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Novel approach to modeling 
high‑frequency activity data 
to assess therapeutic effects 
of analgesics in chronic pain 
conditions
Zekun Xu1, Eric Laber1, Ana‑Maria Staicu1 & B. Duncan X. Lascelles2,3,4,5* 

Osteoarthritis (OA) is a chronic condition often associated with pain, affecting approximately fourteen 
percent of the population, and increasing in prevalence. A globally aging population have made 
treating OA-associated pain as well as maintaining mobility and activity a public health priority. 
OA affects all mammals, and the use of spontaneous animal models is one promising approach 
for improving translational pain research and the development of effective treatment strategies. 
Accelerometers are a common tool for collecting high-frequency activity data on animals to study the 
effects of treatment on pain related activity patterns. There has recently been increasing interest in 
their use to understand treatment effects in human pain conditions. However, activity patterns vary 
widely across subjects; furthermore, the effects of treatment may manifest in higher or lower activity 
counts or in subtler ways like changes in the frequency of certain types of activities. We use a zero 
inflated Poisson hidden semi-Markov model to characterize activity patterns and subsequently derive 
estimators of the treatment effect in terms of changes in activity levels or frequency of activity type. 
We demonstrate the application of our model, and its advance over traditional analysis methods, 
using data from a naturally occurring feline OA-associated pain model.

To anyone who suffers chronic and persistent musculoskeletal pain, the negative impact on their quality of life 
is constant. In the U.S., more than 100 million people (nearly one third of the population) suffer from persistent 
pain with an associated economic cost of $600 billion USD annually; this cost exceeds that of cardiovascular 
disease, cancer, and diabetes combined1. The most significant contribution to this cost comes from the impact of 
osteoarthritis (OA) and other musculoskeletal pain1. OA results in the deterioration of all components of joints2 
and is often associated with pain. OA-associated pain results in significant morbidity and economic costs3; these 
costs, an aging population, and the growing knowledge of the health and psychological benefits of maintaining 
mobility and activity, have made the treatment of OA and the associated pain a public health priority4–8. However, 
recent review papers show that the current practice of translational biomedical research is not producing new 
therapeutics for pain control in humans9–11. While these reviews highlight the lack of translation of basic research 
into new approved therapeutics for treatment of persistent pain in humans, they also discuss how the processes 
involved could be optimized to improve the chances of successful translation, including discussion of improved 
models and more relevant outcome measures. As OA and associated pain affects all mammals, the study of OA 
in non-human animals is both important in its own right (to increase the function and quality of life in affected 
animals) and for its ability to generate new knowledge about the treatment of OA in humans. Recently, the use of 
naturally occurring OA in pet animals has been suggested as a means of helping to improve translational research 
for the development of analgesic therapeutics in humans12. A significant advantage of naturally occurring disease 
in pets as a model of human conditions is the variation and complexity of the model. Measurement of spontane-
ous activity as an outcome measure may be particularly relevant to translational work as spontaneous activity 
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may relate to spontaneous pain—something that has been difficult to model in animals. Just as the variability in 
naturally occurring disease is an advantage, the variability in clinically meaningful outcome measures such as 
activity is a challenge. This could be the reason for the lack of use of activity as a functional outcome measure 
in pain studies in humans, despite the importance of mobility and activity to quality of life7. The work we are 
reporting is motivated by our involvement in studies of OA-associated pain and the treatment effects on mobility 
and activity in domestic cats13,14. We posit that the methodology we describe presents a significant advance in 
how such activity data are analyzed when used as an outcome measure and has relevance to both large animal 
models and clinical evaluation in humans.

The current study uses data from a randomized cross-over study designed to evaluate the effectiveness of 
meloxicam, a nonsteroidal anti-inflammatory drug (NSAID), in owned, pet adult domestic cats with OA-asso-
ciated pain15. In this study, cat activity patterns were measured at one-minute intervals using an omnidirectional 
accelerometer16. Accelerometer readings are integers quantifying the intensity of change in acceleration over the 
preceding, pre-defined epoch. Thus, for each subject, the accelerometer produces high-frequency, integer-valued, 
longitudinal data. The main goal of the present study is to re-evaluate the use of and analysis of activity data 
to determine whether meloxicam is effective in reducing OA-associated pain. We aimed to use the objectively 
measured physical activity recorded via accelerometers and analyze these data using a novel zero-inflated hid-
den Poisson semi-Markov model. The primary hypothesis of the present study is that meloxicam reduces OA-
associated pain and this manifests through increased activity during more intense activity during the treatment 
period relative to the placebo period. One common approach for the analyses of such data is to aggregate the 
observed accelerometer data within each subject and treatment condition and subsequently to use an ANOVA 
to compare treatment with control15–17. Alternatively, one could aggregate the data over a shorter time interval, 
e.g., a day, and model the aggregated process using methods for smooth longitudinal data18. However, such 
aggregation can obscure changes in behavior patterns which do not produce a large difference in mean activity. 
For example, an effective treatment that reduces pain may lead to higher quality rest (more zero activity read-
ings), but also more high-intensity movement (more high activity readings), potentially producing no change 
in mean activity. High volume activity data has the potential to be a more sensitive outcome measure, but thus 
far, analysis of such complex, high-volume multidirectional effects on activity, that takes into account the wide 
variation in individual activity patterns, has not been developed.

We propose modeling the minute-by-minute accelerometer data using a hidden semi-Markov model. Such a 
model is scientifically appealing in that the hidden states can be viewed as corresponding to latent (unobserved) 
activities, e.g., running, walking, resting, etc., and state duration corresponds to the length of time a subject is 
engaged in a given activity. Latent state-space models are common in the analysis of mobility data measured using 
wearable computing19–23. In the context of treatment evaluation, hidden Markov models have also been used to 
model latent health states and subsequently conduct inference for activity patterns in terms of transitions among 
these states and activity patterns within each state24,25; however, previous applications have considered relatively 
coarse time scales, e.g., daily or weekly measurements, and subsequently low data volume. In the current applica-
tion, subject activity is measured every minute and as a result each subject has more than one-hundred thousand 
measurements during the observation period. Such high volume allows for flexible modeling and estimation 
of distinct parameters for each subject; this is important as activity patterns can vary widely across subjects.

In the current example of the spontaneous cat OA-pain model, more than 70% of the observations are zero 
and therefore we propose a zero-inflated hidden Poisson semi-Markov model with patient-specific intensities 
in each latent state. The proposed model is an extension of a zero-inflated Poisson hidden Markov model26,27 to 
the hidden semi-Markov model framework that allows for distinct state duration densities28–30. Furthermore, 
to facilitate computationally efficient estimation with high-frequency data, we propose a two stage estimation 
procedure31,32 that can be used with millions of observations without specialized computing resources.

The data for this work come from a study of the treatment effects of meloxicam (a non-steroidal anti-inflam-
matory drug) in a feline model of spontaneous OA-associated pain15,33. This study was a randomized, double-
blind, placebo-controlled, crossover study to evaluate the effectiveness of meloxicam treatment to improve 
mobility and function in owned, pet cats with OA-associated pain. This study was approved by the Animal Care 
and Use Committee (Protocol # 11-102-O) at North Carolina State University College of Veterinary Medicine 
(NCSU-CVM), and written owner consent was granted in each case following verbal discussion of the study.

Results
Figure 1 displays the daily activity profile for a typical subject. There are multiple prolonged intervals in which 
there is no movement. In total, more than 70% of the minute-by-minute activity counts are zero; furthermore, 
the non-zero counts are heavily right-skewed owing to infrequent but high-intensity activities. Thus, such cat 
accelerometer data are heavy-tailed with an excessive proportion of zeros.

Figure 2 displays mean activity counts for each subject across each period of the study. In this figure, each gray 
line shows the mean activity count for a single subject in the study, and the black line shows the overall mean 
activity count for all subjects in their associated treatment group. The left panel shows data for the subjects that 
were randomized to meloxicam in the first treatment period, whereas the right panel shows data for the subjects 
that were randomized to placebo in the first treatment period. In both panels, one can see that the overall mean 
activity count is higher under meloxicam than placebo, but only marginally. A total of 41 out of 58 cats have a 
numerically larger mean activity count in the meloxicam period than in the placebo period. However, there is 
large between-subject variability. The standard errors for the group mean activity count at each treatment period 
range from 16.7 to 18.1.

We applied the proposed zero-inflated hidden semi-Markov model (detailed in the Methods section) to the 
longitudinal accelerometer data from this study of the treatment effect of meloxicam. We chose the number of 
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latent activity states to be six using minimum Bayesian information criterion (BIC) as our data-driven selection 
method. The covariates included in the model were: treatment status, weekend (yes/no), night (yes/no), sex, 
Body Condition Score (BCS), age, total OA score, and treatment sequence.

Table 1 displays the estimated treatment effects in terms of mean activity counts within each latent state. 
There are significant effects (p < 0.05) in latent states 4–6 suggesting that cats treated with meloxicam may have 
increased mean activity while engaged in more intensive activities (e.g., running, jumping, etc.). The effect size of 
the treatment on those more intensive activities ranges from 7.28 to 9.14%. Table 2 shows the mean proportion 
of time spent in each latent state estimated using the Viterbi algorithm34. It can be seen that the proportion of 
time spent in each activity is similar across the treatment and placebo periods. The proportion of time spent is 
each latent activity states is similar before and after the meloxicam treatment (Table 2); what significantly changes 
is the mean activity counts in more intense states (4–6), i.e., cats become more active in those intense activity 

Figure 1.   Left: Sample daily accelerometer data for a typical cat in the study of the treatment effect of 
meloxicam, showing the crepuscular pattern of activity expected in cats. Right: Histogram showing the 
proportions of time spent in different levels of activity during a 24 h period.

Figure 2.   Plots of the mean activity count over each period for each subject separated by treatment group. The 
dark line in each panel is the group mean activity count.

Table 1.   Summary of treatment effects (meloxicam vs. placebo) in each latent activity state in the increasing 
order of mean activity count. Actual activities represented in each state are unknown, but for instance, state 1 
may include resting and other activities with the lowest mean activity count, while state 6 may include jumping 
and other activities with the highest mean activity count. At significance level 0.05, there is significant positive 
treatment effect in state 4, 5, 6, i.e. higher level activity intensity states.

Parameter Estimate Standard error p value

State 1: odds of zero − 0.0299 0.0433 0.4899

State 1: mean activity count 0.0222 0.0181 0.2187

State 2: mean activity count 0.0444 0.0311 0.1538

State 3: mean activity count 0.0524 0.0318 0.0990

State 4: mean activity count 0.0914 0.0351 0.0091

State 5: mean activity count 0.0819 0.0235 0.0005

State 6: mean activity count 0.0728 0.0260 0.0051
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states (Table 1). The mean activity count for each subject in the placebo and meloxicam treatment period for 
latent state 4–6 is shown in Fig. 3.

Figure 4 shows a QQ-plot of the estimated quantiles using the fitted model and the observed quantiles of 
the activity counts. It can be seen that they follow each other closely and that there are no indications of serious 
lack-of-fit.

Discussion
We proposed a zero-inflated Poisson hidden semi-Markov model for activity data captured by accelerometer 
readings in a naturally occurring model of OA-associated pain. The proposed model can be used to characterize 
the impact of treatment on activity including changes in activity duration, intensity, and frequency. In the context 
of OA-associated pain, understanding such impacts is critical to fully understanding the effects of treatment on 
patient mobility and therefore quality of life.

Table 2.   Mean proportion of time spent in each decoded activity state. The latent states are in increasing order 
of mean activity count. Actual activities represented in each state are unknown, but for instance, state 1 may 
include resting and other activities with the lowest mean activity count, while state 6 may include jumping 
and other activities with the highest mean activity count. At significance level 0.05, there is significant positive 
treatment effect in state 4, 5, 6, i.e. higher level activity intensity states.

Activity state Meloxicam (%) Placebo (%)

State 1 83.6 84.5

State 2 5.5 5.3

State 3 4.5 4.3

State 4 3.4 3.3

State 5 2.1 1.9

State 6 0.9 0.8

Figure 3.   Mean activity count for each subject in the placebo and meloxicam treatment period for latent state 
4–6. The dark line in each panel is the overall mean activity count. The mean increase in the activity count is 
23.0, with a standard error of 7.2.

Figure 4.   Estimated quantiles based on fitted model versus observed quantiles. In both distributions, from the 
1st up to the 75th quantiles are zero. The rest of the quantiles also match well with each other, which indicates 
there is no lack of fit in the proposed model.
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Our method presents a significant advance in the analysis of therapeutic efficacy using activity counts as 
compared to the original analysis in Gruen et al15 as well as subsequent work in Gruen et al18. In Gruen et al15, 
the activity counts were averaged within each treatment period for each cat, and an ANOVA model was used 
to determine the effectiveness of meloxicam. Their analysis showed a non-significant increase (p = 0.31) in the 
activity counts among the cats that received meloxicam in the first treatment period. This may be due to the effect 
of data aggregation method, which can smooth away important effects and reduce statistical power. Gruen et al18 
aggregated the counts across days and then used functional data analysis methods to formally assess treatment 
effect. This method failed to identify a significant difference between normal and arthritic cats (p = 0.541) due 
to the same limitations discussed above.

In contrast, our proposed subject-specific method not only preserves the original data ‘as is’ but also accounts 
for the large between-subject variability. More importantly, our approach can analyze the conditional treatment 
effect in each activity state. Indeed, our model found that meloxicam significantly improves the mobility of cats 
in more intensive activities, while the activity patterns did not change in less intensive activities. Although an 
easy assumption is that the increase in more intense activities is beneficial, the clinical relevance of these find-
ings is, at present, unknown.

Our approach is relevant to humans. Cats, like people, show patterns of activity, with large periods of relative 
or absolute inactivity. Cats are generally crepuscular—that is, they show phasic patterns of activity, as do humans. 
Such zero-inflated patterned activity is thus common to cats and humans, and so our approach is relevant to 
human activity data. As the approach does not need to know what activity is being performed, it negates the 
need for algorithms to detect specific activities.

Future work could support our approach by evaluating concurrent video capture of moving subjects to verify 
that as more intense activities are being performed, the relevant latent states change. Additionally, research is 
needed to define the clinical relevance of the changes we have detected using the zero-inflated hidden Poisson 
semi-Markov model.

Our refinement of the analysis of high-volume activity data in this naturally occurring model of pain provides 
a clinically relevant outcome measure that can be used in naturally occurring models osteoarthritis in companion 
animals to provide highly relevant data on the potential efficacy of putative drugs prior to Phase II and III effi-
cacy studies in humans, thus improving the translational paradigm by optimizing the critical go/no-go decision 
prior to Phase II. Such sophisticated approaches to high-volume activity data have not been applied to humans 
and our approach also has relevance to the analysis of activity data in humans to better understand the impact 
of therapeutics in a more refined manner.

Methods
The original study was approved by the Animal Care and Use Committee (Protocol # 11–102-O) at North Caro-
lina State University College of Veterinary Medicine (NCSU-CVM), and written owner consent was granted 
in each case following verbal discussion of the study. The study was performed in accordance with the relevant 
guidelines and regulations. Full details of the study have been previously published15 and pertinent methodologi-
cal information is provided in Supplementary File 1.

A total of 66 subjects were enrolled in the original study of which 58 had available accelerometer measure-
ments from both arms of the cross-over design. Subjects were given placebo during the open label baseline period 
(Weeks 1 and 2). In the first blinded treatment period (Weeks 3, 4, and 5) half of the subjects were randomized 
to receive meloxicam and the remainder were randomized to receive placebo. At the end of the first blinded 
phase, subjects entered a three-week blinded washout (Weeks 6, 7, and 8) before switching treatments for the 
second blinded phase. All subjects wore an accelerometer (Actical) on their collar throughout the entire study, 
with the epoch set at 1 min, providing an activity count for every minute of the 11-week study for each subject.

Zero‑inflated Poisson hidden semi‑Markov model.  We assume that the observed data are of the form 
{(Wi, Zi

1, Xi
1, Yi

1, …, Zi
T, Xi

T, Yi
T)} and comprise n independent replicates of the trajectory (W, Z1, X1, Y1, …, ZT, 

XT, YT), where: W ∈ R
d denotes the baseline (pre-treatment) subject characteristics; T is a fixed time horizon; 

Zt ∈ R
p denotes environmental factors at t = 1, …, T; Xt ∈ R

q encodes treatment administered at time t = 1, 
… ,T; and Yt ∈ N denotes the integer accelerometer activity reading at time t = 1, … ,T. In our application, 
Zt ∈ {0, 1}2 comprises indicators coding period of day and weekend versus weekday, and Xt ∈ {0, 1}1 encodes 
treatment indicators (active versus placebo). While we develop our models allowing for rather general environ-
mental factors and treatment processes, having binary factors in our application makes it simpler to enforce 
a stochastic ordering on the distributions indexed by latent states which is important for interpretability and 
coherence of the fitted models, e.g., if one wants the latent states ordered by mean activity intensity within each 
subject and to have these latent states align across subjects. We model the evolution of the accelerometer data 
using a zero-inflated Poisson hidden semi-Markov model which develop in the remainder of this subsection.

Let Sti ∈ {1, . . . ,M} denote the latent state, i.e., the unobserved activity type, of subject i = 1, …, n at time 
t = 1, … ,T. At every single minute, each subject is assumed to be in one of the M latent activity states, with the 
convention that “1” represents a state where a low level of physical activity is typical; “2” represents a state where 
higher level activity is typical and so forth. The duration in each state is characterized by state-specific parameters 
and estimated from the data.

We assume the latent states evolve according to a semi-Markov model indexed by: (i) an ini-
tial state distribution, δm,i = P

(
S1i = m

)
 for m = 1, …, M; (ii) state duration distributions 

rm,i

(
v; xt , zt

)
= P(St+1

i = m, . . . , St+v
i �= m|Sti = m,Xt

i = xt ,Zt
i = zt) for v > 0, m = 1, … , M; and (iii) the 

transition probabilities Qi

(
m, l; xt , zt

)
= P(St+1

i = l|Sti = m, St+1
i �= m,Xt

i = xt ,Zt
i = zt) for m, l = 1, . . . ,M . 
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We model the initial state distribution nonparametrically using sample frequencies of the estimated latent states. 
We assume a multinomial logistic regression model for the transition probabilities so that

where dm,k,i and ̺m,k,i are unknown coefficient vectors for m, k = 1, …, M. We assume that the state duration 
distribution follows a latent accelerated failure time model so that.

where fm,i is a base-density corresponding to a null treatment condition (coded as xt ≡ 0 ) and cm,i , ηm,i are 
u n k n o w n  c o e f f i c i e n t  v e c t o r s  f o r  m  =  1 ,  …  , M .  We  f u r t h e r  a s s u m e  t h a t 
Yt
i ⊥

(
Z1
i ,X

1
i , S

1
i , . . . ,Z

t−1
i ,Xt−1

i , St−1
i

)
|
(
Zt
i ,X

t
i , S

t
i

)
 and that the accelerometer activity readings are distributed 

as.

when the subject is in the latent state 1, and

when the subject is in latent state m = 2, 3, …, M. Thus, the accelerometer readings are modeled as a zero-inflated 
Poisson with intensity function �ti : S × R

q × R
p → R+ and weight functions pti : S × R

q × R
p → [0, 1] for 

i = 1, …, n, t = 1, …, T. Furthermore, for each subject i, time t, and latent state m, we assume that these functions 
are of the form

where b0,k,i , b1,k,i , γk,i , k = 0, 1, …, M are unknown coefficient vectors. In our application, in which xt and zt are 
represented as binary vectors, we impose the constraints b0,m+1,i > b0,m,i , b1,m+1,i ≥ b1,m,i , γm+1,i ≥ γm,i for m = 1, 
…, M—1. These constraints ensure that the intensity functions of the latent states are monotone increasing, i.e., 
�
t
i (m+ 1, z, x) > �

t
i (m, z, x) for all z, x, and m.

The preceding model describes individual level accelerometer data as a function of evolving covariate and 
treatment information. The idea of using the framework of hidden Markov model to analyze physical activity 
data can also be seen in the recent work of Huang et al.35 and van Kuppevelt et al.36. However, the cat acceler-
ometer data we consider are much sparser than the human accelerometer data in their work, which motivates 
a zero-inflation component in our model. Moreover, we can include exogenous, time-varying variables like 
treatment period, night indicator, and weekend indicator in our model so as to explicitly address their effects 
on the activity patterns of cats. Our individual level model is a nontrivial extension of the zero-inflated Poisson 
hidden Markov model in the literature26,27, which not only allows for distinct state duration densities but also 
incorporates covariates and treatment in both transition probabilities and latent state durations.

To draw more general, i.e., population-level, inferences we model individual-level treatment effect parameters 
as functions of baseline subject information as follows. We assume that E(b1,m,i|Wi = w) = Ωm,0 +Ωm,1w , 
where Ωm,0 ∈ R

q and Ωm,1 ∈ R
q×d are matrices of unknown coefficients encoding treatment effect 

on the outcome for m = 0, 1, …, M. Similarly, we assume that E(cm,i|Wi = w) = Γm,0 + Γm,1w and 
E(dm,l,i|Wi = w) = Λm,l,0 +Λm,l,1w , where Γm,0,Λm,l,0 ∈ R

q and where Γm,1,Λm,l,1 ∈ R
q×d encode the effect 

of treatment on state duration and transition probabilities for m, l = 1, . . . ,M . The idea of aggregating individual-
level models to conduct population-level inference has been applied in other contexts including longitudinal 
and growth curve analyses31,37,38.

Estimation.  We estimate the subject-specific parameters using maximum-likelihood estimation via the for-
ward–backward recursive representation of the likelihood39; the number of latent states, M, is selected using 
BIC38. Subsequently, the population-level parameters are estimated by regressing the subject-specific maximum 
likelihood estimators on baseline covariates using least squares. This two-stage approach, which will be detailed 
shortly, is computationally efficient for high-frequency data like those collected in the meloxicam study. Let

be the collection of subject-specific parameters for i = 1, …, n. We construct estimators θ̂i,T of θi by maximizing 
the log-likelihood (see supplementary file 2 for details).

Qi

(
m, l; xt , zt

)
=

exp
(
d′m,l,ix

t + ̺′m,l,iz
t
)

∑M
k=1 exp

(
d′m,k,ix

t + ̺′m,k,iz
t
) ,

rm,i

(
v; xt , zt

)
= exp

(
c′m,ix

t + η′m,iz
t
) v+1

∫
v

fm,i

{
exp

(
c′m,ix

t + η′m,iz
t
)
u
}
du,

P
(
Yt
i = y|Sti = 1,Zt

i = z,Xt
i = x

)
= pti (z, x)Iy=0+

{
1− pti (z, x)

}{�ti (m, z, x)
}y

exp
{
{�ti (m, z, x)

}

y! ,

P
(
Yt
i = y|Sti = m,Zt

i = z,Xt
i = x

)
=

{
�
t
i (m, z, x)

}y
exp

{
�
t
i (m, z, x)

}

y! ,

log

{
pti (z, x)

1− pti (z, x)

}
= b0,0,i + b′1,0,ix + γ ′

0,iz,

log
{
�
t
i (m, z, x)

}
= b0,m,i + b′1,m,ix + γ ′

m,iz,

θi =
{
δm, dm,k,i , ̺m,k,i , cm,i , ηm,i,, b0,0,i , b0,m,i , b1,0,i , b1,m,i , γ0,i , γm,i

}
m,k=1,...,M
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For m = 0, 1, …, M, let b̂1,m,i,T denote the maximum likelihood estimator of b1,m,i . Subsequently, define Ω̂m,0,n , 

Ω̂m,1,n = argminΩm,0,Ωm,1

n∑
i=1

||b̂1,m,i,T −Ωm,0 −Ωm,1Wi||2 to be the two-stage estimator of Ωm,0,Ωm,1 . The esti-

mators Γ̂m,0,n, Γ̂m,1,n, Λ̂m,l,0,n, Λ̂m,l,1,n of Γm,0,Γm,1,Λm,l,0,Λm,l,1 are defined analogously.
The statistical analysis in the manuscript is implemented using the software R version 2.0.6. We developed an 

R package “ziphsmm” to analyze such high-volume, zero-inflated accelerometer data, which is publicly available 
online (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ziphs​mm/​index.​html).

Theoretical properties.  Throughout we use a star superscript, e.g.,θ∗i  to denote the population analogue of 
the maximum likelihood estimator of a parameter indexing the proposed model; if the model is correctly speci-
fied, then under the conditions stated below, these parameters will correspond to the true parameters indexing 
the generative model. In order to characterize the limiting behavior of the proposed estimators, we make the 
following assumptions for all i = 1, . . . , n and m, l = 1, . . . ,M.

	(A0)	 The dimension of the subject-specific parameters is j, where j is known; θ∗i  is an interior point of � , which 
is a compact subset of Rj.

	(A1)	 The state duration distributions rm,i(.) has finite support.
	(A2)	 There exists 0 < σ− ≤ σ+ < 1 such that σ− ≤ Pθ∗i (S

t+1
i = l|Sti = m) ≤ σ+ , for t = 1, . . . , T ; and 

M∑
m=1

Pθ∗i

(
Yt
i = y|Sti = m

)
> 0 for all y ∈ suppYt

i and t = 1, . . . , T.

	(A3)	 For each θ ∈ � the transition kernel indexed by θ is Harris recurrent and aperiodic40–42.
	(A4)	 The transition kernel is continuous in θ in an open neighborhood of θ∗i .
	(A5)	 The hidden semi-Markov model is identifiable up to label-switching43,44.

These assumptions are standard in latent-state models45–49. Assumption (A0) avoids non-regularity occurring 
at boundary points; the assumption of a fixed dimension could be relaxed, for example, to the assumption that 
one has a strongly consistent estimator of j. Assumption (A1) is common in semi-markov models and simpli-
fies asymptotic arguments; if the finite support condition does not hold, one can use a nested sequence of finite 
approximations at the expense of more delicate asymptotic arguments50,51. Assumption (A4) is a regularity con-
dition that avoids non-standard asymptotic behavior associated with non-smooth functionals52,53. Assumptions 
(A2), (A3), (A5) ensure that the model is well-defined; we show that (A5) holds for the zero-inflated Poisson 
semi-Markov model in the supplementary material. A proof of the following lemma and theorem is also provided 
in the supplementary material.

Lemma 1. Under (A0)–(A5), the MLE for the subject-specific hidden semi-Markov model in the first stage 
is strongly consistent, θ̂i,T → θ∗i  almost surely as T → ∞ for all i = 1, . . . , n.

Define �∗
m =

[
�∗

m,0,Ω
∗
m,1

]
 and the corresponding estimator Ω̂m,n =

[
Ω̂m,0,n, Ω̂m,1,n

]
. Let Ŵ∗

m, Γ̂m,n,

Λm,l , Λ̂m,l,n be defined analogously. Further, define the augmented design matrix  W̃ ∈ R
n×(d+1) whose ith row 

is W̃i =
[
1,W

′
i

]
∈ R

d+1 . Then the second stage regression models can be equivalently written as vec
(
b̂1,m,T

)
=

(
I ⊗ W̃

)
vec(Ωm)+ νm, vec

(
ĉ1,m,T

)
=

(
I ⊗ W̃

)
vec(Γm)+ ηm , vec

(
d̂m,l,T

)
=

(
I ⊗ W̃

)
vec

(
Λm,l

)
+ ξm,l , where 

vec is the vectorization operator, and νm, ηm, ξm,l are independent mean zero residuals. Define 
B̃ = I⊗ W̃ ∈ R

qn×q(d+1) whose ith row is B̃i.
Theorem 3.2. Under (A0)–(A5), and further assume that H = n−1 lim

n→∞
W̃ ′W is a positive definite matrix. 

Then provided T, n → ∞ with nT → 0 , each of the following converges in distribution to a Gaussian distribution 
with mean zero and identity covariance:

for all m, l = 1, . . . ,M.

{(
1

n
B̃′B̃

)−1

(
1

n
B̃′diag

[{
vec

(
b̂1,m,T

)
i
− B̃′ivec

(
Ω̂m,n

)}2
](

1

n
B̃′B̃

)−1
}− 1

2

×
√
n
{
vec

(
Ω̂m,n

)
− vec

(
�∗

m

)}
,

{(
1

n
B̃′B̃

)−1

(
1

n
B̃′diag

[{
vec

(
ĉm,T

)
i
− B̃′ivec

(
Γ̂m,n

)}2
](

1

n
B̃′B̃

)−1
}− 1

2

×
√
n
{
vec

(
Γ̂m,n

)
− vec

(
Ŵ∗
m

)}
,

{(
1

n
B̃′B̃

)−1

(
1

n
B̃′diag

[{
vec

(
dm,l,T

)
i
− B̃′ivec

(
Λ̂m,l,n

)}2
](

1

n
B̃′B̃

)−1
}− 1

2

×
√
n
{
vec

(
Λ̂m,l,n

)
− vec

(
�∗

m,l

)}
,

https://cran.r-project.org/web/packages/ziphsmm/index.html
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In the preceding theorem, the requirement that nT → 0 is natural in applications using high-frequency accel-
erometer data where the number of observations per subject can be several orders of magnitude larger than the 
number of subjects. In the supplementary file 2, we have included extensive simulation experiments to evaluate 
the performance of the proposed treatment effect estimator.
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