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Predicting cell‑penetrating 
peptides using machine learning 
algorithms and navigating in their 
chemical space
Ewerton Cristhian Lima de Oliveira 1, Kauê Santana 2*, Luiz Josino 3, 
Anderson Henrique Lima e Lima 3* & Claudomiro de Souza de Sales Júnior 1* 

Cell‑penetrating peptides (CPPs) are naturally able to cross the lipid bilayer membrane that protects 
cells. These peptides share common structural and physicochemical properties and show different 
pharmaceutical applications, among which drug delivery is the most important. Due to their ability 
to cross the membranes by pulling high‑molecular‑weight polar molecules, they are termed Trojan 
horses. In this study, we proposed a machine learning (ML)‑based framework named BChemRF‑
CPPred (beyond chemical rules-based framework for CPP prediction) that uses an artificial neural 
network, a support vector machine, and a Gaussian process classifier to differentiate CPPs from 
non‑CPPs, using structure‑ and sequence‑based descriptors extracted from PDB and FASTA formats. 
The performance of our algorithm was evaluated by tenfold cross‑validation and compared with 
those of previously reported prediction tools using an independent dataset. The BChemRF‑CPPred 
satisfactorily identified CPP‑like structures using natural and synthetic modified peptide libraries 
and also obtained better performance than those of previously reported ML‑based algorithms, 
reaching the independent test accuracy of 90.66% (AUC = 0.9365) for PDB, and an accuracy of 86.5% 
(AUC = 0.9216) for FASTA input. Moreover, our analyses of the CPP chemical space demonstrated that 
these peptides break some molecular rules related to the prediction of permeability of therapeutic 
molecules in cell membranes. This is the first comprehensive analysis to predict synthetic and natural 
CPP structures and to evaluate their chemical space using an ML‑based framework. Our algorithm is 
freely available for academic use at http:// compt ools. linc. ufpa. br/ BChem RF‑ CPPred.

Peptides are a structurally diverse class of bioactive molecules with several physicochemical and structural 
 properties1,2. Naturally derived peptides have numerous pharmaceutical applications, such as acting selectively 
against  pathogens3,4, and human  targets5,6; and as cargo and delivery vehicles of covalently bound bioactive 
molecules, such as drugs, small-interfering RNAs (siRNAs), plasmids, and  nanoparticles7–10. Additionally, the 
recent advances in peptide synthesis have led to increased use in the pharmaceutical industry, because of their 
improved potency, specificity against molecular targets, and permeability to cell  membranes11,12.

The cell membrane is considered the main obstacle for therapeutic molecules to reach their active sites in 
cells. The selective control of the permeability of molecules through the cell membrane regulates passive diffu-
sion and active transport to the intracellular medium impairing the entrance of some therapeutic  compounds13. 
Cell-penetrating peptides (CPPs) can naturally cross the lipid bilayer membrane that protects the cells. These 
peptides share common structural and physicochemical features: they contain a sequence length between 5 and 
42 amino acids, (2) they are soluble in water and partially hydrophobic, (3) they are often cationic (positive charge 
at physiological pH) or amphipathic, and (4) they are rich in the arginine and lysine  residues14,15. CPPs possess a 
wide range of biological activities, such as  antiviral16,17,  antifungal18, and antibacterial  activities19,20, thus show-
ing potential in pharmaceutical applications, but the main category has being drug delivery  systems21–23, and 
because they can cross the membranes pulling high molecular weight polar molecules, they are termed Trojan 
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 horses10,24–27. The Trojan horse refers to the mythical story about a stratagem of the ancient Greeks used to enter 
the fortified walls of Troy city to win the war against their historical enemies. The metaphor of a Trojan horse 
is applied in drug delivery strategies that aim to access securely a target inside the cells ‘wearing’ the bioactive 
compound using the CPPs as ‘protected disguise’ to penetrate into cell  membranes28. Due to their high structural 
complexity and chemical versatility, different studies have focus efforts on the prediction of their mechanisms 
and efficiency of transport and penetration into the cell  membranes29–37. Different mechanisms for uptake into 
the cell have been described for CPPs, including endocytosis, membrane lysis, membrane translocation by 
passive diffusion, translocation across endosomal membrane, degradation and/or recycling of endosomal, and 
aggregation leading to pore  formation25,38–40.

Computational approaches, such as  cheminformatics41–43, artificial  intelligence44–48, probabilistic  models49,50, 
and molecular modeling  tools51–54 have been applied to facilitate high-throughput screening of new bioactive 
molecules. Machine learning (ML) methods have proved as an efficient approach to select, filter, and predict 
compounds properties giving accurate predictions, improving decisions regarding drug development, and shed-
ding light on the pharmacokinetics and pharmacodynamics properties of these  compounds55–59.

Recently, many researchers have focused on ML techniques to predict CPPs using sequence-based descrip-
tors. Fu et al. (2019) applied support vector machine (SVM) with an RBF kernel to predict CPPs based on the 
amino acid composition of the  sequences60. Similarly, Qiang et al. (2018) developed a tool named CPPred-FL 
that applies 45 trained random forest (RF) models using 19 descriptors related to amino acid composition, 
specific-position information, and physicochemical properties to predict  CPPs61. Pandey et al. (2018) proposed 
a framework named KELM-CPPpred using kernelized extreme learning machine (ELM) that also applied amino 
acid composition of the  sequences29.

In contrast, other studies combined sequence- and structure-based descriptors and achieved improved accu-
racy for screening CPPs. Manavalan et al. (2018) proposed a framework based on the features of amino acid com-
position and physicochemical properties using RF, SVM, ERT, and k-nearest neighbor (K-NN) to predict CPPs 
and non-CPPs31. Kumar et al. (2018) proposed the CellPPD-Mod, a computational tool that uses RF to predict 
CPPs from non-CPPs with lengths up to 25 residues, based on amino acid composition, 48 two-dimensional 
(2D)/three-dimensional (3D) molecular descriptors, and molecular  fingerprints34. However, to the best of our 
knowledge, no previous study evaluated the influence of physicochemical and structural properties related to 
permeability in biological membranes using ML-based tools to predict CPPs structures and to investigate their 
chemical space.

Results and discussion
In this study, we proposed the BChemRF-CPPred, an ML-based framework that applies an artificial neural 
network, a support vector machine, and a Gaussian process classifier to predict CPPs structures using structure-
based descriptors (physicochemical and structural properties) related to the permeability of these structures into 
the cell membranes and the presence of polar charged  groups62–64; and sequence-based descriptors obtained 
from the primary structure of the peptides. We compared the overall performance of our proposed framework 
with four state-of-the-art methods and validated the results using statistical analysis to evaluate the feature cor-
relation, spatial distribution of peptide properties, and information gain of the applied properties. Moreover, 
we evaluated the chemical space of these peptides using statistical methods and correlated them with previous 
conventional filters applied to predict cell permeability.

Cell‑penetrating peptides present chemical space beyond the intervals dictated by conven‑
tional filters. Over the years, the pharmaceutical industry and medicinal chemists have determined prin-
ciples for drug-like molecules and predicted their permeability in biological  membranes42,65–67. Efficiency in 
membrane permeation has been pointed out as a crucial factor for the bioavailability of therapeutic  molecules68. 
Different studies have demonstrated that physicochemical and structural properties of peptides are outside the 
traditional chemical space present in the approved  drugs69–71. These findings have helped to drive the design 
and discovery of novel compounds that occupy the chemical space beyond the intervals dictated by the Lipinski 
rules-of-five (RO5)  filter42,64.

The structural flexibility of compounds might influence their translocation in the mobile aqueous phase 
due to the reduced entropic environment of the cell  membranes62. In contrast, the flexibility might increase the 
entropic barriers of molecules, impairing or decreasing their affinity with the molecular targets, when compared 
with their restrained and cyclic  counterparts63,72. High molecular weight (MW), topological polar surface area 
(tPSA), and the number of rotatable bonds (NRB) have been reported as the main limitations of some molecules 
to cross the cell membrane by passive permeation due to the increased molecular volume, and complexation 
with water  molecules62,65.

Comparing our results with those of clinically approved peptides for oral use, we identified that CPPs have 
an increased MW (331.48–3750.51) and tPSA (101.29–1782.83)71. Due to the different reported mechanisms 
of cell membrane penetration, these discrepancies could be related to other mechanisms not related to passive 
diffusion, such as pore formation or endocytosis representative of TP-10 and caveolin-1,  respectively73–75. The 
MW and tPSA values found for the analyzed CPP structures are better correlated with values previously found 
for linear and cyclic  pentapeptides69.

The tPSA is correlated with the H-bond pattern of an investigated molecule in an aqueous  solvent76. The CPPs 
structures investigated in our study exceeded the maximum values for clinically approved molecules, reaching 
values equal to 1782.83 Å2. Permeability into the cell membranes is typically limited when tPSA exceeds 140 Å2. 
However, studies have demonstrated that chameleonic molecules and macrocyclic peptides permeable to the 
biological membranes exceed these  values66,77. Some peptides permeable to the lipid bilayer membrane using 
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passive diffusion, such as pAntp have been described with some chameleon-like properties, i.e. can change 
their conformation by exposing polar groups in an aqueous medium, but hiding them when traversing the cell 
 membranes78. It is interesting to note that a previous study identified that highly permeable peptoids and peptides 
showed an average tPSA value of 335.30 Å2 and 358.80 Å2,  respectively79. These results are different from those 
found for our analyzed CPP datasets that showed an average of 852.42 Å2.

It has been demonstrated that flexible molecules can form intrachain H-bond interactions, thus adaptively 
reducing their polarity surface and improving the permeation into the cell  membranes80. In this study, the 
molecular flexibility and complexity were measured by two structural properties: the fraction of  sp3-hybridized 
carbon atoms  (Fsp3) and the number of rotatable bonds (NRB) (Table S1). Recently, Doak et al. (2014) extended 
the NRB value previously found by Veber rules and indicated that bioavailable drugs present NRB <  2062,64. Our 
analyses demonstrated that CPPs exceed the maximum value of molecular properties indicated for oral drugs 
and  peptides69,71, showing a range from 9 to 137 (90th percentile equal to 98.60, Table S2). Regarding  Fsp3, studies 
have demonstrated that it is an important molecular property related to both solubilities in the aqueous phase 
and melting  point63. We identified that for CPPs,  Fsp3 is not inferior to 0.37 and does not exceed 0.84 (90th per-
centile 0.784). Our results are consistent with orally available peptides that showed 90th percentile equal to 0.7971.

Regarding lipophilicity, we investigated this property using the 1-octanol/water partition coefficient (cLogP). 
High cLogP values are related to the high lipophilicity of the molecule, thus indicating a better membrane cell 
penetration. Doak et al. (2014) indicated that cLogP in available drugs varies in the range − 2 ≤ cLogP ≤ 10. Here, 
we found that the evaluated CPP dataset showed − 42.12 ≤ cLogP ≤ 2.97, which is consistent with previous find-
ings for cyclic pentapeptides.

Hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD) are relevant factors for cell perme-
ability by RO5. Our results showed a consistent correlation with previous values found for linear and cyclic 
 pentapeptides69. However, regarding HBD, CPPs showed a high discrepancy related to clinically approved drugs 
(see Table S1)64.

Regarding the number of aromatic rings (NAR) our study found a 95th percentile equal to 6, with maximum 
and minimum limits equal to 0 and 10, respectively. Despite previous studies no reported its value in the analyzes 
of the chemical space of  peptides69,71, it is a relevant structural property related to the lipophilicity of compounds, 
and studies have demonstrated that the addition of an aromatic ring usually results in a statistically significant 
increase in the clogP value of the  compound81. This value represents a statistically significant component of a 
molecule’s overall properties in the context of the membrane permeability (the average NAR in oral drugs is 
equal to 1.6)81. Furthermore, this property is present in some molecular filters that analyze the permeability and 
drug-likeness of  compounds82,83.

Analyzing the 90th percentile calculated for the physicochemical properties, the results reinforce that the 
CPPs structures are beyond the previously established chemical rules. Thus, indicating that these molecular 
intervals applied to predict the permeability of peptides into the cell membrane by passive diffusion, could 
not be correctly applied for this class of peptides, consequently, leading to recognize bias and hindering of the 
computer-aided design of CPP-like structures. The histograms of these structure-based descriptor distributions 
of all analyzed CPPs structures are shown in support information Figure S1.

BChemRF‑CPPred performed better using an optimized combination of structure‑ and 
sequence‑based descriptors. In the present study, we investigated two class of molecular descriptors: (1) 
the structure-based descriptors that include structural and physicochemical properties related to the permeation 
of molecules into the biological membranes which are obtained from the molecular structures of peptides—
MW, tPSA,  Fsp3, cLogP, HBA, HBD, NAR, NRB, and net charge (NetC)—64,84, as well as, some properties related 
to the polar charged groups—primary amine groups (NPA), number of guanidine groups (NG), and number of 
negatively charged amino acid groups (NNCAA)—that could influence in their permeability; and, (2) sequence-
based descriptors, i.e., information calculated from the primary structure of the peptide—amino acid composi-
tion (AAC), pseudo-amino acid composition (PseAAC), and dipeptide composition (DPC)29,33,85. Regarding the 
sequence-based descriptors, two amino acid compositions related to arginine (f[Arg]) and lysine (f[Lys]) frac-
tions were analyzed in our algorithm due to their relevance in the characterization of this class of  peptides14,15. 
We also analyzed two other descriptors in the ML-based framework: the DPC to evaluate the presence of motifs 
in the CPP sequences that are relevant to their mechanism uptake into the  cell86,87; and the PseAAC to predict 
the overall peptides  attributes29,33,61. The PseAAC is a theoretical molecular descriptor formed by a combination 
of discrete sequence correlation factors and twenty components of the conventional amino acid  composition88. 
Our algorithm uses as input datasets both primary and tertiary structures of peptides in FASTA or PDB formats, 
respectively. To train the ML-based frameworks that use the tertiary structure of the peptides (PDB format), we 
selected two datasets, that were divided into training (600 peptide structures) obtained from curated databases 
and an independent test (150 structures) obtained from the literature. In contrast, to train the ML-based frame-
works that used the primary structure of the peptides (FASTA format), we considered only peptides containing 
natural residues in the training dataset that were accounted for a total of 241 CPPs and 300 non-CPPs, and for 
the independent test, we considered only the natural peptides from the original dataset, which account 60 CPPs 
and 75 non-CPPS.

To understand the influence of structure- and sequence-based descriptors on framework performance, we first 
formed four FCs: FC-1 containing only sequence-based descriptors (AAC, PseAAC, and DPC); FC-2 containing 
only structure-based descriptors (structural and physicochemical properties); FC-3 containing the best corre-
lated sequence-based descriptors and structure-based descriptors; and FC-4 containing an optimized selection 
of structure- and sequence-based descriptors according to Kendall’s correlation analysis (see Figures S2, S3, and 
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S4): AAC, PseAAC, the 10 most-well correlated DPC, and the 9 better correlated structure-based descriptors 
(excluding tPSA, NRB, and HBD).

Second, we evaluated the prediction performance of the BChemRF-CPPred and its classifiers an ANN, GPC, 
and SVM using tenfold cross-validation in the training dataset (Fig. 1). The hyper-parameters of each classifier 
by FC are listed in Table S3.

In Fig. 1, we observed the performance of each estimator using tenfold cross-validation analyses. FC-1 and 
FC-2 reached the worst results, where BChemRF-CPPred obtained an average accuracy level of 86.5%, while 
their ML algorithms achieved values between 85.5 and 86.5% for the FC-1, and between 82.6 and 88% for the 
second one.

The framework that used FC-3 obtained an average accuracy of 87.83%, while ANN, GPC, and SVM achieved 
88%, 86.5%, and 88.83%, respectively. Considering FC-4, the BChemRF-CPPred achieved an accuracy equal 
to 87.66%, and these classifiers obtained an average accuracy of 87.5%, 84.16, and 89%, respectively. Although 
the FC-3 had reached a slightly better average accuracy than FC-4, the Kruskal–Wallis H test (p value = 0.820) 
showed no statistically significant difference between the accuracies obtained by the frameworks that used these 
FCs. Furthermore, the framework that uses the FC-4 (43 descriptors) is less complex than those that use FC-3 
(73 descriptors).

It is important to note that, although the FC-1 (containing only sequence-based descriptors) and the FC-2 
(only structure-based descriptors) have shown relevant correlation to CPPs’ prediction, according to Kendall’s 
correlation analysis, these descriptors isolated do not provide enough information to predict satisfactorily the 
permeability of these peptides into the cell membranes. Our results showed that the optimized combination of 
structure- and sequence-based descriptors (FC-4) better predict natural and synthetic CPPs than other analyzed 
FCs.

Evaluating the performance of BChemRF‑CPPred in comparison with previous proposed com‑
putational tools. The independent test was performed with 75 CPP and 75 non-CPP structures. Among 
the CPPs investigated at this stage, we analyzed the 7 structures with high uptake into the cell membranes: LDP-
NLS, MAP 8, synB3, ptat4, aminopeptidase, EB1, pAntpHD 40p2; and 7 peptides with no permeability to cell 
membranes: pAntp(4–13), motilin, vasopressin, bradykinin, scr pVec, Bax BH3, and Mut-LDP-NLS.

Our analyses revealed that the BChemRF-CPPred based on feature compositions with more information 
(FC-3 and FC-4), obtained an accuracy greater than 85%, as shown in Fig. 2A. FC-4 demonstrated 90.66% 
accuracy, while FC-1, FC-2, and FC-3 obtained an accuracy of 85.33%, 88.66%, and 87.33%, respectively.

The receiver operating characteristic (ROC) curves and their area under curve (AUC) metric revealed the 
impact of each descriptor composition in our proposed framework (Fig. 2B). Although the molecular properties 
have shown a satisfactory contribution in FC-2 and FC-3, reaching AUC values 0.9372 and 0.933, respectively, 
when compared to FC-1 that obtained an AUC value of 0.8985 and has only AAC, DPC, and PseAAC, the 
descriptors present in FC-4 achieved AUC value of 0.9536, providing more information for the BChemRF-
CPPred to predict the cell membrane permeation of CPPs.

The behavior of the ROC curves observed in Fig. 2B corroborates previous results, since the curve associ-
ated with the FC-4 based framework (orange curve) is closer to the left corner of the graph, which indicates a 
higher true positive rate and a lower false-positive rate in the prediction of CPPs and non-CPPs compared with 
the other FCs.

Table 1 shows a detailed analysis of FC-4 in terms of accuracy, sensitivity, specificity, and Matthews correlation 
coefficient (MCC). These results show that the framework showed an improved ability to correctly differenti-
ate non-CPPs from CPPs. Furthermore, the highest MCC and one of the greatest accuracies and F1-score with 
values of 0.813, 0.906, and 0.905, respectively, proved that BChemRF-CPPred is the best classifier among the 
four analyzed ones.

Figure 1.  Boxplot of accuracy from tenfold cross-validation of ANN (red), GPC (blue), SVM (green), and 
BChemRF-CPPred (orange).
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To compare our FC-4 based framework with state-of-the-art methods for CPP prediction, we divided this 
analysis into two experiments. The first one analyses our method with tools that were trained with only natural 
peptides, such as  MLCPP31, CPPred-RF33, and SkipCPP-Pred89. This group was analyzed with 60 CPPs (chemi-
cally unmodified peptides) and 75 non-CPPs from the independent test dataset. The second experiment com-
pared our framework with Kelm-CPPpred29, an algorithm trained with synthetic peptides (chemically modified), 
using the original independent dataset.

Table 2 compares the performance of previous ML-based frameworks trained and non-trained with syn-
thetic peptides, respectively. These results show that by using an imbalanced dataset (first experiment) with 
only natural peptides, BChemRF-CPPred obtained an accuracy value of 89.62%, while MLCPP, CPPred-RF, 
and SkipCPP-Pred reached 86.66%, 68.88%, and 62.58%, respectively. Moreover, our framework obtained the 

Figure 2.  (A) Accuracy of ANN (red), GPC (blue), SVM (green), and BChemRF-CPPred (orange) by FCs 
evaluated in the independent test. (B) ROC curves and AUC of ML-based frameworks using the FC-1, FC-2, 
FC-3, and FC-4 in the independent test.

Table 1.  Comparison of accuracy, sensitivity, specificity, F1-score, and MCC obtained for ANN, GPC, SVM, 
and BChemRF-CPPred in the independent test using FC-4.

Method Sensitivity Specificity Accuracy F1-score MCC

ANN 0.880 0.906 0.893 0.891 0.786

GPC 0.853 0.893 0.873 0.870 0.747

SVM 0.853 0.893 0.873 0.870 0.747

BChemRF-CPPred 0.893 0.920 0.906 0.905 0.813



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7628  | https://doi.org/10.1038/s41598-021-87134-w

www.nature.com/scientificreports/

highest values of F1-score and MCC when compared with other tools, which indicates that the structure-based 
descriptors provided more information to predict cell membrane permeability of natural peptides compared 
with sequence-based tools.

The second experiment also revealed that the proposed ML-based framework achieved better outcomes 
in terms of accuracy, F1-score, and MCC when compared with Kelm-CPPpred, which demonstrates a high-
performance prediction of CPPs by BChemRF-CPPred, including the synthetic (chemically modified) peptides 
containing methyl, glycyl, and other chemical groups. An accuracy of 90.66% demonstrated that the proposed 
framework using an optimized combination of structure- and sequence-based descriptors satisfactorily differ-
entiated CPPs and non-CPPs from natural and synthetic origins.

Accessing the performance of BChemRF‑CPPred using FASTA as input format. To evaluate the 
performance of BChemRF-CPPred in the prediction of CPPs using chemical data obtained from the primary 
and tertiary structures, we used both FASTA and PDB formats, respectively, to calculate the four FCs using the 
tenfold cross-validation (Fig. 3). To train the framework, using FASTA format, we considered only peptides con-
taining natural residues in the training dataset that were accounted for a total of 241 CPPs and 300 non-CPPs.

Figure 3 shows the performance of each classifier using the FASTA format as input according to cross-
validation analyses. The framework that used the FC-3 reached the best performance with an average accuracy 
of 86.9%, while FC-1, FC-2, and FC-4 achieved values between 84.13 and 86.71%, respectively. When compared 
with the performance of BChemRF-CPPred that used as input the PDB format, the cross-validation of the frame-
work that used FASTA as input showed a lower performance for FC-2, FC-3, and FC-4, whose accuracy values 
for PDB format were 86.5%, 87.83%, and 87.66%, respectively. Our analyses of the performance of BChemRF-
CPPred using FC-1, composed only by sequence-based features in the independent test, revealed that the use 
of only natural peptides in FASTA format as input obtained an accuracy equal to 86.56%, while the FC-2, FC-3, 
and FC-4 achieved values of 85.07%, 85.82%, and 85.2%, respectively (Fig. 4).

Table 3 compares the performance between the FASTA-input-based framework, using all FCs (FC-1 to FC-4), 
and the PDB-input-based one with FC-4. This independent test uses the same testing dataset described in experi-
ment 1 (see Table 2), which has only natural peptides.

Table 2.  Comparison of the performance of previous ML-based frameworks (MLCPP, CPPred-RF, and 
SkipCPP-Pred) and FC-4 based BChemRF-CPPred using only natural peptides from the independent dataset 
(1st experiment); as well as, the evaluation of the performance of Kelm-CPPpred and FC-4 based BChemRF-
CPPred from all independent dataset (2nd experiment).

Method Sensitivity Specificity Accuracy F1-score MCC

First experiment

MLCPP 0.966 0.786 0.866 0.865 0.752

CPPred-RF 0.983 0.453 0.688 0.737 0.495

SkipCPP-Pred 0.966 0.520 0.625 0.753 0.525

BChemRF-CPPred 0.866 0.920 0.896 0.881 0.789

Second experiment

Kelm-CPPpred 0.906 0.866 0.886 0.888 0.773

BChemRF-CPPred 0.893 0.920 0.906 0.905 0.813

Figure 3.  Boxplot of accuracy from tenfold cross-validation of ANN (red), GPC (blue), SVM (green), and 
BChemRF-CPPred (orange) using FASTA input.
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The framework that uses FC-1 obtained the best prediction results in the independent test using the FASTA 
format as input, i.e., the framework trained only with the sequence-based features showed higher values of 
accuracy, F1-score, and MCC when compared with the other frameworks that used FC-2, FC-3, and FC-4. It is 
important to note that both the framework based on FC-4 that uses PDB as input and the BChemRF-CPPred 
based on the FC-1 that uses FASTA as input performed better in the prediction of natural CPPs than previous 
tools CPPred-RF and SkipCPP-Pred, which reached accuracy values between 62.5 and 68.8%, F1-score values 
between 73.7 and 75.3%, and MCC values between 49.5 and 52.5%, respectively (Table 2).

The results also revealed that when compared the framework based on the FC-4 that uses the PDB as input 
with the framework based on FC-1 that uses FASTA, the Kruskal–Wallis H test (p value = 0.622) showed no 
statistically significant difference between the accuracies obtained by these two frameworks in the tenfold cross-
validation. However, the PDB-based model achieved better performance in an independent test for all the 
metrics (Table 3).

An optimized combination of structure‑ and sequence‑based descriptors improved the predic‑
tion of CPPs’ structures. To analyze the influence of the sequence-based (AAC, DPC, and PseAAC) and 
structure-based (MW, tPSA,  Fsp3, cLogP, HBA, HBD, NAR, NRB, NPA, NG, NetC, and NNCAA) descriptors 
on the performance of CPP prediction in our ML-based framework, we extracted information entropy using the 
extremely randomized trees (ERT) algorithm and applied principal component analyses (PCA) in all peptide 
datasets.

The presence of cationic residues, such as lysine and arginine, in peptides sequences, has been shown to play 
an important role in membrane permeation. These residues form non-covalent interactions with the anionic 
groups of the membrane surface. The highly basic polar groups from these residues remain protonated under 
physiological pH conditions, acting as hydrogen-bond donors in CPP–lipid  interactions90,91.

Our study demonstrated that AAC, DPC, and PseAAC provided 0.650 and 0.664 of normalized cumulative 
information entropy (CIE), while the structure-based descriptors supplied 0.350 and 0.336 of CIE for training 
and independent test, respectively (Fig. 5).

Although the sequence-based features have several descriptors better correlated according to Kendall’s cor-
relation when compared to structure-based descriptors, the CIE of physicochemical and structural properties 

Figure 4.  Accuracy of ANN (red), GPC (blue), SVM (green), and BChemRF-CPPred (orange) by FCs 
evaluated in the independent test, using FASTA input.

Table 3.  Comparison of the performance of BChemRF-CPPred frameworks that used only natural peptides 
in the independent test. The comparison was performed between the frameworks based on the four feature 
compositions (FC-1 to FC-4) that use FASTA as input with the framework based on the FC-4 that uses the 
PDB as input.

Input FC Sensitivity Specificity Accuracy F1-score MCC

FASTA FC-1 0.813 0.906 0.865 0.842 0.726

FASTA FC-2 0.847 0.853 0.850 0.833 0.698

FASTA FC-3 0.813 0.893 0.858 0.834 0,711

FASTA FC-4 0.796 0.906 0.858 0.831 0.711

PDB FC-4 0.866 0.920 0.896 0.881 0.789
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showed a better contribution to CPP prediction than the AAC and DPC contributions taking together. Structural 
and physicochemical properties give significant information for ML algorithms, which can be verified by accura-
cies achieved in the independent test by the framework that used FC-4.

The 3D PCA analyses of all datasets showed that FC-1 (Fig. 6A) and FC-2 (Fig. 6B) did not provide a clear 
differentiation between the CPPs and non-CPPs, which can be verified with the high level of overlap in the two 
groups of peptides. The normalized Bhattacharyya coefficient (BC) obtained values for FC1 equal to 0.361 (PC1), 
0.234 (PC2), and 0.130 (PC3) and for FC2 values equal to 0.033 (PC1), 0.374 (PC2), and 0.045 (PC3).

In contrast, FC-3 (Fig. 6C) and FC-4 (Fig. 6D) reached lower overlap in the PCs, obtaining BC values equal 
to 0.342 (PC1), 0.061 (PC2), and 0.034 (PC3), thus indicating that these two FCs have more separability between 
CPPs and non-CPPs classes.

The Kruskal–Wallis H test applied among the three principal components of each 3D PCA also showed 
that there is no significant difference between FC-3 and FC-4, where the statistical hypotheses comparing the 
distribution of samples in PC1, PC2, and PC3 achieved p value of 0.826, 0.920, and 0.101, respectively, which 
indicates that the three PCs have similar distributions. These results confirmed that the optimized composition 
of structure- and sequence-based descriptors (FC-4) provided more significant information when compared 
with the other FCs, which directly impacted their cell membrane permeability prediction.

In contrast to previous ML-based  approaches31,34, our findings demonstrated that the combination of 
sequence- and structure-based descriptors related to molecule bioavailability improved the prediction of CPPs’ 
structures. Structural factors, such as the presence of cyclic  chains92,93, the secondary structure  composition94, 
as well as, the shape, structure complexity, and 3D-pattern of constituting  atoms95 have been shown to have a 
considerable influence on membrane penetration. Our analyses demonstrated that the membrane penetration of 
CPPs is better predicted using hybrid features composition containing structural and physicochemical properties, 
as well as, information from the primary structure.

Conclusions
We demonstrated that the proposed BChemRF-CPPred, with FC composed of an optimized combination of 
sequence-, and structure-based properties, has superior accuracy compared to FCs composed of only sequence- 
or only structure-based descriptors. The accuracy achieved by the proposed framework, using PDB input and 

Figure 5.  Normalized cumulative information entropy (CIE) provided by structure-based, AAC, DPC, and 
PseAAC descriptors, and calculated by ERT algorithm. (A) Training dataset; (B) independent test dataset.
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sequence- and structural-based features (FC-4), was 90.66% in the independent test with natural and non-
natural peptides, while in the test with only natural peptides, the models based on FASTA input, which used only 
sequence-based descriptors (FC-1), and based on PDB input, which used (FC-4), achieved accuracy values of 
86.5% and 89.6%, respectively. These performances were better than the reached by some other ML-based tools 
that applied as input data only the sequence-based properties of the peptides. However, the framework based on 
PDB input and FC-4 achieved better performance than the model based on FASTA input and FC-1 in the predic-
tion of natural peptides as CPPs in the independent test. These results not only proved that our tool has a greater 
ability to correctly predict CPPs, as employing the optimized combination of the analyzed properties has more 
significant information for the ML-based algorithms applied to the CPP prediction problem than sequence- or 
structural-based descriptors analyzed separately. Finally, in addition to the Trojan metaphor applied for CPPs in 
drug delivery, in the present study, we demonstrated that these peptides, due to a highly diverse mechanism of 
membrane permeation that includes pore formation and endocytosis, also break some well-established chemi-
cal rules applied to predict the bioavailability of drugs. Similarly, the mythical Trojan horse broke the war rules.

Material and methods
Datasets of CPPs and non‑CPPs structures. Our datasets of peptide structures were obtained from two 
curated and validated CPP databases. The CPP structures were obtained from CPPsite2.0, a chemo-structural 
database with more than 1700 validated experimental CPPs with different structural properties (linear/cyclic; 
and modified/non-natural residues) and a wide range of application for cargo transportations into the  cell96. 
Moreover, 411 CPPs and 411 non-CPPs were obtained from the C2Pred  server35. Additionally, we also obtained 
112 CPP and 37 non-CPP structures from previous published works and pharmaceutical  catalogs32,97,98.

The BCheRF-CPPred algorithm was trained and tested with datasets composed of primary and tertiary struc-
ture of peptides in FASTA (only natural peptides) and PDB (natural and synthetic peptides) formats, respectively. 
Peptides without resolved structures in PDB were predicted using the PEP-FOLD3  server99, and the peptides’ 
features were extracted to compose the CPP and non-CPP datasets.

Figure 6.  Analysis of 3D dimensionality reduction using PCA of the sequence- and structure-based descriptors 
present in FC-1 to FC-4. Panel (A) 3D PCA of FC-1 showing a contribution of explained variance ratio of 
10.93% (PC1), 7.26% (PC2), and 6% (PC3), and cumulative explained variance ratio (CEVR) of 24.19%. 
(B) 3D PCA of FC-2 showing a contribution of explained variance ratio of 48.9% (PC1), 21.94% (PC2), and 
14.34%(PC3), and CEVR = 85.19%. (C) 3D PCA of FC-3 showing a contribution of explained variance ratio 
of 16.31% (PC1), 12.03% (PC2), and 7.22% (PC3) and CEVR = 35.58%. (D) 3D PCA of FC-4 showing a 
contribution of explained variance ratio of 17.81% (PC1), 12.48% (PC2), and 8.93% (PC3), and CEVR = 39.29%.
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The PEP-FOLD has been reported with high accuracy in the prediction of peptide structures obtaining the 
lowest energy conformations differing by 3.3 Å of RMSD-Ca from the experimental  structures99. In addition, it 
is important to highlight that the structure-based descriptors (NRT, NAR, cLogP, HBA, HBD, etc.) analyzed in 
the present study are not related to the peptide folding, i.e., formation of secondary (α-helices and β-strands) 
and tertiary structures.

In the pre-processing stage, the general dataset was filtered regarding peptide length, which was limited to 
between 5 and 30 amino acid residues, and the duplicates and outliers (z-score ≥ 3 in peptide features) structures 
were removed using the Python data analysis library (Pandas) for Python  language100. Finally, we organized a 
training dataset with 300 CPPs and 300 non-CPPs and an independent test dataset with 75 CPPs and 75 non-
CPPs (Tables S5 and S6). Both datasets were balanced with a random selection of the structures.

Calculation of sequence‑ and structure‑based descriptors. The molecular properties related to cell 
membrane permeation were calculated for CPPs and non-CPPs libraries using both PDB and FASTA format.

We selected the following twelve structure-based descriptors: molecular weight (MW), number of rotatable 
bonds (NRB), topological polar surface area (tPSA), fraction of sp3-hybridized carbon atoms  (Fsp3) (Eq. 1), 
1-octanol/water partition coefficient (cLogP), number of aromatic rings (NAR), number of hydrogen bond 
donors (HBD), and number of hydrogen bond acceptors (HBA), number of primary amino groups (NPA), num-
ber of guanidinium groups (NG), net charge (NetC), and number of negatively charged amino acids (NNCAA) 
at pH = 7.4.

We also selected two amino acid composition AAC descriptors: fraction of arginine residues (f[Arg], Eq. 2) 
and lysine (f[Lys], Eq. 3). We also used two categories of sequence-based descriptors. The first one refers to 40 
dipeptide composition (DPC, Eq. 4) selected from the best Kendall’s correlation values (dipeptides: RR, KK, KR, 
RQ, RK, WR, WK, NR, KW, WF, RS, FQ, RW, RI, QR, GR, RM, IW, RL, QN, ET, CN, PG, PL, GI, TV, FC, FG, 
GP, LS, SE, CV, GT, FL, CC, VC, GA, LG, GF, and GL).

The second one refers to 22 descriptors of the pseudo-amino acid composition (PseAAC)88, which are related 
to the hydrophobicity ( H1 ), hydrophilicity ( H2 ), and side-chain mass ( M ) along with the local sequence order, 
and can be calculated according to Eqs. (5) and (6), where L is the total residues content in peptide, λ is the 
correlation factor that reflects the sequence order of all the most contiguous residues along a protein chain, and 
Ri is the ith amino acid. These properties were selected based on the general composition of CPP  sequences14.

Table 4 shows how all the descriptors were grouped into four different feature compositions, named FC-1 
to FC-4. FC-1 grouped only amino acid composition and sequence-based descriptors, FC-2 used the twelve 
structure-based properties, FC-3 is the grouping of all analyzed descriptors, and the FC-4 grouped the most 
well-correlated sequence- and structure-based descriptors, according to Kendall’s correlation.

The sequence- and structure-based descriptors were calculated by the  RDKit101 package that uses Python 
language, except for the DPC and PseAAC that were calculated using  PyBioMed102 package, and the NetC that 
was extracted from structures using Biopython  package103.

To calculate some structure-based descriptors from PDB or FASTA format, the RDKit constructs a molecular 
structure of a peptide reading the file information. For PBD format, the package read the atoms, the sequence 
number, and the coordinates present in the file to form a graph with atomic bonds and dihedral angles that 
represents the molecule as a computational object since the vertice of the graph is an atom and the edge is the 
bond. To construct the 3D representation of the peptide using FASTA format, the RDKit reads the primary 
structure of the peptide and implements the graph theory using a list of predefined structures that matches 
with the conformation of the residues and their neighboring. This information can be consulted in RDKit API 
documentation in www. rdkit. org/ docs/ cppapi/ ROMol_ 8h_ source. html.

(1)Fsp3 =
number of sp3 hybridized carbons

total carbon count

(2)f [Arg] =
number of arginine residues

total residues count

(3)f [Lys] =
number of lysine residues

total residues count

(4)DPCj =
number of dipeptides(j)

total number of all possible dipeptides

(5)PseAACj =
1

L− j

L−j
∑

i=1

θ
(

Ri ,Ri+j

)

, 1 ≤ j ≤ 20+ � and � = 2

(6)θ
(

Ri ,Ri+j

)

=
1

3

{

[

H1(Ri)−H1

(
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)]2
+
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Framework structure. An ANN, MLP  architecture104,  GPC105, and  SVM106 were employed in the 
BChemRF-CPPred to predict CPP permeability. Each ML-based algorithm received structure- and sequence-
based descriptors to predict CPP and non-CPP structures using a probability scale that ranges from 0 to 1, where 
values > 0.5 were applied for CPPs and values ≤ 0.5 were applied for non-CPPs. The voting classifier calculates 
the average among the estimated probabilities, and the result provides a prediction of CPPs using binary labels, 
where 0 corresponds to non-CPPs and 1 to CPPs (Fig. 7).

The MLs’ hyper-parameters were tuned using Grid Search, a method applied for optimization of parameters 
using cross-validation over exhaustive search in a parameter grid. This method was applied to each algorithm by 
FC to obtain the best classifier model for the tenfold cross-validation and independent tests (Fig. 8). The range 
of the searching parameters adjusted for each ML-based algorithm and their best model are shown in Tables S3 
and S4, respectively. All frameworks and their configuration processes were implemented using the Scikit-learn 
package for Python language.

Table 4.  Distribution of structure-, and sequence-based descriptors in four feature compositions used in 
BChemRF-CPPred. *The 40 DPCs descriptors previously cited in this session. # The 10 DPCs descriptors: RR, 
KK, KR, RQ, RK, GL, GF, LG, GA, VC.

Feature composition Structural AAC DPC PseAAC 

Molecular descriptors

FC-1 – f[Lys], f[Arg] 40 DPCs* 22 PseAACs

FC-2 MW, cLogP, tPSA,  Fsp3, NRB, HBD, HBA, NAR, NPA, NG, NetC, 
NNCAA – – –

FC-3 MW, cLogP, tPSA,  Fsp3, NRB, HBD, HBA, NAR, NPA, NG, NetC, 
NNCAA f[Lys], f[Arg] 40 DPCs* 22 PseAACs

FC-4 MW, cLogP,  Fsp3, HBA, NAR, NPA, NG, NetC, NNCAA f[Lys], f[Arg] 10  DPCs# 22 PseAACs

Figure 7.  General structure of BChemRF-CPPred framework with ANN, GPC and SVM machine learning 
algorithms.

Figure 8.  Process of hyper-parameters tuning applied for ANN, GPC, and SVM by FC using Grid Search 
method. The best models obtained in x-th feature composition  (ANNbFC-X,  GPCbFC-X,  SVMbFC-X) were used to 
compose the respective framework.



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7628  | https://doi.org/10.1038/s41598-021-87134-w

www.nature.com/scientificreports/

Calculation of information gain. The process of data mining to explore the information gain pro-
vided by each FC in the peptide dataset was based on extremely randomized  trees107 and principal component 
 analysis106,108 algorithms.

Extremely randomized trees are ensembles of unpruned decision trees algorithms that splits nodes by ran-
domly-generated cut-points. This technique computes the importance of features using information entropy 
criterion. The higher is the entropy, the higher is the amount of information provided by the data.

Principal component analysis is an unsupervised machine learning technique used to reduce a high-dimen-
sional dataset in a smaller dimensional representation, which is called principal components (PC). This algorithm 
turns out to be more feasible for the understanding of sample distribution in space.

ERT and PCA were implemented using Scikit-learn package and applied in the CPP structure library contain-
ing the peptides from training and independent test datasets.

Web‑server development. We developed a user-friendly web-server to implement the BChemRF-
CPPred, which was coded using Flask, HTML, CSS, and JavaScript programming languages. The web server is 
freely available for academic use at http:// compt ools. linc. ufpa. br/ BChem RF- CPPred.

In the “Prediction” session the user can select the primary structure (FASTA format) or the tertiary structure 
(PDB format) as input of peptides in BChemRF-CPPred, then the user can upload the desirable files and selects 
the intended feature composition (FC-1, FC-2, FC-3, or FC-4) to perform the prediction. In the “Download” 
button the user can download examples of CPPs and non-CPPs structures to test the server prediction. The “How 
to Use” button provides a brief explanation of the framework and how to use the web-server.
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