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Dynamic entropy of human blood
Mariusz A. Pietruszka 

Temperature control is a process that is used by biological systems to maintain a stable internal state 
for survival. People have an individually variable physiological temperature of about 36.6 °C, which 
can be modified by many undesirable factors. Based on an analysis of a time series of extracellular 
ionic fluxes that were obtained using the non-invasive solute-semiconductor interface technique, 
I show that this extremely specific (critical) temperature is encoded by a local minimum in the 
dynamic entropy of an isolated drop of human blood. Moreover, a dynamic zeroth-order normal 
fluid/“superfluid” nonequilibrium phase transition, which was reflected by a spontaneous symmetry 
breaking that occurred in the phase space, was revealed. The critical scaling of the dynamic measures 
for the covariates such as the spectral signature and Lyapunov exponent was also determined.

Detecting the presence of a regularity/irregularity or chaos in the dynamic ionic fluxes of an evolving biological 
system is an important task that can be solved by performing detrended fluctuation analysis and subsequent 
analyses of the different dynamic measures (quantities). In what follows, I will show that the results of some 
complementary fluctuation assessment methods for the 1/f  scaled time series (pink noise) that is generated by 
the extracellular ionic fluxes in living blood cells show long-range correlations—or even coherence—at a criti-
cal value of temperature, which confirms the results for the spectral signature ( β ) statistics that were recently 
 obtained1 for human blood, which was treated as an extended dissipative dynamical system using a wider range 
(Kolmogorov–Sinai entropy, Hurst exponent, Lyapunov exponent, autocorrelation, average mutual information 
and Takens’ phase space reconstruction) of advanced statistical methods. Moreover, further experimental evi-
dence was found for the claim that the autonomous organisation of a cell (or ensemble of cells) is accomplished 
by self-organised criticality, which is an orchestrated instability that occurs in a system.

After the temperature scales were established at the beginning of the eighteenth century, it was found by taking 
many measurements that a healthy human being has a temperature of about 36.6 °C. [Note that temperature is 
an intense variable, and therefore, it does not depend on the “size” of a system]. Hence, it was an empirical fact. 
Conversely, although entropy, which is an extensive variable, cannot simply be measured, it can be calculated 
and interpreted according to whether the system was classical or quantum, static or  dynamic2. Here, it was found 
that by performing such calculations, the profound minimum in the dynamic entropy vs temperature might be 
localised. This local extreme indicates a temperature of about 36.6 °C, which is the main finding in this article.

The last statement means that even without knowing this temperature, its peculiar value can be read from a 
physiological time series of an isolated drop of human blood of a healthy individual. This can be accomplished 
by performing a detrended fluctuation analysis on a uniformly sampled time signal (voltage) to obtain the Hurst 
exponent, the largest Lyapunov exponent or dynamic entropy (defined as the “entropy rate”2) using numerical 
calculations. These results are also consistent with recently  published1 experimental data using adequate math-
ematical  procedures3 that enable these different measures to be estimated.

The history of this enterprise, which culminated in the present paper dates back to the statement that the 
“kinks” in the chemical potential localise the critical temperatures in the investigated condensed-matter system 
at the (classical) phase  transitions4–8. It was noted that a system undergoes a phase transition at such a (criti-
cal) temperature for which the chemical potential acquires its critical value. In addition, it was found that these 
phase transitions can be detected by a kind of proximity  effect9,10. Consequently, a similar “contact” method was 
proposed to determine the level of the chemical (redox) potential for individual cell ionic oscillations using an 
n-type semiconductor—electrolyte  interface11. The last method enabled the characteristic temperatures of grow-
ing pollen tubes and peripheral human blood to be  localised1. Bearing in mind that specific heat is proportional 
to a derivative of entropy and behaves similarly to the chemical potential during phase  transitions12, the natural 
consequence was to study the temperature dependence for entropy and the other dynamic quantities for human 
blood. It should be noted that, unlike the usual concepts of entropy, the kind of entropy that is considered in this 
article is not a function of the state of a system, but rather a function of its dynamics.
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Results and discussion
Detrended fluctuation analysis, which removes the linear trends, mean value or (piecewise) linear  trend13 from 
a vector of an experimental time series  data1, was conducted after which the different dynamic measures were 
calculated. The Hurst  exponent14 was calculated using an R/S  analysis15. A corrected R/S method, an empirical 
and corrected empirical method and a theoretical Hurst exponent were also calculated. Estimating the Hurst 
exponent for a data set provided a measure of whether the physiological series was a pure random walk or 
whether it had underlying trends. The largest Lyapunov ( � )  exponent16,17, which is by definition the rate of the 
exponential separation with the time of initially close trajectories and describes the speed of the convergence or 
divergence of trajectories in each dimension of the attractor, was also estimated. The autocorrelation function 
(determines the presence of a periodic signal that is obscured by noise) and the average mutual  information18 
were calculated to obtain the time delay (and consequently, the tau.acf and tau.ami variables as in Supplementary 
Information), which was necessary to compute the embedding dimension for maximal Lyapunov exponent and to 
reconstruct the phase  space19 for the control system and the human blood (Table 1 and SI Figs. 1–3). The calcula-
tion in R programming  language3 was performed on the detrended raw data from a number of (15 × 5000 × 2) 
time series (at a sampling rate of 4.1 Hz).

Finally, the approximate ( Sa ) and sample ( Ss ) entropy was determined in order to quantify the amount of regu-
larity and the unpredictability of the fluctuations in a time  series20,21. In general, a low value of the (approximate) 
entropy indicates that the time series is deterministic, whereas a high value indicates randomness (in some physi-
ological signals this is the exception). The sample entropy is similar; however, it does not count self-matching, and 
it does not depend on the length of the time series as much. Needless to say, the fuzzy or permutation entropy 
can also be used as a nonlinear complexity measure for a time  series22–24.

For the purpose of research, living organisms can be approximately treated as condensed-matter systems with 
thermodynamic constraints. The vital role of temperature for cell life is especially visible in the results that are 
presented in Table 1 (supported by SI Figs. 1–3) and Fig. 1 in which a pronounced peak in the dynamic entropy 
inverse ( S−1 ) at a physiological temperature of 36.6 °C occurs for the blood of a human being. Moreover, the 
inverse of the largest Lyapunov exponent ( �−1 ) as a function of the temperature yields the optimum temperature 
Tc = 36.59 ± 0.09 °C (R2 = 0.84, half-width 1.09 ± 0.33 °C); a similar plot was obtained and is presented in SI Fig. 4. 
Looking at SI Fig. 4, we can see the resemblance to the � -type transition (cf. Figure 1.16 in Ref.25 or Fig. 4b in 
Ref.26), which, if it occurs, is of a dynamic origin in our case. It should be noted that the spectral signature β , 
which corresponds to the slope of the linear power spectral density plot, also reached a maximum at a physiologi-
cal (optimal) temperature of about 36.6 °C—compare with Fig. 6 in Ref.1. Therefore, I suggest that for the optimal 
(critical) temperature of a system (where the entropy has an extreme), we can deal with a dynamic zeroth-order 
phase transition from a normal fluid flow (with viscosity) to a “superfluid” flow (with low or no viscosity) of the 
ionic fluxes with a diminished or no energy dissipation, respectively, which thereby facilitates their concerted 
motion or simply super-diffusion. If the first case occurs, at critical temperature of 36.6 °C, the fluid attains the 
“superfluid” (close to equilibrium, quasi-reversible) state and passes to (round-trip) the state of a normal fluid 
(irreversible) where it begins to flow according to the usual laws of  hydrodynamics27.

The fact that a system violates the literal form of the ergodic hypothesis is an example of a spontaneous sym-
metry breaking. Here, the isotropic volume of the phase trajectory in a phase space is not conserved (Liouville’s 
theorem has been violated) and decreases in Tc (SI Fig. 3). In addition, the initial spherical O(3) symmetry at 
T  = Tc tends to the lower O(2) symmetry at T = Tc (the isotropic phase volume in the 3D space in SI Fig. 3b is 
projected onto the circle in 2D in SI Fig. 3c). This indicates that a zeroth-order dynamic phase transition might 
occur (compare SI Fig. 2a with Fig. 7 in Ref.28 for a critical behaviour—where we observe a linear damping, which 
means that near the critical point the correlations that occur with time are long range). Note that, as yet undiscov-
ered, hidden symmetries appear in the phase space of an evolving biological system. On the other hand, this col-
lective mode of a system would be equivalent to the coherent (critical) state from our previous  work1. Here, a new 
super-molecular order appeared, which is characterised by the occurrence of dissipative  structures28—“certain 
fluctuations are amplified and give rise to a macroscopic current”. Supposedly, the resonance state at criticality 
can be elucidated by the kinetics of the synchronised ionic plasma oscillations (ionic plasmons) or even by the 
ionic pairs of fermions or charged bosons. However, the plasmons or other quasi-particles are coherent oscil-
lations of all of the charges in a system, and this coherence can be understood exclusively in quantum  terms29. 
Even though quantum theory does not account for the motion of macroscopic particles, quantum phenomena 
(interactions) are responsible for the creation of quasi-particles (collective excitations) that have been observed 
in the classical  domain30. The possible superfluid (non-dissipative, with no affinities, no gradients of temperature 

Table 1.  Human blood. Multivariate analysis of the extracellular ion fluxes at a critical temperature—dynamic 
measures.

Temperature Spectral signature ( β)1
Empirical Hurst exponent 
[theoretical]

Largest Lyapunov exponent 
(emb. dims) Approximate entropy ( Sa) Sample entropy ( Ss)

36.6 ± 0.5 °C 
Normal 1.0067 ± 0.024 0.9941012 − 14.04 

(6)
0.2584685 
Low value Deterministic 0.1454900

Control 
(0.9% NaCl) 
36.8 ± 0.5 °C

0.475 ± 0.025 0.8140833 
[0.530]

− 15.01 
(12)

0.8272206 
High value Random 0.7133492
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or no gradients of chemical potential) ionic flow could be the macroscopic quantum state that was observed in 
the experiment at criticality, which was beyond the passive and active transport of ions.

Entropy, spectral signature, Lyapunov exponent and cross-correlations. Because of the regular 
distribution of entropy S(T) , Lyapunov exponent � and the previously  obtained1 spectral signature β as a func-
tion of temperature (they all form a Lorentz resonance curve around a critical point), the cross-correlations were 
estimated (SI Fig. 5). Therefore, the following can be suggested.

Because the Kolmogorov–Sinai entropy of finite classical dynamical systems is finite (Kouchnirenko’s theo-
rem), at criticality, we obtain an empirical relationship

which also applies in close proximity to the optimum temperature. The dynamic entropy Sa,s = St(T) , which 
is a Kolmogorov–Sinai invariant of the classical dynamical systems that is calculated in the time domain ( t  ), is 
proportional to the reciprocate of the slope of the power spectral density,β = βω(T), which was  determined1 
in the frequency domain ( ω) at a given temperature ( T) . In addition, the negative value of the largest Lyapu-
nov exponent (�) fulfils a similar dependence β(T) ∝ −�−1(T) , which means that S(T) ∝ �(T) (which is in 
accordance with Margulis theorem). All of the above dynamic measures seem to show a critical point scaling 
in the temperature domain.

Optimum cell life at the bottom of the entropy valley: arrow of time. While the main output 
data are presented in Table 1, the resonance-like curve(s) that are shown in Fig. 1 demonstrate the minimum 
dynamic entropy of human blood at the “optimum” temperature. The latter result may indicate that a “healthy” 
(i.e., normal) cell(s) evolves along a path of minimum entropy in accordance with the theorem of minimum 
entropy  production28. This result strikingly suggests that a living system (here: a human being) is “prepared” by 
corresponding evolutionary mechanisms to live along the bottom of the entropy valley where it permanently 
experiences criticality (while struggling to preserve its relative stability) in order to reach its optimum per-
formance—note that the “entropy valley” corresponds to the  previous1 “ridge of criticality”. This comparison, 
however, enables the “arrow of time” to be determined because the irreversible evolution of a system—visualised 
as “a pile of sand” on which new grains of sand were slowly sprinkled to cause “avalanches”—and is associated 
with the phenomenon of self-organised  criticality31, corresponds to a “random walk” along the ascending and 
broadening entropy valley (see the inset in Fig. 1). One can imagine that initially a narrow (a small temperature 
variance) valley is a strong attractor for a system. The wider (and shallower) valley (large variance) is no longer 
as “attractive” to an evolving system. The system temperature (at the bottom of the valley), which is slightly lower 
or higher than 36.6 °C, must be recurrently and self-consistently corrected by the evolving system (healing?) in 

β(T) ∝
1

Sa(T)
∼=

1

Ss(T)
∝ −

1

�(T)

Figure 1.  Inverse of the approximate (Sa)(or sample—Ss ) dynamic entropy as a function of temperature for 
an isolated drop of human blood (normalised). The points, which were calculated from an experimental time 
series for the extracellular ionic fluxes, yielded the critical temperature Tc = 36.54 ± 0.07 °C (36.42 ± 0.16 °C) with 
a half-width of 2.67 ± 0.12 °C (1.86 ± 0.68 °C). The solid red (blue) line corresponds to the Lorentz fit with the 
determination coefficient R2 = 0.72 (0.75), which is smoothed by the B-spline. The temperature was measured 
at 20 min intervals (time series consisted of 5000 points; sampling 4.1 Hz) with an accuracy of ± 0.5 °C; the 
calculated yerror = 0.15 (0.09). The errors are represented by the drone-like objects in the plot. The calculation in 
R was performed on the detrended raw data from a number of (15 × 5000 × 2) time series. The data in the right 
parenthesis above was calculated for Ss . Inset Illustration of the “valley of entropy” and “arrow of time” (see text).
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order to work most effectively. According to our intuition, a system that is too far from this “attractor” can never 
return to these optimal  conditions16—cell death occurs. This reveals the existence of a very refined tuning in 
the systems that are endowed with life. Thus, from a physical point of view, (cellular) life seems to be a struggle 
against entropy, which continues to grow over time. This assertion has been our everyday mental experience and 
intuition, but along with the comparison of the phenomenon of criticality and dynamic entropy parameterised 
by temperature, it has gained a scientific dimension.

The arrow of time is the concept that posits the asymmetry of time. It was developed in 1927 by Sir Arthur 
Eddington and is an unsolved general physics question. The standard answer to this question is that the arrow 
of time follows from the second law of thermodynamics ( δS ≥ 0)—that entropy is not time-reversible or is ulti-
mately imposed by the evolution of the universe in  time32. However, it seems that the arrow of time will appear 
naturally in a biological cell that is treated as an open (thermo)dynamic system.

Multivariate analysis confirmed the 1/f criticality of “optimally” living cells: possible applica-
tions in biology and medicine. The (health) state of a specific system (here: ourselves) seems to be ulti-
mately coded in the ion  exchange1 of the blood cells, which can be relatively densely sampled (at 4.1 Hz) with a 
high degree of accuracy (~ 0.1 μV) using the solute-semiconductor interface  technique11. Similar to the spectral 
signature β, it seems that the dynamic variables that were considered such as entropy ( Sa,s ), the Hurst exponent 
(simple, corrected R/S or empirical) or the largest Lyapunov exponent exhibit a well-defined extreme that can be 
localised at a critical temperature. This fact can possibly be used as an indicator of a “healthy” vs an “unhealthy” 
physiological state in biology and medicine not only on the basis of the entropy ( S ) value of the measured signal 
but also from the covariate measures. It seems that a directed in-depth analysis may provide tests for detecting 
certain pathological states such as cancer or inflammation states. When we consider the dynamic entropy of 
human blood in combination with the other indices in question, we can relate it to individually variable homeo-
stasis, i.e., a condition in which a man finds himself in a state of (extended)  criticality1. As is shown in Table 1, 
all of the spectral indices, the Hurst and Lyapunov exponents as well as the Sa,s entropy can possibly become 
specific markers of various diseases after they have been verified in a clinical randomised research that has been 
conducted on a significant number of patients.

Additionally, the connection between the “valley of entropy” and the “arrow of time”, which arises as a result 
of criticality, could be the basic “road map of life” of various phenotypes of biological objects and, of course, for 
Homo sapiens. I suppose (see the double peaks in Figs. 4–5 in Ref.1) that a better measurement resolution (tenths 
of nano-volts) and denser sampling, especially an extremely accurate temperature measurement and stabilisation, 
could reveal the hyperfine structure of these dynamic measures for blood. The seemingly smooth and featureless 
structure of the dependence of entropy on temperature could carry rich and fundamental information about the 
dynamic “state” of the system under study. However, we must be aware that there might also be an alternative 
scenario: a universal (or individually variable) critical temperature for all humans as a body reference value for 
homeostasis and as a benchmark for good health.

Emergent behaviour at criticality. A lower or higher entropy value could be associated with a different 
degree of energy dissipation in the longitudinal or transverse modes of the oscillations of pollen  tubes26,33 in 
which the energy dispersion is considerably lower in the direction of growth. Recently we observed long-range 
correlations of plant and human cells at “critical”  temperatures1. From the result of �(T) < 0 and the small 
Sa,s(T) value at the optimum (Table 1), it can be concluded that a system oscillates in a stable manner, the influx/
efflux of particles is uniform, the molecular engines work evenly and there is a low level of deterministic chaos, 
which indicates an emergent (collective) behaviour at criticality. Therefore, a similar conclusion concerning the 
intervening ions can be drawn for the pollen tubes that evolve (oscillate) in a consistent manner at criticality.

Finally, the following conclusion can be drawn from our recent and current observations, calculations and 
results. Normal cellular life is situated on an extended critical ridge or—equivalently—on the bottom (mini-
mum) of an entropy valley that has a well-defined arrow of time through criticality. It seems that the classical 
path of least  action34 for dynamic systems corresponds to the (most energy efficient) principle of the least 
dynamic entropy for a “chaotic” thermodynamic system. This assertion is in line with the  theorem35 that the 
non-equilibrium system develops in such a way that it attains the minimum entropy production that also applies 
to complex systems in  biology36.

Conclusions
Entropy is a crucial state variable in thermodynamics, statistical mechanics, quantum mechanics and information 
processing that carries global information about whether a system is ordered, less ordered or disordered. The 
dynamic entropy of a living system, which is considered in this article, is not a function of the state of a system, 
but a function of its dynamics. It was found that the dynamic entropy of human blood as a function of tempera-
ture can be determined (calculated) by analysing the time series of the electromotive force that is generated by 
the unperturbed extracellular ion fluxes. Due to these critical fluctuations, the dynamic entropy of human blood 
has a (molecularly coded) minimum at an exceptionally specific temperature of about 36.6 °C. What is more, at 
a critical temperature, entropy reflects the stable deterministic (wave) component that underlies the dynamics 
of this system. The implications of these important observations can be far-reaching and can be of broad sig-
nificance not only in physiology and medicine, but also in the basics of the biophysical sciences, which would 
enable “hidden treasures” to be uncovered in the nonequilibrium statistical mechanics of the phenomenon of 
life when it is treated as a dynamical process.
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