc = Ws , can be estimated as 4.0% of the wing length for the three cicadas. The height 
value, where Hc = Hs , varies more for the three wings, in the range between 3.0% to 4.3% of the wing length.

After the costa and the subcosta have merged, the costa height and width continue to reduce, but the reduc-
tion slows down in the wing Tip section. At the location closest to the wing tip, values of the two parameters are 
in the ranges of 1.5–3.0% and 1–1.3% of the wing length for the height and width, respectively.

Although the costa width and height reduce individually towards the wing tip, their ratio grows from the 
costa and subcosta merging point towards the wing tip (Fig. 4b). This is a common feature in the cicada wings. 
Similar tendency is observed when moving from the merging point to the insect body: Hc/Wc grows again, but 
somewhat slower (Fig. 4b). In the Lateral and Tip parts of the wing, the ratio Hc/Wc and dependence on x/Lw 
are close for the three cicadas. In the Root and Medial section, the ratio variation with x/Lw is similar for the 
three cicadas, but there is a noticeable scatter in the values for the three wings.

In contrast, the ratio Hs/Ws for the subcosta changes little before the subcosta is absorbed into the costa 
(Fig. 4c), with the ratio close in the three cicada wings. The data also demonstrate that in the subcosta, the width 
is generally larger than the height everywhere except in the proximity of the costa and subcosta merging point. 
The reverse tendency is observed for the costa, that is, its height is generally larger than the width everywhere 
except again in the proximity of the costa and subcosta merging point.

Overall, it is worth repeating that the circularity of the two veins’ cross sections appears to be of particular 
importance for the two veins to merge. The elliptic shapes and their orientation are of importance when moving 
away from the merging point in both directions: toward the wing tip and toward the insect body.

Table 2.  Ratios with the close values in the three cicadas wings.

Ratios Cicada 1 Cicada 2 Cicada 3 Average value Max deviation, %

Ww/Lw 0.36 0.33 0.35 0.35 5.7

Vb/Sw 8.26hw 7.50hw 7.57hw 7.80hw 5.9

Lm/Lw 0.55 0.55 0.58 0.56 3.4

Lv/Lw 0.97 0.92 0.99 0.96 4.2

Ww/Wb 0.48 0.50 0.39 0.45 6.5

max St/Sw 0.0141 0.0129 0.0129 0.0133 6
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The ratio of the tip height to its width, Hct/Wct , reduces in the direction from the insect body toward the 
costa and subcosta merging point (Fig. 4d), with the tip height twice as large as the tip width close to the insect 
body, but the tip width twice as large as the height in the merging point proximity.

The ratio of the costa tip and costa heights, Hct/Hc , varies little along the wing. There is a small reduction in 
its value in the wing Root part in the direction toward the costa and subcosta merging point, which is similar in 
the two wings (no such data are available for the third wing). In the Medial part, the ratio value can be approxi-
mated as constant for the three cicadas in the range between 0.3Lw and 0.5Lw (Fig. 4e). Less scatter is observed 
when the costa tip height is normalized by the total leading edge height: Hct/Ht , with the ratio average value of 
0.2Lw in both the Root and Medial parts of the three wings (Fig. 4f).

When considering data for the costa tip width, results for the ratio Wct/Wc (Fig. 4g) are similar to those for 
the ratios Wct/Ws and Wct/Ht (Fig. 4h). That is, the costa tip width with respect to these parameters slightly 
increases through the wing Root section, but changes little in the wing Medial part. When Wct is normalized by 
the costa and subcosta widths, Wct/Wc and Wct/Ws , the values were found to be common for the three cicadas: 
0.5 and 0.4, respectively.

All widths and heights used in Fig. 4 are also shown in Supplementary Fig. S6 online normalized by the wing 
length to complement information above. When looking at the behavior of the costa tip width and height (open 

Figure 4.  Ratios between the leading edge characteristic heights and widths along the wing in the direction 
from the wing root ( x/Lw = 0 ) to its tip ( x/Lw = 1).The boundaries of the wing Root, Medial, Lateral, and Tip 
sections as shown correspond to x/Lw = 0.25, 0.45, and 0.75, approximate values for the three cicadas. Color 
scheme: black – Cicada 1, blue – Cicada 2, red – Cicada 3. Symbols in (a): open—Hs/Hc , closed—Ws/Wc.
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black circles in Supplementary Fig. S6 online), we notice that in the wing Medial section, both parameters change 
little. The average value of Wct/Lw is 0.019 ±0.003 and characteristic of all wings in this wing section. The same 
cannot be said about Hct/Lw , whose values differ noticeably in the three wings.

We considered many other ratios that include the costa, subcosta and costa tip widths and heights, but found 
them less useful in highlighting common tendencies in the wings of different cicadas.

The evolution of the costa and subcosta wall thicknesses along the wing is similar and so are their values (Sup-
plementary Fig. S7 online). The larger the wing dimensions, the larger the costa and subcosta wall thicknesses 
in the wing Root section. In the Medial and Lateral sections, the costa wall thickness changes little among the 
three cicadas, in the range of 0.001 Lw – 0.004 Lw , with the average value of 0.003 Lw . The data for the subcosta 
wall thickness in this wing section are more scattered. The difference between the vein outer and inner perim-
eters (represented by the equivalent diameters): �Dc = Dco − Dci and �Ds = Dso − Dsi for the costa and the 
subcosta, respectively (Supplementary Fig. S7 online), provides additional insight into the variation of the costa 
and subcosta wall thicknesses along the wing. These values are less scattered than those for the wall thicknesses 
and they generally support observations based on the data of direct wall thickness measurement. That is, the 
costa and subcosta wall thicknesses reduce towards the wing tip. Outside the wing Root section, the difference 
in the subcosta and costa wall thicknesses is not significant. In addition, the perimeter data show that outside 
the wing Root section, the differences in wall thicknesses among the three wings are not significant and tend to 
converge to the same value for the costa and the subcosta in all wings in the proximity of the costa and subcosta 
merging point, which can be estimated as 0.005 Lw . Since the costa and subcosta shapes in this location also tend 
to become circular, the relation between  �D = �Dc = �Ds = 0.005Lw and the wall thickness T = Tc = Ts can 
be established as T = �D/2 = 0.0025Lw , which is in close agreement with values of Tc and Ts close to the costa 
and subcosta merging point.

Summary
The study revealed in the first time the shape of the leading-edge cross section of a cicada’s wing, analyzed its 
variability along the wing, measured characteristic dimensions of the shape at various locations along the wing, 
and identified multiple similarities in this shape among the wings of three different cicada species. The presented 
results will enable future research of aerodynamic effects of the leading-edge cross-section shape of a cicada’s 
wing. We also hope that our research will (1) motivate similar studies on the leading edge of the wings of other 
insects to facilitate their comparative analysis and (2) stimulate collection of data of the dimensions of insects’ 
bodies and wings along with their masses by a broader community of entomologists and enthusiasts to advance 
our understanding of insect flight.

Data availability
Data are available in the main text and in the Supplementary Materials online.
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