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Effect of selection bias on two 
sample summary data based 
Mendelian randomization
Kai Wang1* & Shizhong Han2,3 

Mendelian randomization (MR) is becoming more and more popular for inferring causal relationship 
between an exposure and a trait. Typically, instrument SNPs are selected from an exposure GWAS 
based on their summary statistics and the same summary statistics on the selected SNPs are used 
for subsequent analyses. However, this practice suffers from selection bias and can invalidate MR 
methods, as showcased via two popular methods: the summary data-based MR (SMR) method and the 
two-sample MR Steiger method. The SMR method is conservative while the MR Steiger method can be 
either conservative or liberal. A simple and yet more powerful alternative to SMR is proposed.

As a feasible alternative to expensive and sometimes impossible randomized clinical trials, Mendelian randomi-
zation (MR) is becoming more and more popular for inferring causal relationship between an exposure and a 
trait1–3. Summary data-based two-sample MR methods often take the following two steps: 

Step 1	� Obtain instruments (typically SNPs) from exposure GWAS (Genome-Wide Association Study) that are 
significant at genome-wide level (typically p < 5× 10−8);

Step 2	� Investigate the causal relationship between the exposure and the trait, using the summary exposure 
GWAS statistics at the selected SNPs and a trait GWAS. The summary exposure GWAS statistics are 
those used in Step 1 for SNP selection.

 One appealing feature of these methods is that they only rely on summary statistics on the exposure GWAS and 
the trait GWAS. Individual-level data are not needed.

The inference validity of this two-step approach is affected by selection bias. When conducting causal infer-
ence in Step 2 with respect to the SNPs selected in Step 1, the summary statistics from the exposure GWAS can 
not be regarded as random samples for the true population association strength4–6. Treating them as random 
samples leads to over-estimation of the effect size of these SNPs on the exposure. Association strength in a 
random sample is often much weaker, a phenomenon commonly seen in studies aimed at replicating previous 
findings. This selection bias has been noted in the literature6,7. But its effect on hypothesis testing related to two 
sample summary data based Mendelian randomization is largely unknown.

Two popular MR methods, the summary data-based MR method2 and the two-sample MR Steiger method1, 
are considered. For the summary data-based MR method, the most significant SNP (instead of several SNPs) 
from a gene is selected as the instrument from the exposure GWAS. For the two-sample MR Steiger method, a 
SNP significantly associated with both the exposure GWAS and the trait GWAS is selected. The genotype score 
(0, 1, or 2) at this SNP is denoted by g. The exposure level is denoted by x and the trait value is denoted by y. 
The Wald statistic on chi-square scale for testing the association between the SNP and the exposure is denoted 
by Wgx . Its value is supposed to be large because it satisfies the selection criterion used in Step 1. For instance, 
when the selection criterion is p < 5× 10−8 , there must be Wgx > 29.71679 . The Wald statistic for testing the 
association between the SNP and the trait is denoted by Wgy , which is independent of Wgx.

Results
Summary data‑based MR.  Summary data-based MR2 (SMR) is a popular MR method for inferring 
causality between x and y. Its null is H0 : bxy = 0 , where bxy is the true regression coefficient for x with y the 
response. The two-stage least square (2SLS) estimate of bxy is
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where b̂gx is the least square estimate of bgx , the regression coefficient for g with x the response, and b̂gy is the least 
square estimate of bgy , the regression coefficient for g with y the response. b̂xy is also known as the Wald ratio5. 
Causal relationship between exposure x and y exists if the following test statistic is significant2:

where Wgx = [b̂gx/SE(b̂gx)]2 and Wgy = [b̂gy/SE(b̂gy)]2 are Wald statistics on chi-square scale. The null distribu-
tion of TSMR is approximated by 1-df chi-square using the Delta method2.

There are several issues with statistic TSMR . The derivation of its null distribution assumes that b̂gx is a consist-
ent estimator of bgx and (asymptotically) follows a normal distribution (2, Online Methods). However, these two 
conditions do not hold. If the significance level used in Step 1 is 5× 10−8 , there must be Wgx ≥ 29.71679 which 
implies |b̂gx| ≥

√
29.71679× SE(b̂gx) . As a result, the distribution of b̂gx is not (asymptotically) normal and b̂gx 

is not a consistent estimator of bgx . To numerically demonstrate this point, 10,000 random samples of Wgx are 
generated from a 1-df chi-square with a large non-centrality 13 (to make sure there are reasonable number of 
{Wgx} ). Among them, 322 are significant at genome-wide significant level 5× 10−8 . The quantile-quantile plot 
of these selected {Wgx} against 322 random samples {Wgy} from 1-df chi-square with non-centrality 13 is shown 
in Fig. 1. The distribution of {Wgx : Wgx ≥ 29.71679} is clearly different from the distribution of {Wgx}.

The applicability of the Delta method to approximating the distribution of TSMR is in doubt even in the 
absence of the selection process imposed on Wgx . Approximating the null distribution of TSMR by a 1-df chi-
square is equivalent to approximating the null distribution of b̂xy by a normal distribution. However, according 
to Eq. (1), b̂xy is a ratio of two normals. In general, the distribution of the ratio of two normal variables can not 
be approximated by a normal as it can take a variety of shapes such as bimodal, unimodal, or asymmetric8. It is 
known that if bgx and bgy are both equal to 0, the distribution of b̂xy would be a Cauchy, a fat-tailed distribution 
whose mean and variance do not exist. For the case bgx  = 0 and bgy  = 0 , the distribution of b̂xy can be approxi-
mated by a normal only in certain intervals8.

For the case bgy = 0 , to our best knowledge, there are no known theoretical results regarding whether the 
distribution of b̂xy can be approximated by a normal. The only thing we are sure about is that the distribution of 
b̂xy is symmetric because the distribution of −b̂xy = (−b̂gy)/b̂gx is the same as the distribution of b̂xy . A numerical 
example is used to examine the distribution of b̂xy . Ten thousand random b̂gx ’s are generated from N(

√
13, 1) and 

(1)b̂xy =
b̂gy

b̂gx
,

TSMR = WgxWgy

Wgx +Wgy
,
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Figure 1.   Quantile-quantile plot for selected {Wgx} (322 out of 10,000) and 322 random {Wgy} . The distribution 
of selected {Wgx} is different from the distribution of random {Wgy} as shown by the deviation of the points 
from the 45° line. The vertical line indicates the selection threshold Wgx ≥ 29.71679 which corresponds to 
genome-wide significance level 5× 10−8.
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10,000 random b̂gy are generated from N(0, 1). A normal quantile plot of b̂gy/b̂gx is generated using the qqnorm 
and qqline functions in R with their default settings and is shown in Fig. 2 (left panel). Similar to a Cauchy dis-
tribution, the distribution of b̂xy = b̂gy/b̂gx is apparently fat-tailed compared to a normal: the lower end is more 
negative while the upper end is more positive.

A normal quantile plot is also generated for {b̂xy : Ŵgx ≥ 29.71679} and is shown in the right panel of Fig. 2. 
It may be surprising that the distribution of {b̂xy : Wgx ≥ 29.71679} appears to be a normal. The reason of this 
phenomenon is that the range of b̂gx is greatly reduced under the selection criterion. According to Eq. (1), b̂xy is 
roughly proportional to b̂gy with high probability.

A more general argument that the approximating distribution of TSMR is not 1-df chi-square is the following. 
Since

there is TSMR < Wgy regardless of the distribution of Wgx . That is, TSMR is always dominated by Wgy . Similarly, 
TSMR is always dominated by Wgx . Therefore, TSMR < min{Wgx ,Wgy} . Since Wgx and Wgy approximately follow 
independent 1-df chi-square distributions, the approximating distribution of min{Wgx ,Wgy} can not be 1-df 
chi-square. Neither the approximate distribution of TSMR . Using a 1-df chi-square distribution for TSMR results 
in a conservative test.

We performed extensive simulations to investigate the null distribution of the SMR statistic in a more realistic 
setting by using imputed GWAS genotype data from the Atherosclerosis Risk in Communities (ARIC) study 
of European-ancestry samples9. Specifically, we simulated gene expression levels for each Ensemble gene on 
autosomes at varying numbers of causal eQTLs (n = 1, 5, and 10), (narrow sense) heritability levels ( h2 = 0.1, 
0.2, 0.4, 0.8), and sample sizes (N = 250, 500, 1000, and 2000). We tested association between all SNPs within 
each gene and expression levels of the gene, and only genes whose top associated SNP met the selection criteria 
( p < 5× 10−8 ) were subjected to SMR test. GWAS association signals were randomly assigned from a standard 
normal distribution. Figure 3 shows the QQ plot for the SMR statistics when instrumental eQTLs were selected 
from genes with 5 causal eQTLs and a level of heritability = 0.4 at all four sample sizes. Clearly, the SMR statistics 
were lower than expected null values at the tail of distribution, though the distribution became closer to the null 
at larger sample size, which may be explained by the stronger eQTL signals as shown in our numerical example 
above. The complete set of QQ plots for the SMR test statistic are shown in Supplementary Figs. S1–S12 online. 
Overall, our simulations showed that the SMR statistics were conservative and did not strictly follow the 1-df 
chi-squire distribution, especially when the effect size of each individual eQTL was small on average. These 
results are consistent with our theoretical insights.

More on SMR and a conditional test.  One may want to use an estimate of bgx that takes into account 
the selection. However, such an estimate is not expected to be simple given the complexity of the selection (e.g., 
the SNP is the most significant one among a number of SNPs). Another alternative is to use another exposure 
GWAS independent of the exposure GWAS used in Step 1 to estimate bgx and then compute TSMR . However, this 
is not recommended because TSMR is inherently conservative. TSMR is equal to the half of the harmonic mean of 
Wgx and Wgy . Fixing one of Wgx and Wgy , say Wgx , and change Wgy , TSMR reaches its smallest value Wgx/2 when 
Wgy = Wgx and converges to Wgx when Wgy → ∞ . The conservativeness of TSMR is also observed in simulation 
studies by Veturi and Ritchie10.

The null hypothesis for TSMR was not specifically defined in Zhu et al.2. It is unlikely to be the intended null 
H0 : bxy = 0 . Actually, similar to the Sobel’s statistic popular in mediation analysis, the null corresponding to 

TSMR = Wgy ·
1

1+Wgy/Wgx
,
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Figure 2.   Normal quantile plot for 10,000 b̂xy = b̂gy/b̂gx generated under bgx =
√
13 and bgy = 0 . 

The distribution of {b̂xy} appears to be fat-tailed compared to a normal (left panel). The distribution of 
{b̂xy : b̂gx is significant} (436 out of 10,000) seems to be a normal (right panel) due to selection imposed on b̂gx . 
See the text for explanation.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7585  | https://doi.org/10.1038/s41598-021-87219-6

www.nature.com/scientificreports/

TSMR is H0 : bgx = 0 or bgy = 0 . For this null, a statistic more powerful than TSMR is min{Wgx ,Wgy} . The statistic 
min{Wgx ,Wgy} rejects the null H0 : bgx = 0 or bgy = 0 if and only if both Wgx and Wgy are significant. Therefore, 
whenever min{Wgx ,Wgy} rejects the null, TSMR will but not vice versa. This is because TSMR < min{Wgx ,Wgy}.

A test more powerful than min{Wgx ,Wgy} (hence also more powerful than TSMR ) in the current situation 
is a conditional test. Because the SNP is selected for its significant association with the exposure, the situation 
bgx = 0 can be excluded. Given this information, a meaningful null would be H0 : bgy = 0, bgx �= 0 for which a 
test statistic is Wgy . The null is rejected when Wgy is significant. This test, conditional on a significant Wgx statis-
tic, assumes that there is no pleiotropy. That is, the selected SNP affects the trait only through the exposure and 
there are no other paths. In other words, the selected SNP is a valid instrument. In light of Eq. (1), bgy = 0 if and 
only if bxy = 0 when the possibility of bgx = 0 is excluded. Hence the null for this conditional test is equivalent 
to H0 : bxy = 0 . This test is asymptotically valid because Wgy asymptotically follows a 1-df chi-square distribu-
tion. The threshold for significance for this test is not at the genome level. Rather, it is at the gene level and only 
needs to be corrected for the number of genes for which SNPs are selected for instruments. This results in a more 
powerful testing procedure than using a genome-wide threshold.

An empirical study.  We compared the performance of conditional test we proposed and the SMR test on 
an empirical study of schizophrenia. We used to-date the largest GWAS summary statistics for schizophrenia11 
and the eQTL results from analysis of 1387 brain samples (prefrontal cortex) by the PsychENCODE12 (down-
loaded from the SMR data resource website). In total, 9639 genes were tested for SMR at a top associated cis-
eQTL ( p < 5× 10−8 ) and 65 genes were significant after Bonferroni correction. In contrast, the conditional test, 
whose test statistic is Wgy and considers only those instrumental eQTLs, discovered 127 Bonferroni-significant 
genes, including 62 genes not detected by SMR ( p < 0.05/9639 = 5.18726× 10−6 . Supplementary Table  S1 
online). Among those genes missed by SMR, there were several strong candidates for schizophrenia, such as 
AKT313–15, RGS616,17, and KCNN3. It may not be surprising that AKT3 and RGS6 were identified as these two 
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Figure 3.   Quantile-quantile plot for simulated SMR statistics against statistics of 1-df chi-squire distribution. 
Instrumental eQTLs for SMR test were top associated eQTL ( p < 5× 10−8 ) selected from genes whose 
expression levels were simulated under a genetic model of 5 causal eQTLs and heritability of 0.4 at four different 
sample sizes (N = 250, 500, 1000, and 2000). The grey areas represent the 95% confidence band around 1-df chi-
square statistics.
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harbored genome-wide significant variants ( p < 5× 10−8 ) in original GWAS11, but the discovery of KCNN3 
was novel and the strongest SNP-level association evidence for this gene was only at p = 9× 10−7 (rs10796933). 
Of note, our previous study also showed evidence for the association of KCNN3 with schizophrenia through 
integrated analysis of GWAS with methylation QTL18.

Two‑sample MR Steiger method.  The two-sample MR Steiger method1,19 assumes that there is a causal 
relationship between the exposure and the trait and that the selected SNP is a valid instrument for one of them 
(but it is unknown for which one)1. A SNP is selected not only for its association with the exposure but also for its 
association with the trait1,19. The null for the two-sample MR Steiger test is H0 : ρgx = ρgy where ρgx = Corr(g , x) 
and ρgy = Corr(g , y) are the (population) Pearson correlation coefficients. Let ρ̂gx and ρ̂gy be the sample correla-
tion coefficients corresponding to ρgx and ρgy , respectively. Using Fisher’s Z transformation, there are

where nx and ny are sample sizes. The null H0 : ρgx = ρgy is equivalent to saying that the mean of zqx is equal to 
the mean of zqy . The two-sample MR Steiger method uses the following statistic1,19:

If TSteiger is significant and positive, the causal direction is from x to y. If TSteiger is significant and negative, 
the causal direction is from y to x.

However, the statistic TSteiger does not approximately follow a standard normal distribution because the SNP 
is selected for its significant p-values. Using a selection criterion p < 5× 10−8 , or Wgx and Wgy greater than 
29.71679 on 1-df chi-square scale, the sample correlation coefficients |ρ̂gx| and |ρ̂gy| would be at least 0.4823663, 
0.1700451, or 0.05443772 for nx = 100, 1000, or 10,000 given the relationship |ρ̂gx| = 1/

√

1+ (nx − 2)/Wgx  . 
Although this selection procedure is useful for selecting the instrument SNP, it imposes a lower limit on |ρ̂gx| 
and |ρ̂gy| . |ρ̂gx|

(

|ρ̂gy|
)

 over-estimates |ρgx|
(

|ρgy|
)

 and is not consistent. The mean of the statistic TSteiger is not 
around 0 even when H0 : ρgx = ρgy holds if nx  = ny . The distribution of zgx is truncated and is not normal. So 
is the distribution of zgy . The variance of zgx is smaller than 1/(nx − 3) due to selection. Similarly, the variance 
of zgy is smaller than 1/(ny − 3) . When nx = ny , the numerator of TSteiger is around 0 and TSteiger is conservative. 
When nx  = ny , the numerator of TSteiger is no longer around 0 and TSteiger is liberal. Overall, the distributions 
of zgx and zgy are truncated normal instead of normal. The argument that the statistic TSteiger follows asymptoti-
cally a standard normal does not hold. The two-sample MR Steiger method can be either liberal or conservative.

Numerical examples are constructed. First we consider the case nx = 1000, ny = 10,000 and 
demonstrate the effect of selection severity. Ten thousand random samples of zgx and zgy are inde-
pendently generated from the normal distributions shown in Eqs. (2) and (3). These zgx and 
zgy form a 10,000× 2 matrix. The first column contains values for zgx and the second for zgy . 
O n l y  t h e  r o w s  s a t i s f y i n g  zgx ≥ 0.5 ln[(1+ 0.1700451)/(1− 0.1700451)] = 0.17171315  a n d 
zgy ≥ 0.5 ln[(1+ 0.05443772)/(1− 0.05443772)] = 0.05449159 are kept. This selection criterion corresponds 
to 5× 10−8 on the p-value scale. When ρgx = ρgy = 0.15 , there are 2557 (zgx , zgy) selected on which the statistic 
TSteiger is computed. The sample mean of selected {zgx} is 0.1903508 while the sample mean of selected {zgy} 
( = 0.1512602 ) is lower, as expected. A normal quantile-quantile plot of TSteiger is shown in the left panel of 
Fig. 4. Clearly the distribution of TSteiger is different from normal. Type I error rates are inflated. At significance 
level 0.05 and 0.01, the type I error rates (i.e., the proportion of significant TSteiger statistics) are 0.08916699 
and 0.01486117, respectively. If ρgx = ρgy = 0.19 , the selection is less severe. Almost 75% (7434 out of 10,000) 
(zgx , zgy) s are selected. Even so, the distribution of TSteiger shows apparent departure from normal as shown in 
the right panel of Fig. 4. At significance level 0.05 and 0.01, the type I error rates are 0.0306699 and 0.005111649, 
respectively. In this case, TSteiger appears to be conservative.

We also considered larger sample sizes. When nx = 100,000, ny = 300,000 , and ρgx = ρgy = 0.015 , 2,375 
(zgx , zgy) s are selected. When nx = 150,000, ny = 400,000 and ρgx = ρgy = 0.015 , 6,410 (zgx , zgy) s are selected. 
As shown in Fig. 5, there is apparent departure of the distribution of TSteiger from a normal. At significance 
level 0.05, the type I error rate is 0.09515789 for the case nx = 100,000, ny = 300,000 and is 0.03728549 for 
nx = 100, 100, ny = 400,000 . At significance level 0.01, the type I error rates are 0.01515789 and 0.006084243, 
respectively. The type I error rates can be either inflated or deflated.
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One remedy would be to estimate ρgx and ρgy by maximizing the conditional likelihood given the SNP selec-
tion criteria. Let φ(·) and �(·) denote the density function and the distribution function of the standard normal, 
respectively. The likelihood ratio statistic for testing H0 is 2 log(L1/L0) where
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Figure 4.   Normal Q-Q plot of simulated TSteiger with nx = 1000, ny = 10,000 . {(zgx , zgy)} are selected from 
10,000 replicates at genome-wide significance level 5× 10−8.
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Figure 5.   Normal Q-Q plot of simulated TSteiger with ρgx = ρgy = 0.015 . {(zgx , zgy)} are selected from 10,000 
replicates at genome-wide significance level 5× 10−8.
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with cgx and cgy selection thresholds corresponding to zgx and zgy , respectively. However, due to selection, com-
putation of L1 and L0 can be challenging. One alternative method is to use an exposure GWAS and a trait GWAS 
that are independent of those used to select the SNP. However, such studies may be impractical to obtain6.

Discussion
Summary statistics MR is subject to selection bias, resulting in excessive false positives (for instance, the MR 
Steiger method) or missed discoveries (for instance, the SMR method). This bias is a form of winner’s curse. 
Selection bias has been discussed in the literature in the context of the choice of the instrument SNPs7, colocali-
sation test20, and estimation of exposure effect5,6.

Our work complements previous studies on selection bias due to selection of SNPs. While previous work 
focused on the effect of this bias on the Wald ratio5,6 (i.e., estimation), ours focuses on testing whether the expo-
sure causally affects the outcome (i.e., inference). Selection bias leads to underestimation of the Wald ratio5 but its 
effect on type I error rate can be either liberal or conservative depending on the MR method used. Most impor-
tantly, the SMR method is conservative even in the absence of selection bias where b̂gx is approximately normal.

Correcting for selection bias is a challenging task. Zhao et al.6 get around this issue by using an independ-
ent exposure GWAS. On the other hand, our conditional test, an alternative to the SMR method, uses only the 
trait GWAS. It may be expanded to accommodate multiple instrumental SNPs and the presence of pleiotropy.
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