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Controlling chaos by the system 
size
Mahdi Ghadiri & Rouslan Krechetnikov*

Despite the ubiquity of physical systems evolving on time-dependent spatial domains, understanding 
their regular and chaotic dynamics is still in a rudimentary state. While chaos implies that the 
system’s behavior can be altered by small perturbations, this sensitivity proves to be useful for control 
purposes. Here we report on the experimental discovery of a novel mechanism to control chaos by 
time-variation of the system (spatial domain) size: depending upon the rate of the latter, the chaotic 
state may be completely prevented. Our experimental observations are disentangled with theoretical 
insights and numerical modeling, which also reveals the ability to control spatio-temporal chaos, thus 
making the findings relevant to a wide range of natural phenomena.

There exist numerous physical systems evolving on time-dependent spatial  domains1—ranging from crystal 
growth, pattern formation on animal skin, Hydra’s tentacles, whorled leaves, teeth primordia in the alligator to 
quantum particles traveling in a time-evolving potential and galaxy agglomeration in the expanding Universe—
many of which exhibit chaotic dynamics. To illustrate how one can traverse the edge of chaos by varying the 
domain size, as a testbed we have chosen the Faraday waves  phenomenon2, which is a paradigmatic example in 
pattern-forming systems, known to exhibit temporal chaos as well. When a container is filled with a liquid and 
vibrated with sufficient acceleration A in the direction of gravity, standing surface waves, historically named after 
 Faraday2, are formed and oscillate at a frequency ω0/2π , half that of the forcing f. Such waves exhibit patterns 
with a large variety of shapes and symmetries (Fig. 1), depending on the fluid properties, layer depth, driving 
and boundary conditions. Our experimental setup (cf. “Methods”) produces Faraday waves and enables time-
dependent variation of the rectangular container length L(t) = L0 + v t at a wall speed (rate) v/2 with the help 
of computer controlled stepper motors while still maintaining the container width W and liquid layer depth h 
constant.

In the rectangular domain (x, y) ∈ [−L/2, L/2] × [−W/2,W/2] , the surface deformation due to excitation 
of the single mode l = (m, n) is of the form

where  Sl(x, y) = cosπm(x/L+ 1/2) cosπn
(

y/W + 1/2
)

 i s  the  spat ia l  pattern  of  ampl itude 
al(t, τ) = Cl(τ ) cos [ω0t + φl(τ )] ; Cl(τ ) and φl(τ ) are the wave amplitude and phase evolving on a slow timescale 
τ ≫ 2π/ω0 ; m and n represent the number of half-wavelengths formed in each  direction3,4.

Simultaneous excitation of two modes at the same values of driving amplitude-frequency (A, f) takes place 
in the overlap region of the two stability curves commonly known as the pattern competition  regime5. In 
this regime slow amplitudes Cl(τ ) of two different patterns l1 and l2 are both nonzero, non-equal and oscillate 
with different phases at a frequency smaller than the driving one by more than two orders in  magnitude6,7. 
According to (1), at the centre of the container with the addition of meniscus waves of the amplitude 
aM(t, τ) = CM(τ ) cos [2ω0t + φM(τ )] , we have

where a(t, τ) = al1(t, τ)+ al2(t, τ) ≡ C(τ ) cos [ω0t + φ(τ)] is the superposition of the two Faraday modes 
l1 = (2, 6) and l2 = (4, 4) . From measured a(t, τ) the amplitude envelope C(τ ) , wave frequency ω0 , and phase φ 
are recovered and, accordingly, the Faraday waves complex slow amplitude U(τ ) = C(τ ) e−iφ(τ) is reconstructed. 
Using its real part ReU  as the time series, the state of the dynamical system, either periodic or chaotic, is deter-
mined by calculating the fractal dimension D of the chaotic attractor, with a non-integer D corresponding to a 
chaotic state, whereas D = 1 to a periodic one (cf. “Methods”).

To navigate the experiments on time-dependent domains, first we developed the roadmap on the time-fixed 
domain analogous to that in the  literature8 in the (A, f)-space surrounding the pattern competition regime of the 

(1)ζ(t, x, y) = al(t, τ) Sl(x, y),

(2)ζ0(t) ≡ ζ(t, 0, 0) = a(t, τ)+ aM(t, τ),
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modes l1 and l2 , cf. Fig. 1e. This map is limited from the left and right by the excitation of nearby modes (5, 1) and 
(5, 2), respectively, and defines the boundaries between chaotic and periodic regimes, which we will attempt to 
traverse using domain deformation L(t). Four distinct regions are observed above the threshold (thick curve): 
(a) chaotic competition between the two modes; (b) periodic competition with a time-dependent envelope; (c) 
periodic competition with a time-independent envelope; and (d) the pure mode (2, 6) oscillating periodically 
with a time-independent envelope. The shaded areas represent the hysteretic regions: if one starts from below 
the threshold curve and increases the amplitude, in the lowest shaded area a flat surface is observed, but if the 
starting point is in region (a), then by decreasing the amplitude and entering the shaded area, chaotic competi-
tion is exhibited. The surface patterns presented in Fig. 1a-d are observed during the record of the corresponding 
surface deformation ζ0 at various instances in time, i.e. mode (2, 6) in region (d) and all of the combinations (4, 4), 
(2, 6), (2, 6)+ (4, 4) , (2, 6)− (4, 4) in (a–c), because in any of the latter regions the two modes are competing.

Results: experiments
Traversing the edge of chaos by changing the system size. We start by illustrating how domain 
growth can lead to regularization of the chaotic regime corresponding to f = 12.33Hz , A = 1.26m s−2 , and 
L = 120mm , cf. Fig. 2a–c. Despite that ReU may appear periodic (Fig. 2c), its analysis reveals a chaotic attractor 
with fractal dimension of D = 1.38 (Fig. 3a). At t = 513 s the domain starts to grow at a rate 0.06mm s−1 and 
in the course of stretching for 2mm the system reaches the periodic state, where mode (2, 6) oscillates periodi-
cally with a time-independent envelope (Fig. 2a,c). Several initial key observations can be made from Fig. 2a–
c. First, the fractal dimension D decreases with increasing domain size as opposed to, say, Rayleigh–Bénard 
 convection9,10 in which D increases with the system size; in general, however, the trend can be reversed depend-
ing upon the interplay between the bulk and boundary dynamics. Second, using the initial phase and envelope 
within the time-independent periodic pure mode regime as the reference, during the domain growth (Fig. 2b,c) 
the regime transformation is accompanied by small changes in the slow phase ( −0.9% ) and noticeable variations 
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Figure 1.  A roadmap. Interactions between modes (2, 6) and (4, 4) on the time-fixed domain of dimensions 
L×W = 120mm× 150mm . Surface deformations ζ0(t) (a–d) corresponding to solid circles in the amplitude-
frequency (A, f) map (e). Four distinct regions exist above the threshold (thick curve): the chaotic (a), the 
periodic time-dependent (b) and -independent (c) pattern competitions, and time-independent periodic pure 
mode (2, 6) in (d). Below the panels are the patterns observed when the respective ζ0(t) was recorded: (2, 6) in 
(e) and all of (4, 4), (2, 6), (2, 6)+ (4, 4) , (2, 6)− (4, 4) in (a–c). The measurement error of the amplitude A is 
10−2 m s−2.
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in the envelope ( 36.1% ), thus indicating the amplitude chaos with no phase-slips. Third, in this case the transi-
tion from chaotic to periodic state takes place during the wall motion (indicated by arrows) over δL = 1.68mm , 
which is smaller than the total domain size variation �L = 2mm ; that is, the amplitude a(t, τ) reaches constant 
envelope over δL , and once the wall motion ceases at �L the system is already oscillating periodically with a 
time-independent envelope. However, this scenario is not universal: in other experiments, e.g. in Fig. 11a with 
an initial chaotic state of dimension D = 1.82 undergoing domain growth at a rate 0.15mm s−1 , the transition 

Figure 2.  Regime change in response to domain deformation at f = 12.33Hz and A = 1.26m s−2 . Top 
(bottom) row represents domain growth (shrinkage) by �L = 2mm at a rate 0.06mm s−1 , over which the 
regime changes from chaotic (periodic) to periodic (chaotic). (a, d) The surface deformation ζ0(t) within the 
arrows indicates the start and finish of wall motion. (b, e) The slow phase φ . In (c, f) the amplitude envelope C 
and the real part of the slow amplitude ReU are shown by blue dotted and red solid curves, respectively.

Figure 3.  The correlation function C(ǫ) obtained for each physical experiment from a single time series of the 
real part of the slow amplitude ReU for various embedding dimensions m. The solid black line with slope one is 
shown to compare with the saturated slope D in the scaling region (between the two arrows). Panels (a, b), (e, 
f), and (g, h) indicate the chaotic strange attractor dimension D = 1.38 , 1.42, 1.52, 1.00, 1.48, and 1.31± 0.02 , 
corresponding to Figs. 2a,d, 4a,d, and 5a,d, respectively. In (c) the correlation function for 100 fast cycles prior to 
wall motion in Fig. 2d is presented indicating regular periodic dynamics with D = 1.00± 0.02 , whereas in (d) 
inclusion of 65 additional fast cycles corresponding to the interval of domain shrinkage δL = 1.3mm resulted in 
the fractal dimension D = 1.1± 0.02 indicating the transition into chaos.
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to periodic regime is not confined to the domain deformation time interval. This difference is likely due to a 
weaker chaotic state in Fig. 2a–c ( D = 1.38 ) compared to that in Fig. 11a ( D = 1.82 ), which is characterized 
by more unstable (in terms of Lyapunov exponents) periodic  orbits11 and therefore requires a longer transition 
regime in order to regularize the system. Indeed, on the one hand, since a chaotic set, on which the trajectory of 
the chaotic process lives, has embedded within it a large number of unstable low-period orbits, sensitive depend-
ence on small changes to the chaotic state implies that the system’s behavior can be altered by using smaller 
(domain) perturbations for larger D . On the other hand, due to higher sensitivity at larger D , probabilistically it 
takes longer to ‘hit’ a periodic orbit possessing a sufficiently large basin of attraction.

Next, using the periodic state reached at L = 122mm as the initial state and then shrinking the domain 
back to the original length L = 120mm (Fig. 2d–f) with the same wall speed returns the system to the chaotic 
state, but with a fractal dimension D = 1.42 (Fig. 3b). The reconstructed slow phase φ (Fig. 2e) and envelope 
C (Fig. 2f) indicate that qualitatively the dynamical system is experiencing a process reverse to that during the 
domain growth. The transition δL from periodic to chaotic state is also shorter in length than the domain shrink-
age interval �L : analysis of the amplitude a(t, τ) reveals that before the start of domain shrinkage, the system is 
in a periodic state with D = 1.00± 0.02 (Fig. 3c), while the domain shrinkage δL = 1.3mm leads to D = 1.1 
(Fig. 3d), hence indicating a transition to chaos before the walls come to rest. In comparison with the domain 
growth cases presented in Fig. 2a ( δL = 1.68mm ) and Fig. 11a ( δL = 2mm ), domain shrinkage (Fig. 2d) leads 
to regime transformation on a smaller domain size variation δL , which is the fourth key observation to be inter-
preted below, in the context of numerical study.

The effect of the domain evolution rate: chaos prevention. With the help of the same map (Fig. 1e), 
another remarkable ability of domain evolution to control chaos is identified: namely, isolating one of the com-
peting modes in the regime, which on a time-fixed domain of the same size would otherwise correspond to a 
chaotic pattern competition. As evident from Fig. 1e, the system at f = 12.33Hz and A = 1.26m s−2 is located 
in the chaotic competition regime—we examined if this final state of the system could be altered with the help 
of domain evolution at varying rates. These experiments are similar to the one in Fig. 2d–f but conducted at 
different evolution rates. Starting with the pure mode (2, 6) oscillating periodically with a time-independent 
envelope on the domain L = 122mm we can see if shrinking the domain to L = 120mm at different rates would 
provide the ability to control the final state of the system, which is known to be chaotic on a time-fixed domain 
of the same size.

Top and bottom rows in Fig. 4 show two different runs at wall speeds of 0.15 and 0.03mm s−1 , respectively. 
At 0.15mm s−1 , the domain shrinkage leads to the chaotic pattern competition (Fig. 4a)—the regime expected 
on a time-fixed domain of the same size—with the strange attractor of dimension D = 1.52 (Fig. 3e). Surpris-
ingly, decreasing the speed below 0.03mm s−1 prevents the system from entering the chaotic regime (Fig. 4d), 
and makes it continue with periodic oscillation of mode (2, 6) even after 535 s from the moment the walls are 
brought to rest. That is, domain deformation isolates mode (2, 6) out of the expected chaotic pattern competition 
regime on a time-fixed domain of the same size; this fact is confirmed by the corresponding attractor dimen-
sion D = 1.00± 0.02 in Fig. 3f. The two other experiments (not presented here) performed at the speeds 0.3 
and 0.015mm s−1 reinforced the above result, i.e. the higher speed led to the chaotic state while the lower one 
allowed the system to remain periodic. Together with another domain shrinkage experiment at the wall speed 

Figure 4.  Wall speed effect at f = 12.33Hz and A = 1.26m s−2 . The slower evolution of the domain prevents 
the system from entering the chaotic regime. The domain shrinkage �L = 2mm starts at L = 122mm with two 
wall speeds 0.15 (top) and 0.03mm s−1 (bottom).
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0.06mm s−1 presented in Fig. 2d–f one can conclude that the threshold wall speed lies in the transition interval 
0.03− 0.06mm s−1 . Therefore, if slow enough, the domain deformation prevents the system from entering the 
chaotic regime—the signature of hysteretic behavior, which can be understood as follows.

Water surface profiles reveal that domain shrinkage at slow rates only shortens the wavelength �x of mode 
(2, 6), which is compensated by the increase in wave amplitude (Fig. 4d) in accordance with the mass conserva-
tion C × �x × �y ≈ const . Thus, slow domain evolution is not strong enough to perturb the system away from 
the periodic state of mode (2, 6), i.e. the system is capable of adapting and thus staying near this periodic orbit; 
therefore, mode (4, 4) is no longer formed. On the contrary, during a rapid domain evolution the system experi-
ences an instability leading to the appearance of mode (4, 4) and hence competition with the preexisting mode 
(2, 6) resulting in the chaotic regime. At the transitional wall speeds, the system traverses the edge of chaos, 
which separates the basins of attraction where perturbations evolve either towards the regular or chaotic regime.

From the dynamical systems perspective, domain evolution is able to force the trajectory of the dynamical 
system under consideration closer to one of its fixed points thus reaching or remaining in a stable periodic state. 
From the physical point of view, on the other hand, this effect is related to the bulk flow structure, which not only 
could be different for identical Faraday wave  patterns12, but also may be altered by wall motion. Namely, the well-
developed flow on a fixed domain might differ from the flow formed when walls move to the same domain size, 
leading to the hysteresis, i.e. the dependence of the final Faraday wave pattern on the dynamical system trajectory.

Relation to frequency chirping. Our study would be incomplete without experimental comparison of 
domain deformation effects to that due to frequency variation (chirping) in time, since these two methods to 
control dynamics may seem to be interrelated. Indeed, from the dispersion relation ω2

0 = [gk + (σ/ρ)k3] tanh kh 
for linear Faraday waves, one can see that the variation of the frequency ω0(t) in time affects the instability 
wavenumber k(t) = |k| ; hence, if the number of pattern cells is not changing under the domain deformation, 
but the wavelength is being adjusted instead, domain shrinkage leading to wavenumber increase k ↑ should be 
equivalent to frequency increase ω0 ↑ and vice versa. However, due to the Eckhaus instability of the modes and 
because of the mode quantization on a finite size  domain1, the link between domain deformation and frequency 
chirping is not as monotonic as one may glean from the roadmap in Fig. 1. The phenomena similar to that in 
Fig.  2 can be investigated with frequency being the controlling parameter, while the domain size is fixed at 
L = 120mm (Fig. 5). To be able to compare the two processes, the initial starting point on the roadmap (Fig. 1) 
should be the same. In order to reveal the effects of frequency variation, it is desired to pass through all regions 
(a–d) in Fig. 1, from a chaotic to a periodic state of the pure mode (2, 6) and vice versa. This is achieved, cf. 
Fig. 1e, at A = 1.26m s−2 and f varying from 12.33 to 12.44Hz at the rate of 0.0066Hz s−1 , thereby taking the 
same amount of time as the domain deformation (Fig. 2).

Considering that in Fig. 5a the location of the arrows indicates the start and finish of the frequency chirping, 
it is evident that, unlike the domain deformation case in Fig. 2, the transition regime is extended far beyond 
the point where the frequency increase ceases: the envelope takes a considerably longer time (about 250 s ) to 
become time-independent and thus the regular regime to settle compared to the frequency chirping applica-
tion time. Since the chaotic attractor dimensions in these two cases are comparable ( D = 1.38 inf Fig. 3a and 

Figure 5.  Regime change in response to frequency chirping. Frequency change 12.33Hz ⇔ 12.44Hz takes 
place on a fixed domain of size L = 120mm . The top (bottom) row represents frequency increase (decrease) 
for 0.11Hz at the rate of 0.0066Hz s−1 , due to which the regime changes from chaotic (periodic) to periodic 
(chaotic).
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D = 1.48 in Fig. 3g, respectively), this likely means that the system adapts better to domain size variation than 
to frequency chirping. To that end, Fig. 5b,c demonstrate relative changes in slow phase φ and the envelope C of 
−36.6% and 40.7% in the course of frequency chirping, respectively. It seems that this substantial change in the 
phase is the reason behind the extended transition in the frequency chirping case, whereas the corresponding 
phase change in the domain deformation case in Fig. 2b is negligible and correlated to a short transition stage 
contained within the wall motion interval. It must be noted that the observed phase jumps −0.74π in Fig. 5b 
and 1.1π in Fig. 5e are not phase-slips (requiring �φ = 2π ) since they result from the appearance of a new mode 
(4, 4) in addition to pre-existing one (2, 6) thus leading to a change in the total phase of both superimposed 
modes (2). This behavior differs from the standard frequency chirping when the driving frequency f crosses the 
border of the Arnold tongue leading to the loss of synchronization (zero detuning) between the driving and 
oscillator frequencies and thus to infinite growth of the phase  difference13. This growth is not uniform: there are 
epochs when the phase difference is nearly constant, and other, much shorter, epochs where the phase difference 
changes relatively rapidly by 2π , corresponding to a phase-slip. On the other hand, phase jumps, which are not 
multiples of 2π , are known to accompany phase synchronization transitions in chaotic systems which exhibit 
phase  coherence14 as in our case, cf. Figs. 2b,e, 5b–e, and 4b. While the phase coherence of a chaotic attractor 
may mean that a suitably defined phase increases steadily in time, here we understand the phase coherence in 
a broader sense when the phase exhibits some pattern on a long timescale—the fact that chaotic systems, if 
examined over a sufficiently long time, can display regular patterns is  known15 and could be the result of some 
symmetries underlying the dynamical  system16.

The lower panels in Fig. 5 correspond to the reverse process, i.e. decrease of the frequency leading to the 
change of the regime from periodic to chaotic ( D = 1.31 in Fig. 3h). Since the system reaches the chaotic state 
once the frequency decrease is finished (Fig. 5d), the transition regime must be contained within the frequency 
chirping interval. Compared to domain shrinkage (Fig. 2f), the envelope C in Fig. 5f (dotted curve) experiences 
a sharp increase during the very initial stage of frequency decrease, i.e. at the location of the first arrow. This is 
because in addition to mode (2, 6) a new appearing mode (4, 4) superimposes thus increasing the total amplitude 
C of both modes. In general, while frequency chirping leads to a “domain flow” linear term in the corresponding 
amplitude  equation17 similar to that for the actual domain  flow18 in equation (3) since both of them amount to the 
Doppler-like effect, at the nonlinear level there are crucial differences in the corresponding amplitude equations 
and thus in the finite-amplitude behaviors between frequency chirping and domain deformation reported above.

Finally, in the context of the frequency chirping discussion, it should be mentioned that changing the wave-
form of excitation provides yet another degree of control of the transition between regular and chaotic regimes as 
demonstrated, for example, in the studies of bouncing states of a droplet on a liquid  surface19. While it is known 
that changing the forcing waveform from sinusoidal to square and triangular does not qualitatively affect the 
resonant tongue  structure20, its effect on the transition from regular to chaotic regimes and an interplay with 
varying the system size require a separate study.

Results: theory
The Ginzburg–Landau model. Spatially extended (and thus infinite-dimensional) systems are prone not 
only to temporal (amplitude) chaos, which is well studied in finite-dimensional contexts, but also to spatio-
temporal  chaos21,22, in particular phase  turbulence23,24. Amplitude chaos is often characterized by the occurrence 
of phase slips during which the wave amplitude goes to zero (defect) and the total phase changes by 2π , i.e. a 
wavelength is inserted or eliminated; in the phase-chaotic regime essentially no phase slips  occur25.

To gain further insights into controlling chaos by variation of the domain size, as a minimal model we 
study the Ginzburg-Landau equation (GLE) universally valid near critical points of pattern forming  systems26. 
Although the Faraday wave phenomenon is two-dimensional and would require two coupled GLEs to describe 
the two cross-roll hydrodynamic  system27, its qualitative understanding can still be achieved using a single 1D 
complex GLE (cGLE) evolving on the slow time τ and long spatial x ∈ [−L(τ )/2, L(τ )/2] scales written here in 
a non-dimensional  form22:

which incorporates an extra term iuU  accounting for the effects of advection and  dilution18 due to domain 
evolution L(τ ) = L0 + v τ at a (non-dimensional) rate v; here u(τ , x) represents the domain velocity at point x. 
Chaotic behavior exhibited by the cGLE on time-fixed domains has been extensively  studied28 and will be used 
as a reference. Depending on the values of α and β , the cGLE on time-fixed domains can exhibit plane waves, 
spatio-temporal chaos, and  intermittency22,28. The chaotic regime occurs beyond the Benjamin-Feir-Newell 
curve β ≤ −α−1 , leading either to phase chaos, defect chaos, or  bichaos22,28. When U has no zeros, |U| remains 
saturated and only its phase will be dynamically active, leading to phase chaos. On the contrary, if U vanishes 
at some point x, then the complex phase is undefined there and a phase slip occurs leading to defect chaos. In 
the bichaotic regime, taking place for the values of α and β closer to the Benjamin–Feir–Newell curve αβ = −1 , 
defect- and phase-chaotic attractors  coexist22.

Traversing the edge of chaos. We first consider domain shrinkage and its reverse process in analogy with 
experiments in Fig. 2. Figure 6a,b depict the spatio-temporal bichaotic state on a time-fixed domain—resulting 
from integration of (3) with (α,β) = (0.75,−1.4) up to τf = 500—used as the initial condition for integration on 
a time-varying domain. Then the domain growth by δL = 17.98 at the rate of v = 0.003 brings the system to the 
periodic state, for which the transition itself (measured here between the last moment a given regime is observed 
across the entire spatial domain to a similar moment when a new regime is settled across the entire domain as 
well) takes place only over δL = 5.40 (Fig. 6g). Figure 6c,d present ReU(x, τf = 6000) and ReU(x = 0, τ) where 

(3)Uτ = (1− iu)U + (1+ iα)Uxx − (1+ iβ) |U |2 U ,
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τf − 500 ≤ τ ≤ τf  , respectively, and indicate that the system has reached periodic state both in time and space, 
thereby establishing the capability of domain evolution not only to control the temporal but also the spatial 
chaos. To examine the reversibility of the process, the domain growth is undertaken starting from the periodic 
state in Fig. 6c,d—as demonstrated in Fig. 6h, the system becomes chaotic right away, though not across the 
entire domain, and remains chaotic even beyond τ = 558 for which the final stage is presented in Fig.  6e,f. 
Therefore, the regime transformation from chaotic to periodic is reversible, though the required change of the 
domain size during shrinkage and growth are not necessarily equal or even of the same order (Fig. 6g,h). To 
confirm that domain shrinkage also has the capability to control chaotic state, numerical investigation a similar 
to the above was performed in Fig. 7, except that the domain now first undergos shrinkage and then growth. Part 
(g) of that figure indicates that the transition from the chaotic to periodic regime takes place over the domain 
shrinkage by δL = 5.04 , while the domain growth by δL = 5.64 takes the system back to the chaotic state (h).

An important observation from the results of integration in Figs. 6 and 7, both initiated from an identical 
state (panels a and b in these figures), is that compared to domain growth, shrinkage transforms the regime 
over a smaller change in the domain size, i.e. δL = 0.29 in Fig. 6h and δL = 5.04 in Fig. 7g vs. δL = 5.40 in 
Fig. 6g and δL = 5.64 in Fig. 7h. To explain this asymmetry between growth and shrinkage, which was also 
observed experimentally in Fig. 2, we recall that compared to domain growth shrinkage causes early phase-slips, 
as known  theoretically1 in 1D and experimentally in  2D29, thereby leading to a faster change in the wavenum-
ber structure of a pattern. Hence, if the route to chaos requires the change in the wavenumber structure of the 
original periodic mode, then the difference in the phase-slip occurrence characteristic times between domain 
shrinkage and growth is responsible for the observed asymmetry. If, on the other hand, the route to chaos from 
a given original periodic mode simply requires an excitation of another mode, the interaction of which with the 
original one leads to temporal chaos (so-called pattern competition)6, then the difference lies in the subcritical 
nature of the transition to chaos, which can occur directly. The latter happens in other contexts, e.g. when a 
modulationally destabilized monochromatic wave in a fluid system undergoes a subcritical bifurcation directly 

Figure 6.  Regime change in response to domain deformation. (a, b) The spatio-temporal bichaos used as the 
initial state with domain size fixed at L = 200 and (α,β) = (0.75,−1.4) . In (c, d) the state of the system after 
domain growth by �L = 17.98 at a rate v = 0.003 , over which the regime changes from chaotic to periodic. 
Starting from the periodic state in (c, d), shrinking the domain by �L = 1.66 at a rate v = 0.003 leads to the 
chaotic state (e, f). In (a, c, e) ReU(x, τ) is plotted at the corresponding final integrated times τf = 500, 6000 
and 558, respectively, whereas in (b, d, f) ReU(x, τ) is plotted at x = 0 over τf − 500 ≤ τ ≤ τf  . Space-time plots 
of the growth (g) and shrinkage (h) indicate the transition happens over δL = 5.40 and δL = 0.29 , respectively.
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into chaos, provided dissipation is weak  enough30. It is known that finite amplitude perturbations are needed 
in order to trigger subcritical  instabilities31,32. In the context of Faraday waves, such finite-amplitude perturba-
tions are always present, e.g. in our system due to meniscus waves and wall motion when domain size is varied. 
The direct transition from periodic to chaotic via subcritical bifurcation is justified not only by the periodic and 
chaotic regions being  adjacent33 in the amplitude-frequency (A, f)-plane, but also by the fact that superposition 
of modes, where chaos is observed, belongs to the subcritical side of the resonant  tongue8. Given that in the case 
of domain shrinkage modes from the subcritical side of the resonant tongue are excited via a finite-amplitude 
instability, while in the case of growth modes from the supercritical side emerge, one indeed expects irrevers-
ibility and therefore hysteretic behavior of Faraday  waves29, which is fundamentally due to viscous dynamics of 
the bulk flow underlying the surface  pattern12,34.

In the course of the above numerical investigation, we also observed that domain shrinkage is more effective 
at controlling chaos; for instance, the domain growth fails to regularize the stronger chaotic state presented in 
Fig. 8a,b compared to the weaker chaotic state in Fig. 6a,b, whereas domain shrinkage is able to make the sys-
tem periodic starting from both the weaker and the stronger chaotic states. This behavior is again rationalized 
by the fact that early and hence more frequent phase-slips during domain shrinkage can control the stronger 
chaotic state better compared to delayed phase slips during domain growth, which tend to keep the system in 
its existing state.

The effect of the domain evolution rate. Finally, a numerical study was performed to demonstrate the 
effect of domain evolution rate similar to experiments in Fig. 4: a periodic state that is reached by the domain 
growth (Fig. 6c) is used as the initial state for the domain shrinkage at two rates v = 0.001 and v = 0.0001 with 
the result reported in Fig. 9. While the faster rate (Fig. 9c,d,g) allows the system to go back to the expected 
chaotic state after shrinkage of δL = 0.11 (similar to Fig. 6e,f), the slower rate (Fig. 9e,f,h) keeps the state of the 
system periodic even beyond the total domain shrinkage of �L = 0.3. We also started from a chaotic state, rather 
than a periodic one, in order to see if the shrinkage rate would play a role in controlling chaos. Using as an initial 

Figure 7.  Regime change in response to domain deformation. (a, b) depict the spatio-temporal bichaos used as 
an initial state with domain size L = 200 and (α,β) = (0.75,−1.4) . In (c, d) the state of the system after domain 
shrinkage by �L = 13.50 at a rate v = 0.003 , due to which the regime changes from chaotic to periodic, is 
presented. Starting from the periodic state in (c, d), growing the domain by �L = 7.68 at a rate v = 0.003 leads 
to the chaotic state (e, f). Space-time plots of the shrinkage (g) and growth (h) processes indicate the transition 
happens over δL = 5.04 and δL = 5.64 , respectively.
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condition a stronger chaotic state (Fig. 8a,b)—reached by picking the values (α,β) = (0.8,−1.4) that are further 
away from the Benjamin–Feir–Newell curve—the total domain shrinkage required to enter the periodic regime 
at the rate v = 0.01 is about �L ≈ 100 (Fig. 8c,d,g), whereas at the slower rate of v = 0.001 the required total 
domain size variation is considerably smaller, �L = 15.4 (Fig. 8e,f,h). However, the transition itself again takes 
place only over a small portion of the domain evolution, i.e. δL = 22.91 and 2.29 at the faster and slower rate, 
respectively (Fig. 8g,h). As alluded to earlier, at a lower speed the system is subject to smaller perturbations, the 
slower associated time scales of which allow the system to adapt and get attracted to a periodic orbit; at a higher 
speed the perturbations are larger thus making it harder for a system to get attracted to a stable periodic orbit, 
which statistically takes longer time and thus larger domain size variation. In other words, a slower rate facilitates 
the regularization of the regime, while a faster rate impedes the process: this is analogous to the experimental 
results on regular Faraday  waves29 showing that pattern formation is naturally impeded during fast domain evo-
lution as phase slips have no time to develop. Furthermore, these observations are consonant with the 1D theo-
retical  findings35 indicating that more complex pattern sequences can be expected during slow domain evolu-
tion, which allows for more phase-slips to occur and therefore leads to changes sooner in the state of the system.

Conclusions
In the presented work we demonstrated, both experimentally and theoretically, the ability to control chaos by the 
system size variation. These findings may shed some light on spatially evolving biological systems and life, that 
require ‘a healthy dose of chaos’ for proper  operation36 and hence often balance on the edge of chaos as known 
from studies on cardiac and neuronal  activity37, for example. The latter concept has also been encountered in 
many other  areas38: in economy, creative destruction represents the driving force within a market economy; in 
social science, the dynamic interaction between individuals and macro-levels such as laws, religions, and gov-
ernments imposing too much order and limiting individual development in the name of conformity, ultimately 
leading to stasis; in human cognition and  creativity39, the states at the edge of chaos can be seen to be maximally 
novel while still connected to ones in the ordered regime—the hallmark of innovative thinking.

Figure 8.  Domain evolution rate effect. (a, b) depict the spatio-temporal bichaos used as the initial state with 
domain size L = 200 and (α,β) = (0.8,−1.4) . The domain shrinkage �L = 100.00 and �L = 15.40 , over which 
the regime changes from chaotic to periodic, with two different rates v = 10−2 and 10−3 corresponding to the 
middle (c, d) and right columns (e, f), respectively. (g, h) Space-time plots of the of the two processes indicating 
the transition over δL = 22.91 and δL = 2.29 , respectively.
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Methods
Apparatus. The designed experimental setup shown in Fig. 10 produces Faraday waves and allows com-
puter-controlled variation of the container dimensions in a time-dependent fashion as well as measurements 
of the formed pattern characteristics. The Faraday assembly is mounted on top of the electrodynamic shaker 
(Labworks ET-139) controlled by a computer signal via an amplifier. The liquid (water) is housed in a container 
with a transparent bottom and four sidewalls, so that inner tank dimensions are 150× 150× 12.7mm3 without 
moving walls. The length L(τw) of the domain between the moving walls can be controlled in a time-dependent 
fashion according to the prescribed laws, where τw is a time scale longer than that of the vertical oscillations in 
order to avoid generating significant sloshing waves. Also, the liquid layer depth is kept constant first by allowing 
a clearance of about 2mm between the moving sidewalls and the bottom of the container, enabling unobstructed 
flow underneath the walls while not affecting Faraday  waves29. Second, considering the sensitivity of Faraday 
waves to possible evaporation and thus to water layer depth  changes29,40, in our setup the liquid level was also 
maintained constant at h = 12± 0.1mm with the help of a syringe pump (PHD ULTRA Harvard apparatus) 
which injects water outside the moving walls at the rate 42µl min−1 required to compensate the evaporation for 
the existing conditions in the lab.

Visualization technique. Figure 10 also schematizes the optical setup used to visualize Faraday waves with 
the help of the Fourier transform profilometry (FTP) technique—a single-shot optical profilometric measure-
ment of surface deformation—which has been widely used in water wave  studies29,41,42. This method is based on 
an optical system composed of a video projector (ViewSonic PJD7820HD) casting a grating pattern on the water 
free surface and a camera (Nikon D5200) recording the reflection of this pattern from the free surface. The grat-
ing pattern distorted due to deformation of the surface is then recorded and compared to the reference image 
of the undistorted grating pattern on the flat free surface in order to produce a phase-shift map—the difference 
between phases of light intensity at each pixel in these two images—from which the height of the deformed 
surface is reconstructed using a relation between the phase shift and the object’s height. The highly accurate 
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Figure 9.  Domain evolution rate effect. The slower domain evolution prevents the system from entering the 
chaotic regime. (a, b) depict the initial periodic state (Fig. 6c,d). The domain shrinkage �L = 0.3 at two rates 
v = 10−3 and 10−4 correspond to the middle (c, d) and right columns (e, f) respectively. (g, h) Space-time plots 
of the two processes indicating transition over δL = 0.11 and no transition, respectively.
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common-optical axis implementation of FTP for water surface waves introduced  recently29 guarantees a vertical 
resolution of 0.05mm . For further details on the experimental setup and the visualization technique the reader 
may consult Ref.29.

Data analysis and chaos identification. For the present study, the setup reported in Ref.29 was modified 
in order to investigate temporal chaos. To that end, measurement of the waves amplitude at a single point on 
the surface is  sufficient7 as explained below; hence, we resorted to a laser displacement sensor (Optex FA CDX-
30A) capable of measuring the surface deformation with the accuracy of 0.01mm and the sampling rate of up 
to 80, 000 per second. Although no spatial information is provided by the measurement at a single point (2), 
combination with the Fourier transform profilometry used to visualize the free surface assured that there is no 
additional spatially-induced time dependence involved such as pattern  rotation7.

An example of controlling chaos by domain deformation is provided in Fig. 11, which also illustrates the data 
analysis procedure. The surface deformation ζ0(t) is recorded with the laser displacement sensor at the vessel’s 
centre (Fig. 11a), the Fourier transform of which (Fig. 11b) reveals that the strongest contribution is made by 
the Faraday waves oscillating at half of the driving frequency and the next contribution, though much weaker, 
comes from the meniscus waves.

Collecting data at the rate 150 per second and with a vertical resolution of 0.01mm enabled us to fully elimi-
nate the meniscus wave contribution from the surface deformation. Following Eq. (1), the spatial contribution of 
the two modes l1 and l2 to the surface deformation at the centre of the container reduces to unity, i.e. Sl1 = Sl2 = 1 . 
Thus, with the inclusion of meniscus waves we arrive at equation (2). Given the Faraday waves total amplitude 
a(t, τ) = C(τ ) cos [ω0 t + φ(τ)] , the complex slow amplitude is defined as

The real and imaginary parts of U(τ ) can be reconstructed from the measurements as follows. Using the 
recorded surface deformation given by (2), the amplitude envelope C(τ ) (Fig. 11e), wave frequency ω0 , and phase 
φ(τ) (Fig. 11d) are recovered for each of the fast cycles individually sampled at the rate 25 data points per cycle, 
cf. Fig. 11c. Then, ReU  (Fig. 11e) and ImU  are determined based on equation (4).

Blocks of data were recorded continuously over a 650 s interval, which is more than 20 times longer than 
required for the regime to change due to wall motion from periodic to chaotic or vice versa, also allowing us to 
carefully study the regimes before and after the domain deformation. Moreover, being capable to record continu-
ously assured that the regime under investigation is not transient. For example, in Fig. 11d,e the extracted data 
are from the first block of 650 s (shown with blue in Fig. 11a), covering 520 s of the chaotic regime, the domain 
growth of 6.67 s and the final periodic stage of 123.33 s . The second block of data—partially shown in Fig. 11a 
with black—is provided to confirm that the regime remains periodic. Finally, it should be noted that for different 
experiments, laser measurement naturally starts at an arbitrary instant within the single fast cycle period, result-
ing in a different initial phase φ . To have the same initial phase φ for all the experiments, during the data analysis 

(4)U(τ ) = C(τ ) e−iφ(τ).

Figure 10.  Experimental setup. The Faraday waves assembly with variable size container is mounted on the 
shaker which is driven using the amplifier and controlled through the data acquisition card (DAQ). The surface 
wave amplitude is measured using the laser displacement sensor (LDS). The camera, projector, beam splitter, 
and polarizers form the optical part required to visualize the Faraday waves.
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we picked up the starting data point of the first fast cycle to be at the same location during the fast cycle period 
for every experiment. Then, the reconstruction of the slow amplitude was initiated from the first fast cycle with 
a specific value of φ , which in our case was selected to be 2.03π for the convenience of plotting.

To determine the dynamic type of the Faraday wave regime we resorted to the analysis of the total amplitude 
a(t, τ) using the embedding  technique43–45, which with the measurement at a single location on the surface not 
only reveals the type of regularity of the regime (the dimension of the strange attractor) but also the number of 
modes involved. This technique assumes that all the important dynamical features are contained (embedded) in a 
single time series. A strange attractor is characterized as an aperiodic one, in which the surrounding trajectories 
diverge exponentially from each other in time, and, most importantly, is an object of fractal dimension D, i.e. the 
number of small cells of size ǫ required to cover the attractor scales as ǫ−D for ǫ → 0 . The m-dimensional embed-
ding phase-space coordinates are constructed as {ReU[t], ReU[t + δt], ..., ReU[t + (m− 1)δt]} , where δt is an 
arbitrary time delay. The  theory43,45 assures that the topological properties extracted from the above embedding, 
such as dimension and Lyapunov exponent, are equivalent to that of the attractor provided that m ≥ 2D + 1 . 
Practically, it is very difficult to measure D from an experimental data  set6,7,46,47; however, there exist equivalent 
estimates of D, the most common of which is based on the correlation dimension:

where the correlation function C(ǫ) is the number of data-point pairs separated by a distance shorter than ǫ 
in the phase-space multiplied by N−2 with N denoting the total number of data points. The numerical imple-
mentation of (5) has been well developed in  literature6, 47,48. Once C(ǫ) is determined and plotted against ǫ for 
different values of the phase-space dimension m, the limiting slope in the scaling region (e.g. in Fig. 11f it is the 
neighborhood of log(ǫ) = −5 shown by the arrows) defines the value of D . It can be seen from Fig. 11f that the 
slope in the scaling region does not change with further increase of m beyond four and is saturated at the value 
of 1.82± 0.02 , which corresponds to the fractal dimension D of the strange attractor thus indicating that the 
system is in a chaotic state and can be described by a 4-dimensional phase-space formed by real and imaginary 
parts of the two slow amplitudes.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Mate-
rials. Extended data, software, and materials are available upon request by contacting the corresponding author.
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(5)D = lim
ǫ→0

log C(ǫ)

log ǫ
≤ D,

Figure 11.  Data analysis procedure. (a) The recorded surface deformation ζ0 at the vessel’s centre with arrows 
indicating the start and finish of wall motion. The experimental conditions: f = 12.33Hz , A = 1.16m s−2 . 
The domain growth of �L = 2mm starts from L = 120mm at t = 520 s with wall speed 0.15mm s−1 . (b) 
Fourier transform’s amplitude |ζ0(ω)| of the recorded surface deformation. (c) Data points recorded by the 
laser for several fast cycles are presented along with the curves fitted to the data. (d) The extracted slow phase 
φ . In (e) the amplitude envelope C and ReU are shown by blue dotted and red solid curves, respectively. (f) The 
correlation function C(ǫ) obtained from a single time series of ReU for various embedding dimensions m. The 
solid black line with slope one signifies the saturated slope D in the scaling region (between the two arrows) is 
larger than one.
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