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Functional traits linked 
to pathogen prevalence in wild bee 
communities
Laura L. Figueroa1,2*, Sally Compton1, Heather Grab1 & Scott H. McArt1 

Reports of pollinator declines have prompted efforts to understand contributing factors and protect 
vulnerable species. While pathogens can be widespread in bee communities, less is known about 
factors shaping pathogen prevalence among species. Functional traits are often used to predict 
susceptibility to stressors, including pathogens, in other species-rich communities. Here, we evaluated 
the relationship between bee functional traits (body size, phenology, nesting location, sociality, 
and foraging choice) and prevalence of trypanosomes, neogregarines, and the microsporidian 
Nosema ceranae in wild bee communities. For the most abundant bee species in our system, Bombus 
impatiens, we also evaluated the relationship between intra-specific size variation and pathogen 
prevalence. A trait-based model fit the neogregarine prevalence data better than a taxa-based model, 
while the taxonomic model provided a better model fit for N. ceranae prevalence, and there was no 
marked difference between the models for trypanosome prevalence. We found that Augochlorella 
aurata was more likely to harbor trypanosomes than many other bee taxa. Similarly, we found that 
bigger bees and those with peak activity later in the season were less likely to harbor trypanosomes, 
though the effect of size was largely driven by A. aurata. We found no clear intra-specific size patterns 
for pathogen prevalence in B. impatiens. These results indicate that functional traits are not always 
better than taxonomic affinity in predicting pathogen prevalence, but can help to explain prevalence 
depending on the pathogen in species-rich bee communities.

The use of functional traits has been proposed as a way of increasing synthesis, generalizability, and predict-
ability in  ecology1, all of which are critical elements in a world characterized by accelerating global change and 
biodiversity loss. Functional traits are measurable properties of an organism, including morphological, physi-
ological, and phenological characteristics, that influence performance (growth, reproduction, and survival)2,3. 
Functional traits can be effective at predicting plant community assembly, functioning, and  structure1. Moreover, 
functional traits can predict how ecologically important taxa, such as bees, will respond to  stressors4,5 and how 
effective their ecosystem service provisioning may  be6,7, though not always  consistently8. Similarly, intraspecific 
trait variation can affect pathogen transmission rates by influencing host susceptibility, immune response, and 
social  behavior9; for example, rodents with higher body mass contribute more to tick-born encephalitis transmis-
sion than rodents with lower body  mass10. Given the recognized role of pathogens in bee declines  worldwide11, 
developing generalizable ways of predicting disease risk could help target effective conservation research.

Bee epidemiological research has historically focused on commercial bee species, especially honey bees and 
bumble bees, and only recently has begun to consider other bee species. Increased molecular screening efforts 
have found widespread pathogen prevalence in pollinator  communities12–17, highlighting the need to understand 
disease dynamics at the community level. Functional traits mediate how individual bees interact with their envi-
ronment, potentially influencing exposure to pathogens and likelihood of transmitting the pathogen to other 
bees, but to date have never been evaluated in relation to pathogen prevalence in bee communities.

Numerous bee functional traits, such as body size, phenology, nesting location, sociality, and diet could influ-
ence pathogen prevalence. Body size is correlated with foraging distance in  bees18, and could therefore influence 
access to floral resources across larger spatial scales. Furthermore, bee body size not only varies substantially 
within species but can influence interactions with specific floral morphologies and subsequent probability of 
encounter with pathogens on  flowers19. For example, the common eastern bumble bee, Bombus impatiens, can 
vary greatly both in size and in likelihood of harboring pathogens, even within the worker caste. Size can be a 
predictor of bee disease dynamics in this species, with bigger workers developing lower infection intensity of 
the trypanosomatid gut pathogen Crithidia bombi, independent of the dose  provided20–22, possibly driven by a 
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more robust immune system in larger  bees22. As such, variation in body size among and within species could 
be linked to likelihood of encounter with pathogens on flowers and subsequently pathogen prevalence in bees 
at the community level.

Bee species differ in the time of year when they are most active as well as for how long. These phenological 
traits could influence pathogen transmission and prevalence. For example, bees eclose uninfected with C. bombi, 
acquiring the pathogen while foraging on contaminated flowers (social and solitary bees) or from nest mates 
(social bees)19. Bees that eclose when the incidence of disease is highest, are at greater risk of exposure, which 
could in turn result in greater pathogen prevalence. Whether infections accumulate or are cleared over time 
is not known for most bee species, nor whether patterns differ for pathogens that are exclusively transmitted 
horizontally, such as C. bombi, compared to other pathogens, such as Nosema spp. (microsporidia), for which 
sexual and vertical transmission may also be  possible23,24. Differences in routes of transmission and persistence 
under varying environmental conditions could differentially drive links between phenology and prevalence of 
different pathogen groups.

Nesting location could also influence pathogen survival, transmission, and ultimately prevalence among 
bees with different nesting locations. High temperature, low moisture, and ultra-violet radiation can reduce the 
survival of many bee  pathogens25. For example, C. bombi survives longer on flowers when shaded than when 
exposed to the  sun19. These environmental conditions are known to influence choices by ground-nesting bees, 
and are also likely to vary between above-ground vs. below-ground nests. Some ground-nesting bees prefer 
warm soil surface temperatures and ample availability of solar radiation when selecting a place to  nest26,27, 
which could reduce pathogen survival. However, some bees prefer moist soils for their  nests26, or secrete water-
insoluble substances into the walls of their nests to regulate  moisture28. Moisture simultaneously increases the 
probability of nesting success for many ground-nesting bees while also increasing the probability for pathogen 
outbreaks, especially for fungal  infections29. Thus, the nests of ground-nesting bees may facilitate the persistence 
and subsequent transmission of pathogens either from mother to offspring (both for social and solitary bees) 
or between nest mates (for social bees). While larvae of the bumble bee B. terrestris show no evidence of active 
C. bombi infections after inoculation, they can transmit the pathogen to brood-care worker bees, highlighting 
the multiple routes of pathogen transmission possible in the  nest30. As such, ground-nesting bees may be more 
likely to harbor pathogens than above-ground-nesting bees.

Sociality could influence pathogen transmission and ultimately prevalence in bees, though the direction-
ality is unclear. Group living has numerous costs and benefits related to disease susceptibility and pathogen 
 transmission31. For example, social bees have evolved stronger antimicrobial defenses than their solitary 
 counterparts32 and many have hygienic behaviors that reduce the probability of disease spread in the colony 
and increase recovery rates from  infection17,33,34. However, social living does increase contact rates that could 
facilitate outbreaks within a colony; for example, social feeding (trophallaxis) and higher density of individu-
als are all factors that could promote disease  transmission5,25. Furthermore, the effect of sociality on pathogen 
prevalence may be context dependent and be governed not only by group size but also internal  organization35, 
which may vary among social bee species. In controlled experiments, having a higher initial C. bombi prevalence 
in B. impatiens colonies increased the final prevalence, a pattern not found for honey bees and N. ceranae34. As 
such, the expected relationship between sociality and pathogen prevalence in diverse bee communities is unclear.

Diet and bee foraging choices can influence pathogen transmission and prevalence. The flower species visited 
by bees could influence pathogen dynamics due to differences in transmission  potential19,36,37 and/or antimicro-
bial properties of pollen and  nectar38,39. In particular, sunflower pollen has been shown to markedly reduce C. 
bombi infections in bumble  bees39. This pattern holds across numerous sunflower cultivars and at least one other 
species in the same plant  family40, though patterns may be more widespread in the Asteraceae family (Figueroa, 
et al. unpublished data). As such, bees foraging on Asteraceae may be less likely to harbor pathogens, especially 
trypanosomes, than those foraging on non-Asteraceae flowers.

Here, we collected 613 bees representing 50 species collected across 11 wildflower plantings and screened 
them for three common bee pathogens (trypanosomes, Nosema ceranae, and neogregarines). We evaluated 
(1) taxonomic differences in pathogen prevalence, among bee families and genera, (2) temporal patterns in 
pathogen prevalence, (3) the relationship between bee functional traits—body size, phenology (range and peak 
activity), nesting location, sociality, and foraging choice—and pathogen prevalence (289 bees and 31 species), 
(4) intraspecific size and pathogen prevalence of the dominant species in our system B. impatiens, and lastly (5) 
the model fit based on taxonomy compared to functional traits. Infection with trypanosomes, such as C. bombi, 
can alter bumble bee foraging behavior, cognitive  function41,42, and  reproduction43. Similarly, the microsporid-
ian N. ceranae and neogregarines such as Apicystis bombi can reduce adult bee  survival44–46. Additionally, larvae 
inoculated with N. ceranae can have higher morality than sham-inoculated counterparts (mason bees)47 and 
reduced adult survival (honey bees)48.

Material and methods
Field sample collection. We collected bees foraging in 11 established wildflower plantings in central New 
York, USA, from June 17 to September 11, 2015 as described in Figueroa et al.16. The 10 m × 15 m plots were 
established in 2012 with a mix of native perennial wildflower species as well as spontaneous weedy species (in 
total 23 plant species and 10 plant families; Tables S1, S2). We sampled bees within the wildflower planting and 
adjacent areas for 1.5 ± 0.5 person-hours from 8:00 to 17:00 h at each site on sunny and low wind days, with 8 
to 12 collection days per site throughout the season. Sites were sampled in alternating order so that each site 
was visited at different times of day throughout the season. Bees were collected while foraging on flowers and 
immediately placed on dry ice in the field and stored at − 80 °C until  processing16.
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Pathogen screening. We screened for presence of Nosema ceranae, trypanosomes, and neogregarines 
in the bee guts using established Polymerase Chain Reaction (PCR)  primers16. We surface sterilized each bee 
before extracting the gut, fat body, and Malpighian tubules and placing into sterile vials containing two sterilized 
2.4 mm steel beads, 100 µl of sterilized 0.1 mm zirconia beads, and 800 µl of TRIsure reagent (Bioline, Boston, 
MA, USA). After homogenizing the samples for 30 s at 6.5 m/s using a bead mill homogenizer (Omni Interna-
tional, Kennesaw, GA, USA), we transferred the solution to a new sterile vial, taking care to not pipette beads or 
large tissue fragments. We extracted DNA following the manufacture’s protocol. Each extraction batch included 
a negative control. The PCR primers are provided in Table S3. While the primers for trypanosomes and neogre-
garines were developed to be taxonomically inclusive, upon Sanger sequencing a subset of the samples from 
numerous bee species we found that 66% of the trypanosome positive samples had very high sequence similarity 
with C. bombi (others present were C. mellificae, Herpetomonas pessoai, and Trypanostomatidae sp.) and that 
100% of the neogregarine positive samples had very high sequence similarity with A. bombi16.

Bee identification. To reduce risk of DNA degradation and cross-contamination, we identified the bee 
species post-dissection. As such, not all specimens retained the characters necessary for identification. Bees 
were predominantly identified using reference materials located in the Cornell University Insect Collection and 
published  keys49–54 (additional information in Figueroa et al. 2020). Bees in the genus Lasioglossum are difficult 
to identify morphologically and were thus identified using barcoding methods. Specifically, we amplified and 
sequenced a 900 bp region of the protein-coding gene elongation factor 1-alpha16. Ultimately, we were able to 
identify 86% of all bees to species, 13% to genus only, and unable to identify 1% of the bees. Unidentified bees 
were removed from the analyses (n = 8). To be conservative, we conducted analyses only for bees that amplified 
positive control (bee DNA) or pathogen DNA (separate because multiplex primers developed to favor pathogen 
amplification).

Functional trait assessment. We selected six functional traits that we hypothesized could be important 
for determining pathogen prevalence: body size (continuous; empirically determined), phenology (continu-
ous; peak and range), nesting location (above-/below- ground), sociality (social/solitary), and foraging choice 
(Asteraceae/non-Asteraceae). These traits are frequently used in the bee  literature8,55,56 and we were able to 
obtain information for many of the species in our study (Table S4). We determined body size by measuring 
the intertegular distance (ITD), defined as the distance between the bees’ wing bases (Cane, 1987; Greenleaf 
et al., 2007) using an Olympus SZX10 microscope and CellSens Standard software (Olympus Corporation of the 
Americas, Scientific Solutions Group, Waltham, Massachusetts, USA). Due to risk of cross-contamination and 
DNA-degradation, we measured ITD post-dissection. As such, some specimens were not in suitable condition 
for adequately measuring ITD (76 individuals). To include the specimens that were not directly measured in 
community-wide analyses (but not intraspecific analyses), we used the average ITD of other bees of the same 
species and sex at the same site (reduced number of individuals without measurement to 35). Bee phenology 
was obtained from a publicly available database of Northeastern US  bees56. Specifically, we evaluated mean Julian 
day of adult activity as well as phenological range of activity (90th quantile—10th quantile in Julian date of adult 
activity), hereafter referred to as peak seasonal activity and seasonal activity range.

To avoid using nesting-trait categories that would have been represented by few species, we classified stem- 
and wood-nesting as “above-ground-nesting”, compared to ground-nesting bees as described in Williams 
et al. 2010. We also consolidated sociality according to Forrest et al. 2015, in which social bees include commu-
nal and facultative social species, as compared to obligate solitary species; we collected a single brood parasite 
(Coelioxys rufitarsis), and so we did not include brood parasites as a separate category. We evaluated the plant 
family on which the bee was collected, and characterized it as either Asteraceae or non-Asteraceae, hereafter 
referred to as foraging choice. We made this selection both because there were low number of representatives 
for many plant families and because of evidence that many Asteraceae have antimicrobial properties against bee 
pathogens (Figueroa et al. unpublished data). The full list of bee species and traits is in Table S4. Honey bees were 
only collected in the latter half of the sampling  period16; however, given that there were no temporal trends in 
pathogen prevalence (see “Results”), we feel confident that this did not influence our results.

Statistical analyses. Statistical analyses were conducted in RStudio (R Core group, version 3.4.0) using 
the lme4 and epiR  packages57,58. We computed the true pathogen prevalence across all sites for each of the 
three pathogen groups (trypanosomes, N. ceranae, and neogregarines; n = 613) using the epi.prev function of the 
epiR package, which accounts for differences in abundance. The test sensitivity was set to 95% using the Blaker 
method for two-sided confidence  intervals58. This method was also used to evaluate pathogen prevalence for the 
most abundant species, Bombus impatiens (n = 106). We evaluated temporal patterns of pathogen prevalence 
using generalized linear mixed effects models (GLMM), which included pathogen status (proportion of patho-
gen positive bees out of the bees screened at each site) as a binomial response, month as the numeric explanatory 
variable, and site as a random effect. We conducted a likelihood ratio test to determine the significance of coef-
ficients by comparing against a null model that only included the random effect (site). The unit of replication was 
the number of unique site-month combinations in which we sampled and screened bees (n = 40). All pathogen 
prevalence analyses included a binomial distribution and logit-link as transformation.

Before evaluating the relationship with functional traits, we evaluated whether there were taxonomic signals 
in pathogen prevalence in the bee communities. We constructed GLMMs that included pathogen presence/
absence in individual bees as the binary response (conducted separately for trypanosomes, N. ceranae, and 
neogregarines), with bee family as the explanatory variable and bee species and site as random effects. The models 
included sex as a covariate. To determine significance, we conducted a likelihood ratio test that compared the 
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model including family as the predictor to one that only included the random effects (n = 466 bees). We similarly 
evaluated differences among bee genera. We used family and genus as the predictors instead of species because 
some genera and species only included very few representative individuals (sometimes only one; Table S4). 
When the model was significant, a post-hoc test was used to determine significant differences among families 
or genera (Tukey’s HSD).

We evaluated the relationship between bee pathogen prevalence and bee functional traits using a GLMM 
that included pathogen presence/absence in individual bees as the binomial response predicted by each of the 
six traits (size, peak seasonal activity, seasonal activity range, nesting location, sociality, and foraging choice), 
including species and site as the random effects. Given that female and male bees can vary in  size59 and can both 
become  infected60–63, models included sex as a covariate. While we successfully screened 613 identified bees, we 
analyzed all traits simultaneously in a single GLMM and hence only used species without missing trait or sex 
data (n = 289 individuals). We conducted this analysis separately for each pathogen group (trypanosomes, N. 
ceranae, and neogregarines). Including sociality raised the VIF above 2; once this factor was removed from the 
model, the VIF was less than two for all remaining factors and were therefore analyzed  simultaneously64. Based 
on the taxonomic analysis, we found that Augochlorella aurata was significantly more likely to have trypanosomes 
than other genera (this species was the only representative of the genus in our system; see “Results”). To deter-
mine whether patterns were driven by this species, we excluded A. aurata from the datasheet and re-analyzed 
significant models. To further evaluate whether season could be driving size patterns, we evaluated differences 
in bee size over the sampling period by constructing a Linear Mixed Model that included bee size (ITD) as the 
response predicted by month, including species and site as random effects. Bee size was log-transformed to meet 
assumptions of normality.

We evaluated whether intraspecific body size predicted presence of each of the pathogens in the dominant 
species (Bombus impatiens, n = 106 workers). This was the only species for which we had sufficient numbers to 
evaluate intra-specific trait variation (i.e. ≥ 50  individuals1). To address this question, we conducted a GLMM 
that included pathogen presence as the binary response, predicted by individual bee size, and site as the random 
effect; this was done separately for each of the three pathogen groups. Significance was determined using likeli-
hood ratio test that compared the model including bee size as a predictor to a null model that only included the 
random effect (site). The analysis was conducted only on worker bees, as no queens or drones were collected. 
The intra-specific size variation followed a normal distribution, with the exception of one very small worker 
(Fig. S1). Excluding the single outlier had a large effect on the results (the only significant pattern was for N. 
ceranae, which changed from P = 0.042 to P = 0.275 when the outlier was removed). Although we have no reason 
to suspect this data point was incorrectly measured, here we choose not to highlight this result since it is does not 
appear to be a general pattern (Fig. S2). As such, in the main text we present the results with the single outlier 
removed from the analyses.

Lastly, we compared the fit of models that included functional traits as predictors compared to taxonomic 
groupings (genus) using Akaike Information Criterion (AIC). To do this, we compared GLMMs that included 
pathogen presence as the response (trypanosome, N. ceranae, or neogregarine) predicted by the six functional 
traits or genus; both models included species and site as random effects and were evaluated on the dataset used in 
the functional trait analyses (n = 289). Both models included sex as a covariate. Differences in AIC were used to 
rank the fit of models to the data, and ∆AIC ≥ 2 were taken to indicate substantial differences between  models65.

Results
Pathogen prevalence in the bees ranged from 23% for trypanosomes (95% Confidence Interval (CI), 20–27%), to 
11% for Nosema ceranae (95% CI 8–15%), and 1% for neogregarines (95% CI 0–3%). Pathogen prevalence varied 
among bee genera for trypanosomes (χ2

19 = 30.80, P = 0.042; Fig. 1A) and N. ceranae (χ2
19 = 40.08, P = 0.003; 

Fig. 1B), though not neogregarines (χ2
19 = 22.11, P = 0.28; Fig. 1C). Post-hoc tests indicate that bees in the genus 

Augochlorella (of which there was only one species in our system A. aurata) were more likely to harbor trypano-
somes than those in the genera Lasioglossum (z = 4.16, P = 0.005), Bombus (z = 3.85, P = 0.017), and Apis (z = 3.61, 
P = 0.040; Fig. 1). Other comparisons between genera were not significant for trypanosomes, nor were compari-
sons for N. ceranae prevalence (P > 0.05; Table S5). There were no differences among bee families for any of the 
three pathogens screened (χ2

4 = 2.83, P = 0.59, χ2
4 = 6.87, P = 0.14, χ2

4 = 5.92, P = 0.21 for trypanosome, N. ceranae, 
and neogregarine prevalence, respectively). Month did not explain pathogen prevalence in our bee communities 
(June–September) (χ2

1 = 0.04, P = 0.84, χ2
1 = 0.00, P = 0.96, χ2

1 = 0.58, P = 0.45 for trypanosome, N. ceranae, and 
neogregarine prevalence, respectively), indicating no clear temporal pattern of pathogen prevalence across sites, 
despite marked differences across time within sites (Fig. 2).

Functional traits were linked to trypanosome prevalence, though not to N. ceranae and neogregarine preva-
lence (Fig. 3). Bigger bees and those that were active later in the season were less likely to harbor trypanosomes 
than smaller counterparts and those active earlier in the season (z = − 2.72, P = 0.006 and z = − 2.72, P = 0.007, 
for bee size and peak seasonal activity, respectively; Figs. 4A,B, S2). We excluded A. aurata from the analyses to 
evaluate whether its disproportionately high trypanosome prevalence was driving the patterns, as a compara-
tively smaller and earlier-active species (Table S4). We found that A. aurata was largely driving the effects of size 
(z = − 1.46, P = 0.144 when A. aurata removed; Fig. 4C), though the peak seasonal activity patterns remained 
largely unchanged (z = − 2.49, P = 0.013; Fig. 4D). We found no seasonal differences in bee size as delineated by 
month (χ2

1 = 1.69, P = 0.19). Phenological range, nesting location, sex and foraging choice (whether or not col-
lected on Asteraceae) did not explain trypanosome prevalence in the bees (Table S6), nor was any trait linked to 
N. ceranae or neogregarine prevalence (Table S6). 

We evaluated the role of intra-specific size variation in relation to pathogen prevalence in Bombus impatiens, 
which ranged from 19% for trypanosomes (95% CI 10–28%), to 11% for N. ceranae (95% CI 5–20%), and 5% for 
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neogregarines (95% CI 0–13%). Pathogen prevalence was not linked to intraspecific size in B. impatiens workers 
(χ2

1 = 0.10, P = 0.75, χ2
1 = 1.19, P = 0.27, and χ2

1 = 0.57, P = 0.45, for trypanosomes, N. ceranae and neogregarines 
respectively).

The comparison of model fit between functional traits compared to taxonomic-based models yielded incon-
sistent results. Models that included functional traits as explanatory variables had a better model fit compared 
to the taxonomic-based (genus) model for neogregarine prevalence (∆AIC = − 12.36), worse fit for N. ceranae 
(∆AIC = 12.13), and was not different for trypanosome prevalence (∆AIC = 1.06).

Figure 1.  Prevalence of (A) trypanosomes, (B) Nosema ceranae, and (C) neogregarines among bee genera. 
The genera are ordered by decreasing prevalence within families. Differences were significant (P < 0.05) for 
trypanosomes and N. ceranae (post-hoc comparisons in Table S4). Genera with fewer than 5 individuals 
screened are excluded from figure.
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Discussion
Taxonomic affinity and functional traits have both been successfully used to predict susceptibility to pathogen 
prevalence in species-rich communities, though these frameworks have not yet been applied to understand 
host–pathogen dynamics in naturally occurring pollinator communities. Here we found that pathogen preva-
lence varied among bee genera for trypanosomes and Nosema ceranae in the bee communities surveyed, though 
interestingly no differences were found among bee families for any of the pathogens screened. There were no clear 
temporal patterns in pathogen prevalence across the bee communities. Conversely, we found that bigger bees and 
those that have a later peak season of activity were less likely to harbor trypanosomes, such as Crithidia bombi. 
The size pattern was driven by Augochlorella aurata, a species with disproportionately high trypanosome preva-
lence. This species, however, was not the driver of the phenological pattern, which remained after this species 
was excluded from analyses. Other functional traits were not linked to trypanosomes, and nor were any linked 
to N. ceranae or neogregarine prevalence. For the dominant species in the communities, B. impatiens, there was 
no clear relationship between intraspecific size and pathogen prevalence for any of the three pathogen groups 
screened. Overall, our work highlights that specific functional traits can explain pathogen prevalence patterns 
in diverse pollinator communities and pinpoints future areas for research in bee epidemiology.

We found taxonomic signals in pathogen prevalence, finding that trypanosome and N. ceranae prevalence 
varied by bee genera (Fig. 1). Bees in the genus Augochlorella, which were all A. aurata in our bee communities, 

Figure 2.  Temporal patterns of pathogen prevalence in the bee communities. Sampling dates where fewer than 
five bees were collected are not shown, nor are September sampling dates as only three sites had more than 
5 bees collected then. There were no overall significant temporal patterns in prevalence for any of the three 
pathogen groups screened (see “Results”).
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were more likely to harbor trypanosomes than those in Lasioglossum, Bombus, and Apis. This finding supports a 
previous study that found high prevalence of the trypanosome C. bombi in Augochlorella17, suggesting additional 
experimental work should be conducted to understand the importance of this genus as a host, including assessing 
health consequences of infection and transmission potential on flowers. There were no significant differences in 
neogregarine prevalence among genera, nor did comparisons between any two genera yield significant patterns 
for N. ceranae prevalence. Similarly, we found no differences in pathogen prevalence among bee families, indi-
cating that there may be key players at the species level that vary markedly from community level patterns. It is 
important to note that pathogen prevalence was determined using molecular methods, and as such, we cannot 
distinguish between innocuous pathogen DNA and active infections, nor whether patterns are due to greater 
resistance or less exposure to the pathogens. This work highlights the need to experimentally assess the impacts 
of these pathogens beyond honey bees and bumble  bees62,63, and determine which bee species, such as A. aurata, 
play key roles in pathogen transmission at the community  level16,66.

Trypanosome prevalence was linked to functional traits in the bee communities. Specifically, bigger bees and 
those with a later peak season of activity were less likely to harbor trypanosomes (Fig. 4A,B). Given the dispro-
portionately high trypanosome prevalence in A. aurata, a species that is relatively small and has a peak season 
of activity earlier in the summer, we wanted to evaluate whether the patterns remained when this species was 
excluded from the analyses. We found that there was no longer an effect of bee size, indicating that A. aurata was 

Figure 3.  Odds Ratios from binomial models evaluating pathogen prevalence in bee communities by 
functional traits. Factors sorted from highest to lowest value. Blue indicates a positive odds ratio and red 
indicates a negative odds ratio. ** P < 0.01. For neogregarines, sex and nesting locations had odds ratios and 
errors orders of magnitude bigger than other factors, so for visualization n.s. included to indicate they were not 
significant.
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largely responsible for the effect of this trait (Fig. 4C). Conversely, the pattern of bees with a later peak seasonal 
activity remained (Fig. 4D). Interestingly, this occurred despite no clear temporal patterns of pathogen prevalence 
over time across sites (Fig. 2), nor significant differences in bee size over time. There are often fewer bee species 
later in the season, as can be seen not only in our data but also more generally in the bee species community of 
the Northeastern United States (Fig. S4), and bee species likely differ in deposition rates on  flowers66. Pathogen 
prevalence is likely influenced by the number of competent hosts with broadly overlapping phenologies, as 
transmission on flowers depends on short time periods between an infected individual depositing pathogens on 
flowers and susceptible incomers foraging on the contaminated  flowers19. If there are fewer competent hosts and/
or fewer interactions with the same flowers later in the season, the probability of transmission may be lessened, 
subsequently reducing prevalence. Further evaluations into the role of phenology, visitation frequency, and 
overlapping use of floral resources in bee disease dynamics is clearly  warranted16,17.

Intra-specific variability plays a key role in driving species coexistence, ecosystem functioning, and response 
to global change, which can be comparable to or even greater than inter-species  differences1,67. Individual body 
size was not linked to increased likelihood of harboring any of the three screened pathogens in the dominant 
bee species in our study, Bombus impatiens. Other studies have found that bigger individuals of this species are 
less likely to harbor the trypanosomatid pathogen C. bombi, possibly due to a more robust immune  system20–22. 
However, many studies evaluating the relationship between bee size and pathogens have been conducted in 
the laboratory where bees have access to pollen and sucrose ad libitum. In the field, bees experience numerous 
interacting stressors (e.g. decreased floral diversity, increased pesticide exposure, and competition with honey 
 bees68), often being smaller in more simplified agricultural  landscapes69–72. As such, we do not know if small 
individuals that were infected succumbed to the negative health consequence of the pathogens (and therefore 
were not out foraging for us to collect and screen), while larger individuals could tolerate the infections and 
thus bias the patterns. Additionally, smaller bumble bees often remain in the hive as brood-care workers while 
larger bees  forage73, with the potential to further bias the sampling. A recent observational study similarly found 
no relationship between bee size and pathogen prevalence in wild bumble bee  workers74. As such, determining 

Figure 4.  Relationship between bee size and trypanosome prevalence in the overall community (A) when A. 
aurata included and (B) when A. aurata excluded. Relationship between peak seasonal activity (in Julian days) 
and trypanosome prevalence (C) when A. aurata included and (D) when A. aurata excluded. Shaded confidence 
interval corresponds to standard error. The regression lines are based on the model output (Table S6). Data are 
presented as proportions for ease of visualization in Fig. S3.
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whether landscape scale filtering of bees could increase susceptibility to infections is a necessary future research 
direction, and highlights the importance of experimental manipulations in the field with co-occurring  stressors75.

Not all functional traits were associated with differences in pathogen prevalence in the bee communities, nor 
were there sex differences (Fig. 3). Namely, range of activity period, nesting location, foraging choice (whether 
collected or not on Asteraceae) were not linked to pathogen prevalence in the bees (sociality was highly collinear 
with the other functional traits and thus not included in the final model). The comparison between the model fit 
of the functional trait model and the taxonomy (genus) model differed markedly by pathogen group. Interest-
ingly, while two traits were significantly linked to trypanosome prevalence, there was no difference in model 
fit between the functional traits and the taxonomy models for this pathogen group. Conversely, the functional 
trait model provided a significantly better model fit for neogregarines and a significantly worse model fit for N. 
ceranae. In a previous study, trait-based models evaluating trypanosome (C. bombi) transmission to B. impatiens 
at flowers had lower AIC values than models based on plant  taxonomy37. Diverse pollinator communities are 
often characterized by many rare  species76, and thus employing functional traits may provide a better model fit 
by requiring fewer parameters, though as our study shows, not always. Given the recognized role of pathogens 
in bee declines  worldwide11 and their widespread prevalence in surveyed plant-pollinator  communities12,13,16, 
developing generalizable ways of predicting disease could guide more effective conservation efforts. The negative 
relationship between bee size (foraging distance) and peak seasonal activity (lower species richness) indicate that 
experimentally testing whether greater number of flowers could reduce the overlapping use of floral resources 
and subsequently reduce rates of pathogen transmission may be a fruitful future direction. Furthermore, collect-
ing phenological data through long-term monitoring efforts of bee communities is very important as patterns 
may shift with climate  change77, which may be shaped by other functional traits of the  bees78, with implications 
for access to resources, pathogen transmission, and ultimately pollinator health. Our work illustrates that there 
are taxonomic and functional trait signals in the prevalence of some pathogen groups but not others in diverse 
pollinator communities.
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