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Electromagnetic microwave 
generation by acoustic vibrations 
gives rise to nanoradiophotonics
M. A. Shevchenko1, M. A. Karpov1, A. D. Kudryavtseva1*, D. V. Rozinskii2, N. V. Tcherniega1 & 
S. F. Umanskaya1 

The development of new methods for generating pulsed electromagnetic microwave radiation is 
currently an actively developing area of research. Schemes for microwave radiation generation with 
optical pumping are of great interest. In this paper we propose and experimentally demonstrate 
principally new method for photonic generation of microwave electromagnetic radiation. This method 
is based on the use of radiation of charged submicron particles oscillating at their own acoustic 
frequency. Laser radiation of the optical range implements an effective buildup of acoustic vibrations 
of submicron particles forming the system under study, according to the Raman mechanism.

One of the most actual problems of modern radio-photonics is the development and creation of systems that 
make it possible to interface optical circuits with microwave  devices1,2. Such conjugation allows to expand signifi-
cantly the spectrum of functional capabilities of microwave systems operating in the gigahertz frequency range. 
Great interest in such systems, as a rule, is associated with the possibility of their application for radar tasks. But 
their applications have been also actively developing in several other areas, both purely practical, such as the 
creation of wireless and satellite networks, signal processing and visualization systems, and in tasks related to 
the solving fundamental physical problems in astrophysics, precision spectroscopy and  optomechanics3–5. For 
this purpose a lot of methods for effective microwave generation are being developed. Despite the large number 
of existing classical microwave generators such as the klystron, traveling wave tubes, gyrotrons, backward wave 
oscillators and  others6, development of new types of devices allowing the generation of microwave radiation is a 
very urgent task today. The focus is on improving the spectral, energy and temporal characteristics of radiation, 
as well as reducing the cost of the devices themselves. A special place among them is occupied by methods based 
on using a dual wavelength laser source with two wavelengths separated by a microwave  frequency7,8.

The aim of this work was to demonstrate experimentally the possibility of experimental implementation of 
the generation of pulsed electromagnetic radiation in the microwave range in a system of submicron particles 
with optical pumping. The main idea, experimentally realized in this work, is to use natural acoustic vibrations of 
nanoscale and submicron particles with a charge or polarized in an external field as a source of microwave elec-
tromagnetic radiation with frequency coinciding with acoustic one. The spectrum of natural acoustic frequencies 
of submicron particles lies in the gigahertz range, and of nanoscale particles in the terahertz range. To calculate 
the eigenvalues of the acoustic frequencies in the case of submicron particles, we use the approach proposed in 
the works of  Lamb9 and currently actively used for the analysis of low-frequency Raman scattering (LFRS)10,11. 
For the case of liquid droplets of nano and submicron size, the so-called “droplet model” is used, which gives 
frequency values somewhat lower than the Lamb model. For experimental verification of the applicability of a 
model, as a rule, the method of LFRS of light is used, which makes it possible to obtain the values of the natural 
frequencies of acoustic vibrations considering the matrix in which the particles are located. A stimulated analogue 
of the LFRS process—stimulated low-frequency Raman scattering (SLFRS)12,13 of light can also be used to obtain 
information on the values of acoustic frequencies. SLFRS can also be used to generate acoustic vibrations of the 
studied system of nano or submicron particles. Note that in the case of SLFRS, the system of nano or submicron 
particles performs coherent acoustic vibrations, and their phasing is carried out through the re-emission field.

Samples. In this work synthetic opal matrices were used as the active medium. Opal matrix is a material 
with spatial modulation of both optical and acoustic properties on a scale of several hundred nanometers. It has 
photonic band gaps in the visible spectral range for modes propagating in certain directions. The total photonic 
band gap with a zero density of photonic states can be realized in inverted opal matrices with a refractive index 
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contrast greater than 2.85. Nevertheless, opal matrices are convenient to use for studies of nonlinear interaction 
of light radiation with matter due to the possibility to determine easily the position of band gaps and control 
their properties. The voids between quartz spheres in opal matrices are octahedral and tetrahedral in shape. By 
filling these cavities with liquids with different refractive indices, one can control the parameters of the photonic 
band gap (its position in the spectrum and contrast) and increase the efficiency of nonlinear processes due to a 
change in the density of photon states near the edge of the band  gap14,15.

Three-dimensional opal matrices were grown by the method of slow crystallization of a monodisperse colloid 
solution of α-SiO2 globules synthesized by the modified Stöber  method16. The resulting sediment after drying in 
air was annealed at 125 °C for 1 h and then at 750 °C for 2 h. The sample of the opal matrix had dimensions of 
5 × 5 × 4 mm. The (111) plane of the face centered cubic lattice (FCC) of the opal matrices corresponded to the 
surface of the natural growth of the photonic crystal and was characterized by the absence of visible defects at a 
scale comparable with the spot of laser radiation on the surface of the sample (in the experiments on microwave 
generation laser beam diameter in the focal plane was about 5 µm). Synthetic opal matrices consist of close-
packed amorphous silicon dioxide spherical particles with a characteristic size of 200 to 400 nm. We used opal 
matrices with the diameter of silicon oxide globules close to 270 nm. The standard deviation of the size distribu-
tion of globules was about 5%.

SEM image of the surface of the opal matrix used is shown in the inset in Fig. 1.

Methods of SLFRS study and results. SLFRS in opal matrices can be used to determine the values of the 
frequencies of the natural acoustic vibrations of quartz globules. Under the influence of powerful laser pulses in 
the visible range, coherent excitation of acoustic vibrations in the system is possible with frequencies lying in the 
gigahertz range and manifesting themselves in the SLFRS spectra because of modulation of optical radiation by a 
low-frequency component. For SLFRS excitation ruby laser (λ = 694.3 nm, τ = 20 ns,  Emax = 0.3 J, Δν = 0.015  cm−1, 
divergence 3.5 ×  10–4 rad) was used. An experimental setup for determining the frequencies of natural acoustic 
vibrations of synthetic opal matrices is shown in Fig. 1.

SLFRS spectra were registered by Fabry–Perot interferometers with different base (distance between mirrors) 
which gave possibility to change the range of dispersion from 5 to 30 GHz. Thus, we could register both lines 
with small frequency shift (0.5 ÷ 2 GHz) and larger frequency shift (10 ÷ 20 GHz).

While the energy of the laser pulse exceeded the certain threshold value (0.01 GW/cm2) SLFRS was excited. 
Forward and backward scattered first Stokes component with frequency shift about 11.5 GHz corresponding 
to the quadrupolar mode of the silica sphere was registered. Maximum conversion efficiency of laser radiation 
into a scattered wave was 43%. When the intensity of the laser pulse reaches a value of 0.03 GW/cm2, lower-
frequency components of 0.75 and 1.5 GHz appear in the spectrum of the scattered radiation both in forward 
and backward directions (Fig. 2).

So, the acoustic spectrum of the sample under investigation which was measured by SLFRS consists of the 
following spectral lines—11.5 GHz, 0.75 GHz and 1.5 GHz. Let us compare the experimentally obtained values 
of the natural frequencies of the system with the calculated values. Free isotropic elastic sphere eigenfrequen-
cies definition was realized  in9. The solution of the equation of motion (1) gives two types of acoustic modes: a 
spheroidal (SPH) and a torsional (TOR).

Figure 1.  Experimental setup. 1—laser; 2, 4—transparent glass beam splitters with transmission to reflection 
rate 92:8; 3—the system for electromagnetic radiation parameters control; 5—mirror; 6, 9, 11—focusing 
systems; 7, 12—Fabry–Perot interferometers; 8, 13—digital cameras; 10—sample. Inset—SEM image of the opal 
matrix surface.
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where D is a lattice displacement vector, μ, λ-Lame’s constants, and ρ is the mass density. The equations obtained 
for spheroidal modes  are10:

and for torsional modes:

where vl , vt—longitudinal and transverse sound velocities, a—sphere radius, l—orbital angular momentum quan-
tum number, jl—spherical Bessel functions of the 1st kind, vlq = vtQ = ω.

The spheroidal modes occur with a change in volume, while torsional modes occur with a constant density. 
The eigenfrequencies values are inversely proportional to the particle radius R

where V is the sound velocity, and ξ is a dimensionless parameter depending on the relation between the longi-
tudinal and transverse sound velocities.

The eigenfrequencies for both SPH and TOR modes are described by orbital angular momentum quantum 
number l and harmonic n. Only the breathing (l = 0) and quadrupolar (l = 2) spheroidal modes are Raman  active16. 
For our sample the calculated frequencies are shown in Table 1.

Point out that taking into consideration only eigen vibrations of the free quartz globule the frequencies 
11.4 GHz and higher may appear in the spectra of low-frequency Raman scattering of light. Note that it would be 
possible to observe the torsional modes by Raman scattering if the shape of the particle was slightly asymmetric 
due to the presence of an odd  deformation17. The presence of contacts existing in a real system of a synthetic 
opal matrix leads to the appearance of lower frequencies in the acoustic spectrum. An increase in the number 
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Figure 2.  Spectrum of the forward-scattered SLFRS obtained by Fabry–Perot interferometer with the range of 
dispersion (a) 30 GHz (b) 5 GHz.

Table 1.  Eigenfrequencies of the quartz globules forming a synthetic opal matrix.

l = 0 l = 1 l = 2 l = 3

Spheroidal 16.5 GHz 14.1 GHz 11.4 GHz 16.9 GHz

Torsional 25.1 GHz 10.9 GHz 16.8 GHz
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of contacts leads to an increase in the number of acoustic modes in the system. Using Finite Element Method 
eigenfrequencies were calculated for the following cases: one free sphere, two connected spheres (1contact), 
sphere with two contacts and sphere with 12 contacts (as in FCC opal grid) as it is shown in Fig. 3. The radius 
of a sphere was 135 nm. In the case of one free sphere the lowest spectral component with frequency 11.4 GHz 
corresponds to the quadrupolar (l = 2) mode. When a sphere has contact with another sphere the splitting of each 
spectral peak is seen and new components appear in the low frequency region due to collective motions. With 
increasing of contacts up to 12, each peak becomes much broader and spectral bands are produced.

Microwave generation registration. The manifestation of the acoustic eigenfrequencies in the spectrum 
of SLFRS indicates the possibility obtaining stimulated generation in the microwave range by the mechanism for 
example specified in the  work18. It was shown that the possibility of electromagnetic field generation at phonon 
frequency at the process of stimulated Raman scattering (SRS) can be realized due to nonlinear polarization 
modulation by optical phonons. Considering that in the SLFRS process, due to the oscillations of nano or sub-
micron particles, their polarization is modulated, then, by analogy with the SRS process, it is possible to generate 
electromagnetic radiation at the frequencies of these oscillations. For submicron particles, the frequencies of 
these oscillations lie in the gigahertz range, which corresponds to the microwave range of the electromagnetic 
spectrum. For microwave radiation registration the set up presented in Fig. 4 was used.

Figure 3.  Acoustic eigenfrequencies of the system consisting of 1, 2, 3 and 12 spheres.

Figure 4.  Experimental set up for microwave generation. 1—femtosecond laser, 2—beam splitter, 3—
photodiode, 4—oscilloscope, 5—spiral antenna, 6—parabolic mirror, 7—opal sample, 8—wideband horn 
antenna, 9—spectrum analyzer.
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Titanium-sapphire terawatt femtosecond laser radiation (800 nm, 35 fs laser pulse duration, peak energy 
50 mJ, 10 Hz repetition rate) is focused by a parabolic mirror with focal length f = 500 mm into the opal matrix 
with dimensions of 5 × 5 × 4 mm. Parabolic mirror has been used because it gave possibility to obtain very sharp 
focusing of the exciting light on the sample (laser beam diameter in the focal plane was about 5 µm). For micro-
wave radiation registration two types of detectors were used: a wideband horn antenna connected to a spectrum 
analyzer and Archimedean spiral antenna connected to oscilloscope. We used an oscilloscope with 4 GHz band-
width, (DSO90404A) and spectrum analyzer with measurement range 9 kHz…40 GHz (8564E) equipped with 
low noise wideband RF-amplifier 0.3…18 GHz, 20 dB (Anritsu G3H105). Before measurements an antenna’s 
frequency response in this geometry was characterized (Fig. 5). In all next measurements we normalized achieved 
spectra to this preliminary transmission gain curve. Before an experiment we always characterized an antennas’ 
frequency response with calibrated RF generator in the same geometry as in our experiments. Any background 
noises or frequencies never were registered. When in the experiments we rotated antenna and shifted its axis 
from the line between sample and antenna’s axis the signal from the sample disappeared. To be sure that the 
signal registered with antennas is emitted by the sample we put a metal foil between the sample and antenna. In 
this case there was no signal.

Laser beam was partially splitted by beam splitter and routed to p-i-n photodiode for external triggering an 
oscilloscope and spectrum analyzer.

When using a quartz glass sample of the same size instead of a synthetic opal matrix, the signal in the micro-
wave range registered by a horn antenna had the form shown in Fig. 6.

In the case of using a synthetic opal sample, the radiation intensity in gigahertz range increased by about an 
order of magnitude. The form of the spectrum also changed. Some typical waveforms recorded in our experi-
ments obtained using a spiral antenna and the calculated power spectrum using the Fourier transform up to 4 
gigahertz are shown in Fig. 7.

Note the presence of several peaks in the region from 0.4 till 3 GHz which can be assigned to the acoustic 
frequencies obtained because of the calculation, considering the presence of contacts in the opal matrix. Typi-
cal power spectrum registered by wideband horn antenna in experiments is shown in Fig. 8. It can be seen that 

Figure 5.  Frequency response of a horn (a) and a spiral (b) antennas.

Figure 6.  Typical EM emission power spectra registered by a wideband horn antenna in the case of laser 
breakdown in air and quartz glass.
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Figure 7.  Results of the microwave emission study in opal matrix arising under laser impact; (a) typical 
oscillogram from spiral antenna; (b) power spectrum from spiral antenna.

Figure 8.  Typical EM emission power spectra registered by a wideband horn antenna.
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several peaks appear in the emission spectrum, the most intense ones which coincide with SLFRS measurements 
are 0.75, 1.5, and 11.5 GHz.

Discussion
Studies of the radiation of charged or being in external electric field submicron or nanoscale particles oscillating 
at its own acoustic frequency are of great interest both from the point of view of understanding the physics of 
such fundamental and beautiful physical effects as ball lightning and St. Elmo’s  lights19, as well as for practical 
use in radar sensing systems. The presence of electromagnetic radiation from  thunderclouds20 can be associated 
with the oscillations of charged submicron water droplets, the oscillation frequencies of which are determined by 
their  morphology21. The frequency spectrum and radiation intensity of such systems are determined primarily 
by the size distribution of droplets. Note that any system of submicron or nanoscale particles with their own (or 
induced) dipole moment can emit at their own vibrational frequencies that satisfy the corresponding selection 
rules. It is quite difficult to separate the contribution to the radiation process in the microwave range of an oscil-
lating submicron particle with an induced dipole moment from the contribution to the radiation of a particle of 
the same morphology but with a charge. It is obvious that significantly improve the efficiency of such radiation 
is possible in the case of the phasing of the oscillations of the particles constituting the investigated system. In 
the case of molecular systems such phasing is possible by stimulated Raman scattering. In the case of submi-
cron particles while using nanosecond laser pulses the phasing of their acoustic vibrations in gigahertz range 
can be realized in the process of SLFRS via ponderomotive  interaction22. Note that effective direct excitation of 
intrinsic acoustic vibrations of submicron particles while excited by femtosecond laser pulses may occur by the 
mechanism of impulsive stimulated Raman scattering (ISRS)23–25. For efficient generation of electromagnetic 
radiation by a system of submicron particles, systems with close packing and monodisperse in size are most 
suitable. Synthetic opal matrices (or systems with an opal structure) make it possible to obtain the maximum 
density of monodisperse particles in size in the range from 200 to 400 nm. Intense acoustic vibrations of quartz 
globules can lead to the breaking of siloxane bonds that were formed during the sintering operation of samples 
during their hardening. Breaking the bonds in turn leads to the formation of a charge on the surface of quartz 
globules. The other way for charge formation on the globules is the well-known effect of charge formation on 
contacting quartz  surfaces26. Thus, the result of the interaction of pulsed laser radiation with a synthetic opal 
matrix is the formation of a system of charged submicron particles oscillating at the frequencies of their own 
acoustic vibrations. Such a system is a source of electromagnetic radiation at frequencies corresponding to its 
eigen acoustic frequencies.

Conclusion
In conclusion, it should be noted that for the first time microwave radiation was generated in synthetic opal 
matrix via optical pumping. Several natural acoustic frequencies of globules forming synthetic opal coincide 
with the frequencies of the registered microwave signal. Acoustic frequencies of the sample used were measured 
experimentally by SLFRS and their values were verified by numerical calculations. In our opinion, the method 
of obtaining the generation of microwave radiation by optical pumping in systems of submicron and nanoscale 
particles is very promising for the creation of microwave and terahertz sources. The specific spectral range of the 
electromagnetic radiation generation is determined by the value of the natural acoustic frequencies of the used 
nano- and submicron particles, which lie in the range from gigahertz to terahertz, respectively.
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