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Modeling biomass allocation 
strategy of young planted 
Zelkova serrata trees in Taiwan 
with component ratio method 
and seemingly unrelated 
regressions
Chieh‑Yin Chen1, Shu‑Hui Ko2 & Tzeng Yih Lam3* 

Trees accumulate biomass by sequestrating atmospheric carbon and allocate it to different tree 
components. A biomass component ratio is the ratio of biomass in a tree component to total tree 
biomass. Modeling the ratios for Zelkova serrata, an important native reforestation tree species 
in Taiwan, helps in understanding its biomass allocation strategy to design effective silvicultural 
treatments. In this study, we applied Component Ratio Method (CRM) to relate biomass component 
ratios of main stem, large branch, twig, and foliage to tree attributes of Z. serrata from a 9-year-old 
plantation. Nonlinear and linear CRM models were fitted with Seemingly Unrelated Regression to 
account for model correlations. Linear CRM models with dbh as the predictor had the best fit with 
model correlations as high as 80%. About 46% and 40% of total tree biomass was allocated to main 
stem and large branch, respectively. However, main stem biomass decreased by 1.9% with every 1-cm 
increase in dbh, but large branch biomass increased by 2.2% instead. Results suggest that dominant Z. 
serrata trees tend to branch and fork, while smaller trees invest in larger main stem. An early pruning 
treatment should focus on dominant trees to maintain crown ratio and ensure wood quality.

A unique contribution of trees to ecosystem services beneficial to human society is the accumulation of carbon 
in the form of biomass. As such, the Paris Agreement formally recognizes that forests play an important role 
in addressing the impact of climate change by sequestrating carbon from atmosphere1. As the world is moving 
towards decarbonization, many mitigation methods have been developed such as negative emissions technolo-
gies (NETs)2 and radiative forcing geoengineering3. Among the different NETs, afforestation and reforestation 
approach2 is immediately relevant to forest management. By planting reclaimed lands or degraded forests, stand-
ing trees accumulate biomass throughout their life cycles albeit at different rates. Forests could also contribute 
to other climate change mitigation methods such as biochar production4. Matovic suggested that about 4.8 Gt of 
carbon could be sequestrated if 10% of the world biomass was converted to biochar, and part of the biomass could 
be sourced from forest management activities4. Osman et al. comprehensively reviewed several decarbonization 
technologies and found that using plant biomass as fuel in the oxyfuel combustion route could promote bioenergy 
and carbon capture and storage (BECCS) system as an effective way to achieve decarbonization5. Thus, there are 
many pathways available for forests to assist climate change mitigation.

Tree biomass is not directly measurable and is usually estimated by different methods. The most common 
approach is first estimating tree volume from forest inventory data and converting it to tree biomass by biomass 
expansion factors6,7. An alternative approach is using allometric equations to estimate tree total biomass or 
biomass of each tree component from stem diameter at breast height (dbh)6,8. Modeling how a tree partitions its 
total biomass into different tree components is needed. It is because understanding distribution of wood biomass 
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within a tree is important to estimate its wood utilization potential and economic value of tree components9. 
This also helps with designing appropriate silviculture treatments that promote biomass accumulation in certain 
tree components.

Jenkins et al. proposed a Component Ratio Method (CRM) in which ratio of biomass of a tree component was 
nonlinearly associated with dbh10. A biomass component ratio is calculated as the proportion of biomass of a tree 
component (e.g., main stem) to total tree aboveground biomass10. As a result, ratios of all biomass components 
should sum up to one. CRM has the advantage of additivity such that predicted biomasses of all the components 
in a tree sum to the predicted total tree biomass11,12. A hybrid approach could be used to estimate tree component 
biomass: tree total biomass is first predicted from tree volume by a biomass expansion factor, and CRM is then 
used to consistently distribute this total to each tree component6. Thus, CRM could assist in designing silvicul-
tural treatments that maximize wood utilization potential of a whole tree or certain tree components. While CRM 
is very useful, there are very few studies that model relationship between biomass component ratios and dbh13,14.

In Taiwan, forests occupy about 60% of the total land area of about 36,200 km2, which could be grouped into 
five general types: broadleaf forest, coniferous forest, mixed broadleaf-coniferous forest, mixed bamboo broadleaf 
forest, and mixed bamboo coniferous forest15,16. The 4th Taiwan National Forest Resource Inventory conducted 
between 2008 and 2012 reported that total carbon storage in Taiwan forests was 754.3 Mt CO2 or 347.9 t CO2 
ha−115,17. Of the total carbon storage, the largest proportion of carbon is stored in broadleaf forests (468.9 Mt 
CO2) followed by coniferous forests (156.3 Mt CO2) and mixed broadleaf-coniferous forests (103.5 Mt CO2)15. 
However, on a per unit area basis, mixed broadleaf-coniferous forests store the most amount of carbon (604.7 t 
CO2 ha−1) followed by coniferous forests (522.3 t CO2 ha−1) and broadleaf forests (319.1 t CO2 ha−1)15. Zelkova 
serrata (Thunb.) Makino is an important reforestation broadleaf tree species native to Taiwan. It distributes from 
300 to 1000 m a.s.l. and has high economic value due to its desirable wood properties for construction, furniture, 
flooring, and sculpture18. As such, Z. serrata is one of the ten major tree species widely planted since the start 
of the Taiwan National Reforestation Program in 199619. A total of 1785 ha of land has been reforested with the 
tree species between 1997 and 199919. Because of its importance as a plantation tree species, there is a continuing 
interest in understanding its role in carbon sequestration. The 4th Taiwan National Forest Resource Inventory 
reported that Z. serrata plantation had an average stand volume of 193.2 m3 ha−1, which stored about 452.2 t CO2 
ha−1—higher than the average storage rate of broadleaf forests15,17. A 9-year-old Z. serrata plantation could hold 
up to 267.9 t CO2 ha−118. Depending on stand age, annual stand-level carbon sequestration rate could be between 
1.81 to 4.11 t CO2 ha−1 year−118,20. The biomass expansion factors for a 25-year-old and a 46-year-old Z. serrata 
plantations were estimated to be 1.328 Mg m-3 and 1.528 Mg m-3, respectively20. Lastly, CO2 fixation rates of the 
upper-leaf and lower-leaf of Z. serrata species were estimated to be 5.52 g m-2 s−1 and 2.38 g m-2 s−1, respectively21.

While past studies have assessed carbon sequestration potential and biomass of Z. serrata on a stand-level, 
they have not explored the strategy adopted by the tree species in distributing its total biomass among its various 
components. As mentioned above, understanding this allocation strategy has ecological, economic, and manage-
ment implications. Thus, to fill in the knowledge gap, the goals of this study were to apply CRM to model tree-
level relationship between proportion of biomass in each tree component and dbh of Z. serrata, and to suggest 
potential silvicultural treatments that improve wood utilization potential of the tree species.

Materials and methods
Study site.  The study site was established at a Z. serrata plantation in the Neimaopu Forest District of the 
National Taiwan University Experimental Forest. The plantation was established in 1997 with a planting density 
of 1500 trees/ha and an area of 1.3 ha. It was located at 23° 40′ N and 120° 50′ E at 800 m a.s.l. Mean annual pre-
cipitation in the area was 1853 mm between 1997 and 2004. Mean annual temperature was 21.5 °C with mean 
relative humidity of 81.4%. This study was carried out in 2005 when the planted Z. serrata trees were 9 years old. 
All trees in the 1.3 ha plantation were censused for dbh and tree height (ht). A total of 921 trees were measured. 
The sampled trees were grouped into five diameter classes of 5-cm width (Table 1). A total of 12 trees were 
randomly selected from the first four diameter classes for biomass study with two trees from the diameter class 
of ≤ 5 cm, four trees from the diameter class of 5–10 cm, and three trees from each of the diameter classes of 
10–15 and 15–20 cm (Table 1). Since the last diameter class has only 3 sampled trees, no tree was selected from 
it. Thus, the 12 selected trees represented the range of tree attributes in the study site.

Table 1.   Number of census trees and sampled trees for biomass study in each diameter class. Mean diameter 
at breast height (dbh) and mean tree height of the trees sampled for biomass study with their respective 
coefficient of variation (%) in brackets are reported for each diameter class.

Diameter class (cm) Number of census trees Number of sampled trees for biomass Dbh (cm) Height (m)

 ≤ 5 167 2 4.43 (18.4%) 5.85 (18.9%)

5–10 518 4 8.28 (6.6%) 6.61 (15.9%)

10–15 208 3 13.37 (9.8%) 9.46 (15.1%)

15–20 25 3 18.63 (5.9%) 9.23 (26.0%)

 > 20 3 – – –
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Biomass sampling protocol.  For a sampled Z. serrata tree, the tree was felled at the base and separated 
into four components in the field: main stem, large branches, twigs, and foliage. Fresh weight (kg) of each com-
ponent was measured. Stem analysis was carried out for the main stem. The main stem was separated into 1-m 
sections. A stem disc was collected at the top of each section, and its fresh weight (kg) was measured. Large 
branches, twigs, and foliage were subsampled, and the samples of the three components were measured for their 
fresh weights (kg). All stem discs and samples were brought back to laboratory and dried at 65 °C until constant 
weight. The oven-dried stem discs and samples of large branches, twigs, and foliage were measured for their 
dried weights (kg). A ratio of dried weight to fresh weight for each component (i.e., stem, large branch, twig, and 
foliage) was calculated from the samples. For each component, the ratio was applied to convert the fresh weight 
of the component recorded in the field to its dried weight biomass (kg).

Statistical analysis.  The above ground biomass (AGB, kg) of a sampled Z. serrata tree was defined as the 
sum of its four component dried weight biomasses: stem biomass (Bstem, kg), branch biomass (Bbranch, kg), twig 
biomass (Btwig, kg), and foliage biomass (Bfoliage, kg). For each sampled tree, stem biomass ratio (Rstem = Bstem/
AGB), branch biomass ratio (Rbranch = Bbranch/AGB), twig biomass ratio (Rtwig = Btwig/AGB), and foliage biomass 
ratio (Rfoliage = Bfoliage/AGB) were calculated with the four ratios summed to one. The four ratios were used to 
build the CRM for each biomass component. Two biomass ratio models were applied based on a nonlinear 
model10 (Eq. 1) and a linear model (Eq. 2) relating a biomass component ratio to a tree attribute,

where, c denoted a biomass component, and X was a predictor. Three predictors were considered: dbh, dbh2, and 
dbh2·ht. The first predictor was the tree diameter, the second predictor represented tree basal area, and the third 
predictor represented tree volume. As a result, there were a total of six combinations of model and predictor for 
developing the Z. serrata CRM.

For Rfoliage, preliminary data analysis and model fitting showed that the parameter β1 was not statistically 
significantly different from zero for the six combinations of model and predictor. This suggested that foliage 
biomass was not significantly associated with dbh, tree basal area, and tree volume. Hence, following the sug-
gestions by Jenkins et al. and Radtke et al., the six combinations of model and predictor were only fitted to Rstem, 
Rbranch, and Rtwig

10,13. As the four ratios should sum to one, Rfoliage was calculated by subtracting the sum of the 
other three component ratios from one, i.e., Rfoliage = 1 – (Rstem + Rbranch + Rtwig). As a result, the three component 
ratio equations (i.e., Rstem, Rbranch, and Rtwig) was integrated as a system for each combination of model and predic-
tor. To properly develop such a system, one should consider that the component ratios were dependent and the 
residuals were correlated because the same tree gave the values to the three component ratios22. To account for 
potentially correlated residuals, Seemingly Unrelated Regression (SUR12,23) was used to fit a system of the three 
component ratio equations for each of the six combinations of model and predictor. In particular, Nonlinear 
Seemingly Unrelated Regression (NSUR) was applied to Eq. (1), and Linear Seemingly Unrelated Regression 
(LSUR) was applied to Eq. (2). Comparison between the combinations was made by examining residual standard 
error (RSE) and residual plots. The best system for the three component ratio equations was chosen. All analyses 
were carried out in R using systemfit package24,25.

Ethics declarations/protocol compliance.  The experimental and field protocols of collecting plant 
materials in this study were performed in accordance with relevant institutional and national guidelines and 
regulations.

Results
Model selection.  There was a total of six combinations of two SUR models and three predictors fitted to 
the Z. serrata dataset to build the CRM for the three biomass components. Selecting the final Z. serrata CRM 
model was based on: (1) residual plots, (2) comparisons of RSE, and (3) levels of significance of the estimated 
parameter β1 in the fitted CRMs. Residual plots of the three NSUR models for the three predictors (i.e., dbh, 
dbh2, and dbh2·ht) depicted clustering of residuals over a small range of predicted values (Fig. 1). The clustering 
of residuals was especially prominent for the NSUR models with dbh2 and dbh2·ht (Fig. 1d–i). For example, for 
the NSUR model with dbh2·ht, the residuals ranged from − 0.15 to 0.15% for a predicted value of about 0.43 for 
Rstem (Fig. 1g). This implied that predicted values of a component ratio for a tree attribute were very similar even 
though the actual observed values were different. This could be an issue when predicting a component ratio for 
a new tree.

On the contrary, residuals of three LSUR models for the three predictors were more dispersed over the range 
of predicted values (Fig. 2). Moreover, the range in the residuals of the three LSUR models was smaller than their 
NSUR counterparts. The LSUR model with dbh generally produced more homogeneously dispersed residuals 
without an obvious trend across the range of predicted values consistently for the three biomass component ratios 
(Fig. 2a–c) compared to the residuals from the two LSUR models with dbh2 and dbh2·ht (Fig. 2d–i).

Agreeing with the residual plots, the RSEs of the three NSUR models were consistently larger than their LSUR 
counterparts, which could be 20–60% larger depending of the component ratio (Table 2). The discrepancy was 
particularly large for Rstem. Moreover, for the two NSUR models with dbh2 and dbh2·ht, the estimated β1 for the 
Rtwig were not significantly different from zero (Table 2). Among the three LSUR models, the LSUR model with 

(1)Rc = exp

(

β0 +
β1

X

)

(2)Rc = β0 + β1X
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dbh generally had the lowest or comparable RSE than the two LSUR models with dbh2 and dbh2·ht (Table 2). 
Furthermore, its estimated β1 for the three biomass component ratios were more highly significant than the 
estimated β1 of the two LSUR models with dbh2 and dbh2·ht, i.e., smaller p-values (Table 2). Considering the 
consistency across the three assessment criteria, the LSUR model with dbh performed the best and was chosen 
to build the Z. serrata CRM system.

Component ratio model (CRM).  The largest biomass component ratio of the sampled Z. serrata trees was 
Rstem with an average and standard deviation of 0.463 ± 0.118 (range = 0.264 to 0.604). The second largest biomass 
component ratio was Rbranch with an average and standard deviation of 0.399 ± 0.136 (range = 0.237 to 0.624). 
Rtwig had an average and standard deviation of 0.092 ± 0.033 (range = 0.052 to 0.144). Rfoliage was the smallest with 
an average and standard deviation of 0.046 ± 0.023 (range = 0.018 to 0.096). Despite obvious difference in the 
average values, the range of the four tree component ratios was fairly wide. Especially, the range showed large 
overlapping between Rstem and Rbranch, and between Rtwig and Rfoliage.

The fitted LSUR model had an overall R2 of 0.73 suggesting that the model overall goodness of fit was good 
with about 73% of the total variance in biomass component ratios linearly explained by dbh. Fitted LSUR sug-
gested a very high negative correlation between Rstem and Rbranch linear models (− 0.834; Table 3), but a more 
moderate negative correlation between Rbranch and Rtwig linear models (− 0.341; Table 3). Thus, the moderate 
to high correlation between two component ratio models highlighted the need to apply SUR in model fitting.

In general, dbh explained the variance of each biomass component ratio relatively well with multiple R2 
ranging from 0.52 to 0.75 (Table 3). However, the linear relationship between dbh and Rstem, Rbranch, and Rtwig 
was different. For Rstem, the relationship was negative with an increase of 1 cm in dbh correlated with a decrease 
of 0.019 in Rstem (p-value = 0.0005; Fig. 3a, Table 3). On the other hand, for Rbranch, the relationship was positive 
with an increase of 1 cm in dbh correlated with an increase of 0.022 in Rbranch (p-value = 0.0003; Fig. 3b, Table 3). 
Lastly, for Rtwig, the relationship was negative with an increase of 1 cm in dbh correlated with a decrease of 0.0045 
in Rtwig (p-value = 0.0082; Fig. 3c, Table 3).

Figure 1.   Residuals vs. predicted values of three Nonlinear Seemingly Unrelated Regression models (Eq. 1). The 
three predictors are: (a–c) dbh, (d–f) dbh2, and (g–i) dbh2·ht. Each NSUR model consists of three Component 
Ratio Models (CRM) for the three biomass components: (a,d,g) main stem, (b,e,h) large branch, and (c,f,i) twig.
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Figure 2.   Residuals vs. predicted values of three Linear Seemingly Unrelated Regression models (Eq. 2). The 
three predictors are: (a–c) dbh, (d–f) dbh2, and (g–i) dbh2·ht. Each LSUR model consists of three component 
ratio models (CRM) for the three biomass components: (a,d,g) main stem, (b,e,h) large branch, and (c,f,i) twig.

Table 2.   Residual standard errors of fitted component ratio method models for the biomass components and 
for the combination of models and predictors. The biomass components are main stem, large branch, and twig. 
The two models are nonlinear and linear SUR. The three predictors are dbh, dbh2, and dbh2·ht. RSE is residual 
standard error. The p-values of the estimated parameter β1 in the fitted Component Ratio Method models 
(Eqs. 1 and 2) are represented by asterisk next to the reported RSEs: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** 
(p ≤ 0.001), **** (p ≤ 0.0001).

Predictor × model

Biomass component

Stem Branch Twig

Dbh

Nonlinear 0.0934/*** 0.0923/*** 0.0290/*

Linear 0.0658/*** 0.0711/*** 0.0243/***

dbh2

Nonlinear 0.1029/** 0.1109/** 0.0315/ns

Linear 0.0640/*** 0.0716/*** 0.0258/*

dbh2·ht

Nonlinear 0.1054/** 0.1157/** 0.0323/ns

Linear 0.0784/** 0.0858/** 0.0263/*
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Discussion
Many past studies focused on modeling the relationship between dry weight biomass of tree components and 
tree attributes26,27. However, very few studies have modeled the relationship with ratio of biomass in each tree 
component to AGB10,13. Woodall et al. applied the CRM models10 to estimate biomass and carbon content of 
trees in USA using the national forest inventory data. Our study contributes to the continuing modeling efforts to 
understand relationship between biomass component ratios and tree attributes. Our study is also unique in that 
it is the first to model CRM under SUR framework anticipating that there would be correlation between models. 
This has been supported in the results with correlation as high as 80%. Carvalho and Parresol suggested that it 
would be more realistic to consider component biomasses being dependent and residuals being correlated28. 
SUR should lower estimated variances of regression parameters, which means higher efficiency in estimating 
parameters and producing reliable prediction intervals11,12. Thus, results would be more reliably interpreted 
when applying SUR, and would in turns lead to more confidence in decision making such as designing effective 
silvicultural treatments. For that matter, CRM should be analyzed under the SUR framework as would other 
studies on dried weight biomass22.

For studies on biomass component ratio10,13 and on dry weight biomass component6,29, nonlinear relationship 
in the form of exponential distribution has been used to relate biomass ratio or biomass to dbh. In contrast, the 
nonlinear model (Eq. 1) in our study had poor predictability. The residual plots suggested that the fitted nonlinear 

Table 3.   Estimated parameters and properties of the final fitted linear seemingly unrelated regression models 
(Eq. 2).  The estimated parameters are reported for the main stem, large branch, and twig biomass component 
ratios. RSE is residual standard error.

Fitted component ratio models

Estimate Standard error p-value

Stem

β0 0.6790 0.0468  < 0.0001

β1 − 0.0188 0.0037 0.0005

RSE 0.0658

Multiple R2 0.7172

Branch

β0 0.1437 0.0506 0.0176

β1 0.0222 0.0040 0.0003

RSE 0.0711

Multiple R2 0.7525

Twig

β0 0.1441 0.0173  < 0.0001

β1 − 0.0045 0.0014 0.0082

RSE 0.0243

Multiple R2 0.5194

Correlation between component ratio models

Stem Branch Twig

Stem 1.0000 − 0.8340 − 0.1400

Branch − 0.8340 1.0000 − 0.3407

Twig − 0.1400 − 0.3407 1.0000

Figure 3.   Final fitted Linear Seemingly Unrelated Regression models (Eq. 2) of the component ratios over dbh. 
The biomass component ratios are: (a) main stem, (b) large branch, and (c) twig. Black solid lines depict fitted 
regression models. Gray circles depict observed ratios.
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models predicted similar values of biomass component ratios for trees of different dbhs. On the contrary, the 
linear model (Eq. 2) had better predictability. A possible explanation that the linear model performed better could 
be due to small sample size from the young Z. serrata stand. That being said, the sampled trees covered a wide 
range in dbh from 3.9 cm to 19.7 cm suggesting the scope of inference for the final LSUR CRM models should 
be adequate. Hence, multiple model forms should be compared when building a CRM system for a tree species.

Past studies have assessed carbon sequestration potential of Z. serrata tree species on a per area basis, e.g., with 
forest inventory data for Taiwan30, with remote sensing data in an urban forest in USA31, and for urban forests in 
South Korea32,33. None of these studies has assessed how Z. serrata distributing biomass among its components 
on tree-level. While the sampled trees in our study are of the same age, the Z. serrata stand exhibited strong 
horizontal and vertical stratification with a wide range in dbh and ht. The fitted CRM showed clear tendency 
of dominant Z. serrata trees to allocate biomass into developing larger branches at the expense of main stem 
biomass. One would expect that investing in larger branches is for crown development. However, the final fitted 
CRM suggested otherwise as there was no statistically significant increase in foliage biomass in dominant trees. 
Moreover, twig biomass in dominant trees were less than that in smaller diameter trees. On the contrary, for 
intermediate or suppressed Z. serrata trees, majority of sequestrated carbon is allocated to developing main stem 
according to the final fitted CRM system. While Z. serrata is highly adaptive to grow in a range of environments, 
thus preferred as a reforestation species, they are prone to branching and forking34. In a study35, 82% of Z. serrata 
trees in a five-year-old plantation developed forks with 44% of the trees forked at 1.3 m and below while 39% 
of the trees above 1.3 m. This corresponds with our study in that Z. serrata tends to branch when local growing 
conditions are favorable for it to become dominant. Thus, pruning was necessary to increase wood utilization 
of Z. serrata trees unless seedlings were planted in high density or with genetic selection34. This is supported by 
our study especially for dominant Z. serrata trees, which should be pruned early to avoid undesirable wounds.

From an economical perspective, early pruning of dominant trees and planting seedlings in high density 
both incur additional operational costs. However, economic gain from planting in high density could potentially 
offset the additional costs of planting materials and labor. It is generally observed that planting seedlings in 
high density tends to limit individual tree diameter growth due to increase competition36. From our modeling 
results, we speculate that high planting density of Z. serrata would lead to greater allocation of biomass to main 
stem instead of forming large branches, i.e., less forking and branching. This would reduce the cost of prun-
ing at early stand development and increase extraction ratio when the stand is mature for thinning operation. 
Extraction ratio is defined as the ratio of harvested wood transported out of a forest to total wood harvested37. 
Higher extraction ratio implies greater economic returns from production of wood products, which could also 
serve as long-term carbon storage or fuel for BECCS through methods such as oxyfuel combustion5. However, 
an in-depth economic study such as net present value analysis is necessary to fully understand the implications 
on stand- and landscape-level38,39. Nevertheless, our study shows that modeling biomass allocation strategy of Z. 
serrata would have economical implication for Taiwan forestry as the tree species will continue to be important 
in reforestation effort.

It would be fairly easy to apply the developed CRM system in our study to assess biomass allocation in a Z. 
serrata plantation with a hybrid approach6. For a Z. serrata tree in a sample plot, its volume is first estimated 
and converted to total tree dry weight biomass with the biomass expansion factors from Lin et al20. The biomass 
component ratios of the four tree components (Rstem, Rbranch, Rtwig, and Rfoliage) are predicted from its dbh accord-
ingly with our fitted LSUR models (Table 3). From which, one could then estimate dried weight biomass of the 
four tree components of the sample tree, which in turns could be expanded to per area basis with appropriate 
expansion factors associated with the sample plot40.

Despite that our study was carried out in a single even-aged stand, it is the first to suggest that there are sig-
nificant differences in biomass allocation strategy for Z. serrata trees of different sizes at the early stage of stand 
development. Most of the Z. serrata plantations established during the Taiwan National Reforestation Program 
should be currently about 20 years old. We conjecture that dominant trees that are already in the main canopy 
in early stand development stage will likely continue the same growth trajectory and biomass allocation strategy, 
and so would the suppressed trees. However, future study should resample in the same study site, which is now 
23 years old, to test our hypothesis.

Conclusion
This study is the first to model biomass allocation strategy of planted Z. serrata trees. It is one of the few studies 
to model biomass allocation with the CRM approach, and is also the first to model CRM under SUR framework 
to properly account for correlations between models. Our developed CRM could also be used to approximately 
predict tree component biomasses of a Z. serrata plantation when only carbon estimate per unit area is available. 
For example, a Z. serrata plantation stores about 452.2 t CO2 ha−115. Of this amount, our CRM models suggest 
that 209.4, 180.4, 41.6, and 20.8 t CO2 ha−1 are stored in main stem, large branch, twig, and foliage, respectively. 
Contrary to other studies, our results supported a linear relationship between biomass component ratios and 
dbh instead of a nonlinear relationship. The fitted linear relationship suggests that Z. serrata trees in the main 
canopy have larger sized crowns because of the tendency in forking and branching, which could more effectively 
compete for resources and suppress development of the other trees. Pruning is necessary not only to improve 
wood utilization potential of dominant Z. serrata trees by reducing knots but also to allow other trees in a stand 
to develop their utilization potential. Future work could sample Z. serrata trees across stand development stages 
and elevation to examine whether there is any change in biomass allocation strategy of the tree species under 
different stand age and growing conditions. Moreover, studying potential effects of various silvicultural treat-
ments on biomass allocation strategy of the tree species and economic tradeoff could lead to better planning of 
wood utilization in long-term carbon storage or bioenergy production.
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