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Evaluating the association 
between extreme heat 
and mortality in urban 
Southwestern Ontario using 
different temperature data sources
Kristin K. Clemens 1,2,3,4,10*, Alexandra M. Ouédraogo1, Lihua Li1, James A. Voogt5, 
Jason Gilliland3,4,5,6,7, E. Scott Krayenhoff8, Sylvie Leroyer9 & Salimah Z. Shariff1

Urban areas have complex thermal distribution. We examined the association between extreme 
temperature and mortality in urban Ontario, using two temperature data sources: high-resolution 
and weather station data. We used distributed lag non-linear Poisson models to examine census 
division-specific temperature–mortality associations between May and September 2005–2012. We 
used random-effect multivariate meta-analysis to pool results, adjusted for air pollution and temporal 
trends, and presented risks at the 99th percentile compared to minimum mortality temperature. As 
additional analyses, we varied knots, examined associations using different temperature metrics 
(humidex and minimum temperature), and explored relationships using different referent values 
(most frequent temperature, 75th percentile of temperature distribution). Weather stations yielded 
lower temperatures across study months. U-shaped associations between temperature and mortality 
were observed using both high-resolution and weather station data. Temperature–mortality 
relationships were not statistically significant; however, weather stations yielded estimates with 
wider confidence intervals. Similar findings were noted in additional analyses. In urban environmental 
health studies, high-resolution temperature data is ideal where station observations do not fully 
capture population exposure or where the magnitude of exposure at a local level is important. If 
focused upon temperature–mortality associations using time series, either source produces similar 
temperature–mortality relationships.

With rising global temperatures, there has been increased attention upon the association between ambient tem-
perature, morbidity, and mortality. Extremes in temperature have been linked with cardiovascular and respiratory 
events, heat illness, and even  death1–3.

The health impact of extreme temperature on urban communities warrants special attention. Cities not only 
have high population density and house heat-vulnerable communities (e.g. older adults, homeless)4, but they 
have a complex microclimate. Thermally, cities exhibit higher surface and near-surface atmospheric temperature 
than non-urbanized areas due to modifications to the cover, form and materials used in these regions (i.e. urban 
heat island effect). During heat waves governed by large-scale meteorological conditions, urban heat island effects 
can also amplify or prolong the duration of heat  events5.

When conducting environmental health studies in cites, it is important to use the right temperature data 
source. Most studies use weather  stations1,2,6–8, but if situated near airports, water or grassy areas, stations 
might not adequately capture complex thermal distribution in cities, particularly where stations are sparse and 
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 remote9,10. In cities that incorporate irrigation that sustains more vegetation, and in those with shading effects 
between buildings, there might also be daytime temperature bias when rural weather stations are used.

Outside of Canada, an increasing number of studies have used high-resolution temperature data to capture 
complex temperature exposure in urban  regions11–15. In our country, weather stations are still most often  used2,8,16. 
Given ambient temperatures in Canada are increasing well beyond global  rates17, it is important to have a full 
understanding of the benefits and limitations of temperature data sources available for urban heat-health studies.

With access to rich administrative health data and a contemporary high-resolution weather data source 
(Canadian Urban and Land Surface Modeling System, or GEM-SURF), we examined the relationship between 
temperature and mortality in urban Southwestern Ontario using two data sources available to researchers: 
GEM-SURF and weather stations.

Methods
Design and setting. We conducted population-based time series analyses to investigate the association 
between temperature and mortality in urban Ontario, Canada. Given heat-health risks vary  regionally14, we 
focused upon Southwestern  Ontario18, a 21,639  km2 region, bounded North to South by the Bruce Peninsula and 
Lake Erie (latitudes 41.92–45.23), and West to East by Windsor and Niagara Falls (longitudes − 83.11 to − 78.93). 
Southwestern Ontario has moderate humid continental climate, with warm to hot humid  summers19.

In Ontario, people have universal access to hospital, diagnostic, and physician services. Information on use of 
health services is collected and maintained in databases held at ICES (formerly the Institute for Clinical Evaluative 
Sciences). Datasets are linked using unique encoded identifiers and analyzed at ICES. We followed the REport-
ing of studies Conducted using Observational Routinely-collected Data Statement (Supplementary Table S1)20.

Population. We included all residents of urban Southwestern Ontario who died of a non-accidental cause 
between May and September 2005–2012. We defined urban areas as regions with ≥ 10,000  residents21. We 
focused upon May to September as temperatures are highest during these calendar months in our  region22, we 
expected temporal variation in temperatures over this period, and we anticipated that higher temperatures ear-
lier (May) and later (September) in the season might be unexpected and more  dangerous12.

We excluded residents: (1) with missing or invalid identification numbers that precluded linkage; (2) who 
were not Ontario residents; and (3) who lived in long-term care as these individuals might have different risks 
of temperature-related  outcomes23. We also restricted to individuals who lived in a region where a temperature 
exposure could not be assigned using our data sources (described below).

Data sources. Data sources included health administrative and environmental weather data. ICES health 
administrative databases included the Registered Persons Database of Ontario which was used to ascertain 
demographic information. This database contains information for all those who received a health card in our 
province. We obtained causes of death from the Office of the Registrar General Death Database. We used the 
Ontario Local Health Integration Network administrative boundaries (i.e. regions 1–4) to determine the geo-
graphic location of Southwestern Ontario residents (Supplementary Fig. S1).

We captured characteristics and comorbidities using databases including the Ontario Marginalization Index, 
a geographically-based index that quantifies degrees of marginalization (residential instability, material depriva-
tion, dependency, and ethnic concentration)24. We used the Canadian Institute for Health Information’s Discharge 
Abstract Database and the National Ambulatory Care Reporting System Database to assess comorbidities. These 
databases contain diagnostic and procedural information gathered during inpatient hospital stays and emer-
gency department encounters respectively (via International Classification of Diseases [ICD] and Canadian 
Classification of Health Interventions codes). We further used datasets derived from validated case definitions 
of comorbidities, including the Congestive Heart  Failure25, Chronic Obstructive Pulmonary  Disease26, Ontario 
 Diabetes27, and Hypertension  datasets28. The Ontario Health Insurance Plan database contains physician diag-
nostic and billing information, and was used for additional covariates. A list of the administrative codes used in 
this study is included in Supplementary Table S2.

We acquired weather station and high-resolution estimates of daily temperature from Environment and Cli-
mate Change Canada (ECCC). GEM-SURF (high-resolution, urbanized data source) was developed to predict 
weather and air quality in densely populated urban regions, and provides hourly high-resolution (1 km × 1 km) 
hindcasts of surface and near-surface meteorological variables in urban environments of various densities. 
GEM-SURF validation studies have examined energy balance fluxes and radiative surface temperature, and 
ground-based validations using vehicle traverse or tower sites have been completed across multiple cities, seasons, 
and types of topography in  Canada29–33. In Montreal Quebec, air temperature bias was − 1/+ 1  K32,33. In Toronto 
Ontario and Vancouver British Columbia, air temperature bias was < 0.5 degree Celsius (°C) with a standard 
deviation error < 1.3 °C29,31. GEM-SURF accurately identifies intra-urban hotspots, and has improved model 
performance when urban surfaces are  included29–33.

To facilitate linkage of GEM-SURF with ICES data sources, we aggregated temperature to the daily and dis-
semination area [DA] level (small geographic areas composed of one or more neighborhoods, population of 
400–700 persons)34. Consistent with previous studies, we assigned temperature exposure based upon residential 
 location8.

As our second temperature data source, we used hourly data from weather stations (Supplementary Fig. S1)35. 
ECCC weather station data has < 1 °C measurement bias, consistent with international standards (decimal 
precision of 0.1 °C)36. Due to the scarcity of stations in some areas, we summarized daily temperature values to 
the census division level (i.e. county or regional district)21. If only a single weather station was located within 
a particular census division, we used daily station values to estimate exposure for the entire census division. If 
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there were multiple monitoring stations in a census division, we calculated the average of measures to produce 
an overall exposure estimate. Figure 1 illustrates differences in temperature exposure with use of GEM-SURF 
vs. weather stations. The maximum daily temperature from a single weather station on a single day is provided 
along with nearby temperatures from GEM-SURF, summarized by DA. The weather station, located outside 
the urban core at the London Ontario Airport reported a temperature of 16.3 °C. The temperature assigned by 
GEM-SURF in the urban core ranged between 18 and 21.3 °C.

Finally, we obtained air quality data from Ontario Ministry of the Environment monitoring stations over the 
study period. We included nitrogen dioxide  (NO2), ozone  (O3) and fine particulate matter (< 2.5 µm in aerody-
namic diameter)  (PM2.5)37. We derived mean daily pollution estimates for each census division.

Main exposure. While there is debate as to the best temperature variable to use in temperature-morbidity/
mortality studies, we chose maximum daily temperature as our main exposure, given its best representation of 
daytime  temperature7,38.

Outcomes. Our primary outcome was non-accidental death (daily count) between May and September 
2005–2012. We identified non-accidental causes of death using ICD-10th revision codes A00-R99.

Analysis. We used descriptive statistics (e.g. means, standard deviations or SD, medians, interquartile 
ranges, numbers, percentages) to summarize the characteristics of those who died over the study period. Using 
both temperature data sources, we then fit distributed lag non-linear models (DLNM) with quasi-Poisson distri-
bution to determine census division-specific associations between maximum daily temperature and mortality. 
DLNMs allow for the modelling of complex non-linear and lagged dependences in exposure-response rela-
tionships (e.g. temporal change in risk after an exposure)39. We estimated temperature–mortality associations 

Figure 1.  Comparison between maximum daily temperature ascertained by a single weather station on June 
2nd 2011 (16.3 °C at London Ontario International Airport) and GEM-SURF temperatures across regional 
dissemination areas (10.5 to 23.8 °C). Map created by A.O. using ArcGIS software version 10.3 by ESRI, www. 
esri. com.

http://www.esri.com
http://www.esri.com
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using natural cubic splines with three internal knots at the 10th, 50th, and 90th percentiles of location-specific 
temperature distribution at a lag of 0–3 days. Based upon previous recommendations and our own data explo-
ration, we allowed 7 degrees of freedom (df) per year to describe long-time trends and seasonality. Consistent 
with other studies, we also included an indicator variable for day of week, public holidays, and physician visits 
for  influenza2,6.

Thereafter, we used random-effects multivariate meta-analysis to pool census division-level estimates and 
produce a summary level estimate for urban Southwestern Ontario. We tested for residual heterogeneity using the 
multivariate extension of the Cochran Q test and  I2  statistics39. For our main analysis, we present pooled cumula-
tive curves of the relationship between temperature and mortality, centered around the minimum mortality tem-
perature (MMT, temperature at which mortality is at a minimum)39. We also present curves by census division.

As prespecified additional analyses, we changed the number and placement of knots for temperature using 
4, 5, and 6 df and 3 and 4 df for lags. To evaluate for the confounding effect of air  pollution40, we adjusted for 
linear terms of mean  PM2.5,  O3 and  NO2 at a lag of 0–1 in our models. We also examined the relationship 
between mortality and humidex (a unitless index that indicates how hot and humid the weather feels to the 
average person)41,42.

We conducted a number of post-hoc analyses. We examined mortality risk per 1 °C increase in temperature 
at extreme hot temperatures, defined using the 99th percentile of weather station maximum temperature dis-
tribution, and used MMT as our referent. Recognizing that minimum daily temperature also shows urban heat 
 effects43, we examined mortality risk per 1 °C increase in minimum temperature defined using the 99th percentile 
compared to the MMT. Further, to confirm the robustness of selecting MMT as our referent value, we examined 
temperature–mortality associations using the 75th percentile of weather station temperature distribution as the 
referent. Moreover, we explored the correlation between MMT and local most frequent temperature  [MFT]44, 
and investigated temperature–mortality associations using MFT as the referent.

We present relative risks (RR) (i.e. risk of death at extreme temperature relative to the risk at a referent tem-
perature) and 95% confidence intervals (CI). Estimates were considered statistically significant at p-values < 0.05. 
Analyses were performed using SAS version 9.4 [SAS Institute, Cary, NC] and R version 3.1.2.

Ethical considerations. Use of ICES data in this study was authorized under section 45 of Ontario’s Per-
sonal Health Information Protection Act, which does not require review by a Research Ethics Board.

Results
A flow diagram of inclusions and exclusions is provided in Supplementary Fig. S2. From May to September 
2005–2012, there were 54,399 people with a non-accidental death. The characteristics of residents who died over 
the study period are presented in Table 1. The mean age of individuals at the time of death was 73 years, 46% 
were female, and 25% were from the lowest income quintile.

Over the study period, there were 35 active weather stations in Southwestern Ontario (Supplementary Fig. S1). 
Some weather stations were co-located, and some were only active for parts of the study. In some census divisions, 
there was no station or a limited number of stations. On some days, there were no temperature observations 
available.

When compared with temperature data from GEM-SURF, weather stations yielded lower temperatures. 
Differences were most apparent with use of humidex (Fig. 2). Summaries of GEM-SURF and weather station 
temperatures by month and census division are presented in Supplementary Table S3.

Figure 3 illustrates temperature–mortality relationships using both GEM-SURF and weather stations by 
census division and pooled across urban Southwestern Ontario. Using GEM-SURF the MMT was 26.3 °C. 
There was a U-shaped association between temperature and mortality with a higher risk of mortality at lower 
and higher temperatures. Associations appeared slightly stronger earlier and later in the season, but overall 
there was no statistically significant association observed. Using weather stations, the MMT was 24.2 °C. There 
was also a U-shaped association between temperature and mortality, but effect estimates had slightly wider 
confidence intervals, especially at temperature extremes. With weather stations, there was also no association 
between temperature and mortality.

Additional analyses. Increasing the number of knots and lags produced similar temperature–mortality 
relationships, though models had lower Quasi-Akaike information criterion values, indicating a slightly better 
fit. When we adjusted our main analysis for air pollution, we excluded four census divisions due to a limited 
number of monitoring stations; temperature–mortality relationships remained similar.

When we examined humidex-mortality relationships, the MMT was 32.6 with GEM-SURF and 28.2 for 
weather stations. While a U-shaped association was apparent using both data sources, at extreme humidex, the 
relationship was statistically significant only when weather station data was used.

In post-hoc analyses, we examined the association between mortality and extreme hot temperature [i.e. 
temperatures at the 99th percentile] using both data sources. There was no statistically significant relationship 
between temperature and mortality observed (pooled RR GEM-SURF 1.05, 95% CI 0.97–1.13; weather stations 
RR 1.06, 95% CI 0.92–1.23) (Table 2). Similar results were noted when we used the 75th percentile as the referent 
(Table 2, Fig. S3). Further, there was no significant association between minimum temperature and mortality 
using either MMT or the 75th percentile as the referent (Supplementary Materials Table S4, Figs. S4 and S5).

In our exploration of MFT in our region, we found that overall, MFT was similar to MMT when GEM-SURF 
was used (range of absolute differences between MMT and MFT was 0.3–4.3 °C) (Supplementary Fig. S6). A 
slightly wider range in temperature was observed with weather stations (absolute differences, 0.5–8.3 °C), which 
appeared to be due to three regions (Wellington, Hamilton, and Waterloo) where there was a lower MMT than 
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Table 1.  Baseline characteristics for people who died in Southwestern Ontario between 2005 and 2012. 
CHF congestive heart failure, COPD chronic obstructive pulmonary disease, LHIN Local Health Integration 
Network, SD standard deviation, IQR interquartile range.

Characteristics

May–Sept

N = 54,399

Age (mean ± SD) 73.03 ± 15.60

 (median, IQR) 76 (65–84)

0–65 years 14,333 (26.3%)

66+ years 40,066 (73.7%)

Female 25,189 (46.3%)

LHIN

01 10,407 (19.1%)

02 10,723 (19.7%)

03 8730 (16.0%)

04 24,539 (45.1%)

Neighborhood income quintile

Q1—lowest 13,411 (24.7%)

Q2 12,427 (22.8%)

Q3 10,636 (19.6%)

Q4 9114 (16.8%)

Q5—highest 8550 (15.7%)

Missing 261 (0.5%)

Marginalization index—deprivation

1—least deprived 9236 (17.0%)

2 9287 (17.1%)

3 9731 (17.9%)

4 10,749 (19.8%)

5—most deprived 14,922 (27.4%)

Missing 474 (0.9%)

Marginalization index—ethnic concentration

1—least diverse 12,376 (22.8%)

2 15,157 (27.9%)

3 13,460 (24.7%)

4 9487 (17.4%)

5—most diverse 3445 (6.3%)

Missing 474 (0.9%)

Marginalization index—dependency

1—least dependent 4982 (9.2%)

2 7988 (14.7%)

3 9802 (18.0%)

4 11,856 (21.8%)

5—most dependent 19,297 (35.5%)

Missing 474 (0.9%)

Marginalization index—instability

1—lowest instability 4601 (8.5%)

2 8080 (14.9%)

3 10,058 (18.5%)

4 12,721 (23.4%)

5—highest instability 18,465 (33.9%)

Missing 474 (0.9%)

CHF 17,828 (32.8%)

COPD 20,943 (38.5%)

Hypertension 38,320 (70.4%)

Diabetes 17,455 (32.1%)

Coronary artery disease (excluding angina) 21,525 (39.6%)

Cerebrovascular disease 7151 (13.1%)

Dementia 7926 (14.6%)

Chronic kidney disease 14,415 (26.5%)
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MFT. When MFT was used as our referent rather than MMT, we did not observe any change to temperature–mor-
tality relationships (Supplementary Fig. S7).

Discussion
In this large population-based study of temperature–mortality relationships in urban Southwestern Ontario, we 
found that higher temperatures were consistently captured by GEM-SURF, particularly with use of humidex. 
Use of GEM-SURF also produced temperature–mortality effect estimates with narrower confidence intervals. 
These findings may have been due to more complete temperature coverage with GEM-SURF, and the relative 
scarcity of weather stations. Weather stations are also typically located near airports, water or over grassy areas 
in non-urban regions and might not capture the temperature exposure of urban inhabitants  well10,36. This is in 
contrast with GEM-SURF which ascertains temperature across all surfaces including paved areas, and can validly 
capture the urban heat island effect.

Despite differences in assigned temperatures using different data sources, we found that both produced simi-
lar maximum and minimum daily temperature–mortality relationships. Results remained robust in additional 
analyses which included use of different referent temperatures. Although previous studies have not used vali-
dated urban temperature sources like GEM-SURF, our findings are consistent with Guo et al. (2000–2004) who 
found that use of interpolated temperatures in Brisbane City Australia, produced a wider range of temperatures 
than weather stations, but similar temperature–mortality  relationships45. In Paris (2000–2006), Schaeffer et al. 
examined use of single, average and population weighted averages of temperature across weather stations, and 
population-weighted averages of temperature from classifications based upon land use. They also noted similar 
temperature–mortality relationships using all temperature data  sources38.

Our results differ from authors who observed different temperature–mortality/morbidity relationships when 
different temperature data sources were used. Weinberger et al. examined the relationship between temperature 
and mortality using the Parameter elevation Regression on Independent Slopes Model (PRISM) vs. weather 
stations across the United States. In the majority of counties, PRISM led to slightly larger relative risks of death 
with high temperature compared with weather  stations14. Lee et al. examined the association between modelled 
daily mean air temperature (1 km resolution aggregated to the zip code level) and non-accidental mortality 
in urban and rural regions of the Carolina and Georgia states (2007–2011). There was a 2.05% (0.87–3.24%) 
increase in mortality for each 1° increase in temperature above 28 °C, with an effect size that was 79.8% higher 
with modelled  data11. Although their focus was on morbidity, Adeyeye et al. examined the relationship between 

Figure 2.  Comparison between mean maximum air temperature and humidex assigned by weather stations vs. 
GEM-SURF across urban Southwestern Ontario (May–September 2005–2012).
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Figure 3.  Cumulative association between mortality and maximum daily temperature by region and 
pooled across Southwestern Ontario between May–September 2005–2012, centered at minimum mortality 
temperature. Curves are presented using both GEM-SURF and weather station data. The dashed line represents 
the 99th percentile of weather stations temperature distribution.

Table 2.  Mortality risk estimates at the 99th percentile of weather station daily maximum temperature vs. 
the 75th percentile and vs. the minimum mortality temperature (May–September 2005–2012). Both pooled 
estimate and results by region are presented.

GEM–SURF Weather stations

99th vs. 75th RR (CI) 99th vs. MMT RR (CI) 99th vs. 75th RR (CI) 99th vs. MMT RR (CI)

Overall 32.4 vs. 28.1 1.04 (0.96–1.13) 32.4 vs. 26.3 1.05 (0.97–1.13) 32.4 vs. 26.6 1.06 (0.90–1.24) 32.4 vs. 24.2 1.06 (0.92–1.23)

Wellington 31.7 vs. 27.3 1.02 (0.98–1.07) 31.7 vs. 24 1.03 (0.95–1.12) 31.7 vs. 25.9 1.07 (0.95–1.20) 31.7 vs. 15.5 1.07 (0.89–1.29)

Halton 32.8 vs. 28.2 1.02 (0.98–1.07) 32.8 vs. 28.1 1.02 (0.98–1.07) 32.8 vs. 26.3 1.04 (0.93–1.16) 32.8 vs. 24.9 1.04 (0.95–1.14)

Hamilton 33.5 vs. 28.7 1.05 (0.99–1.11) 33.5 vs. 30.5 1.07 (1–1.14) 33.5 vs. 27.4 1.09 (0.99–1.21) 33.5 vs. 16.5 1.14 (0.98–1.33)

Niagara 32.6 vs. 28.3 1.03 (0.97–1.10) 32.6 vs. 28.3 1.03 (0.97–1.10) 32.6 vs. 26.9 1.06 (0.95–1.17) 32.6 vs. 28 1.06 (0.95–1.18)

Haldimand–Norfolk 31.8 vs. 27.9 1.03 (0.98–1.07) 31.8 vs. 26.8 1.03 (0.98–1.08) 31.8 vs. 26.1 1.03 (0.91–1.16) 31.8 vs. 23.7 1.04 (0.96–1.13)

Waterloo 33.6 vs. 27.7 1.07 (0.98–1.17) 33.6 vs. 29.4 1.08 (0.97–1.20) 33.6 vs. 27 1.11 (0.94–1.31) 33.6 vs. 16.1 1.12 (0.90–1.40)

Chatham–Kent 31.1 vs. 29.3 0.10 (0.97–1.03) 31.1 vs. 30.4 1 (0.99–1.01) 31.1 vs. 26.1 1.03 (0.97–1.08) 31.1 vs. 23.7 1.04 (0.96–1.12)

Essex 32.2 vs. 29.9 1.02 (0.99–1.05) 32.2 vs. 26 1.04 (0.94–1.16) 32.2 vs. 27.2 1.02 (0.93–1.12) 32.2 vs. 24.4 1.04 (0.96–1.12)

Lambton 33.9 vs. 28.7 1.03 (0.98–1.08) 33.9 vs. 24.8 1.04 (0.96–1.13) 33.9 vs. 27.1 1.03 (0.90–1.18) 33.9 vs. 24.4 1.04 (0.94–1.15)

Middlesex 32.7 vs. 28.2 1.03 (0.98–1.07) 32.7 vs. 24.4 1.04 (0.97–1.13) 32.7 vs. 27.2 1.02 (0.95–1.10) 32.7 vs. 24.1 1.04 (0.97–1.12)

Bruce 28.3 vs. 26.6 1.01 (0.97–1.04) 28.3 vs. 24.5 1.01 (0.92–1.11) 28.3 vs. 23.6 1.03 (0.92–1.15) 28.3 vs. 21.1 1.04 (0.96–1.12)

Grey 30.8 vs. 26.7 1.02 (0.98–1.06) 30.8 vs. 25.4 1.02 (0.97–1.08) 30.8 vs. 24.9 1.03 (0.92–1.16) 30.8 vs. 22.5 1.04 (0.96–1.13)
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maximum near-surface temperature and morbidity (i.e. heat stress, dehydration) using a gridded National Land 
Data Assimilation System and weather stations between 2008 and 2012 in New York State. There was an increased 
risk of all health outcomes with high temperature, and risk estimates were attenuated with wider confidence 
intervals when weather stations were  used12. Finally, in a Veteran’s Affairs study of men in the Normative Aging 
study, Zanobetti et al. found that for every 1 °C increase in temperature, the odds of having ectopy was 1.10 (95% 
CI 1.04–1.17). The magnitude was attenuated when weather station data was  used46.

Reasons for observed differences between our studies and the latter studies might be manifold. Studies 
were conducted outside of Canada or not focused on cities, and there are known area-level differences in tem-
perature susceptibility due to geographic, built environment, demographic and the social characteristics of 
 populations14,47–50. Studies used different methodologies (i.e. case-crossover logistic regression), as well as dif-
ferent data sources which did not include urban modelling.

Of note, other Canadian studies have observed a positive association between temperature/temperature vari-
ability and mortality when weather stations were  used2,51,52. Studies were however, conducted outside of Ontario, 
or were inclusive of Toronto Ontario (Ontario’s largest city, excluded from our study)51,52. Interestingly, one 
study was a 15-year investigation of temperature–mortality relationships across 49 census divisions in Ontario 
(1996–2010). Authors observed a 2.5% increase in mortality (95% CI 1.3–3.8%) per 5 °C increase in daily mean 
temperature during warm seasons. However, estimates for census divisions in Southwestern Ontario (our region 
of study) were not statistically significant, or only marginally  significant2. It also remains possible that the null 
relationship we observed, was due to limited statistical power as some of the regions included had few deaths 
over the study period (Supplementary Table S3).

We conducted a large, Canadian, population-based time series analysis using high quality administrative 
health and environmental datasets. We focused upon an understudied region of our province, urban South-
western Ontario. We explored two temperature data sources available to environmental health researchers, 
highlighted their strengths and limitations, and contrasted temperature–mortality relationships with use of both 
datasets. We also used a validated urban data source (GEM-SURF) which can accurately capture urban-scale 
climate. Further, we conducted numerous pre-specified and post-hoc additional analyses to enrich our results 
which included an examination of extreme minimum temperature–mortality relationships, and an investigation 
of temperature–mortality relationships using different referent temperatures.

GEM-SURF is a numerical weather prediction model that requires multiple inputs and thus, there could be 
uncertainties associated with model formulation. Another limitation of our study was that we only had access to 
GEM-SURF data to the end of 2012, and cannot extrapolate results to more recent years. The highest resolution 
we could aggregate temperature to was the DA level, and we may have lost data granularity. However in urban 
areas, DAs are very small regions and we likely maintained spatial variability and urban effects. Additionally, we 
used exposure data from sparsely distributed weather stations across the province, many of which were located 
in coastal areas. Use of these stations might have captured lower temperatures in the summer due to daytime 
lake-breeze effects.

As with most environmental health studies, we also could not confirm true heat exposure (e.g. residents may 
have been indoors at the time of death). Further, temperature exposure was assigned at location of residence 
and we could not account for dynamic populations (e.g. travel outside of residential location)6,12. Although 
we were able to characterize some of the characteristics of individuals who died, we could not capture factors 
including poor housing quality, air conditioning, access to care, or individual behaviors that might have modi-
fied  associations53. This was also a population-level study and we cannot assume that the relationship between 
temperature and mortality holds at an individual level. Finally, this work is only generalizable to urban South-
western Ontario.

Conclusion
Use of GEM-SURF in urban environmental health studies might be desirable where station observations do 
not fully capture population exposure (e.g. population lives distant from stations). GEM-SURF might also be 
ideal where capturing the magnitude of temperature exposure at a local level is particularly important. How-
ever, if focused upon the relationship between mortality and maximum or minimum temperature using time 
series in large urban regions, either temperature data source appears to produce similar temperature–mortality 
associations.

Data availability
The dataset from this study is held securely in coded form at ICES. While data sharing agreements prohibit ICES 
from making the dataset publicly available, access may be granted to those who meet pre-specified criteria for 
confidential access, available at www. ices. on. ca/ DAS. The full dataset creation plan and underlying analytic code 
are available from the authors upon request, understanding that the computer programs may rely upon coding 
templates or macros that are unique to ICES and are therefore either inaccessible or may require modification.
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