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Undulation of a moving fluid 
membrane pushed by filament 
growth
Hiroshi Noguchi1,2* & Olivier Pierre‑Louis2 

Biomembranes experience out-of-equilibrium conditions in living cells. Their undulation spectra are 
different from those in thermal equilibrium. Here, we report on the undulation of a fluid membrane 
pushed by the stepwise growth of filaments as in the leading edge of migrating cells, using three-
dimensional Monte Carlo simulations. The undulations are largely modified from equilibrium behavior. 
When the tension is constrained, the low-wave-number modes are suppressed or enhanced at small 
or large growth step sizes, respectively, for high membrane surface tensions. In contrast, they are 
always suppressed for the tensionless membrane, wherein the wave-number range of the suppression 
depends on the step size. When the membrane area is constrained, in addition to these features, a 
specific mode is excited for zero and low surface tensions. The reduction of the undulation first induces 
membrane buckling at the lowest wave-number, and subsequently, other modes are excited, leading 
to a steady state.

In nonequilibrium, surfaces and interfaces often exhibit different fluctuations from thermal equilibrium. The 
fluctuations of growing surfaces have been studied by the Kardar–Parisi–Zhang equation and other models1–7. 
Scaling laws for the spatial and temporal evolution of surface roughness and correlation functions have been 
intensively discussed in various physical systems. On the other hand, larger undulations of fluid membranes 
have been observed out of equilibrium than in equilibrium8–11. For example, red blood cells exhibit non-ther-
mal fluctuations10. However, nonequilibrium membrane undulations have only been investigated under limited 
conditions.

In living cells, membranes often interact with protein filaments (e.g., actin12,13 and microtubules14,15), which 
push and/or pull the membranes. For example, actin filaments grow at the front side of crawling cells and push 
the membrane forward. This membrane motion has been intensively studied by Brownian ratchet theories and 
simulations15–28. However, membrane fluctuations have not yet been studied. In most studies reported in the 
literature16–24, the membrane is modeled as a flat rigid surface; thus, no fluctuations are accounted for. Although 
the membrane fluctuations are assumed to be a Gaussian distribution of the membrane height in Ref.25, the 
spatial correlation was not accounted for. Membrane fluctuations were also considered with a one-dimensional 
lattice model26–28, but the surface tension was treated by a rough approximation of the rectangular contour length 
in the absence of the bending energy. Thus, the effects of the bending rigidity have not yet been investigated.

In this study, we report on a minimal model that describes the fluctuations of a fluid membrane with the 
bending rigidity in interaction with growing filaments. We examine the fluctuations of the membrane pushed 
by filament growth using Monte Carlo (MC) simulations. The filaments grow by a stepwise random walk under 
the membrane and have an excluded-volume interaction with the membrane. The analysis of the fluctuation 
spectrum reveals that membranes deviate from the well-known equilibrium behavior under either condition in 
which the bending energy or surface tension is dominant. Fluctuations are enhanced or suppressed depending 
on the conditions. Moreover, enhancement of a specific wave-number is obtained when the membrane area is 
constrained.

Results
The filaments are modeled as a square array of columns growing vertically in the z direction by the addition of 
new growth units of �zfil . The filaments grow only upward in the +z direction with a probability pfil , as shown 
in Fig. 1. The filament retraction and interactions between filaments are not considered for simplicity. The fluid 
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membrane is described by a continuous height z, defined on a square mesh above each filament, and is moved 
stochastically upward and downward by the Metropolis MC method. Unless otherwise specified, the number 
N = 642 = 4096 of filaments (as well as membrane vertices) and the filament growth probability pfil = 0.5 are 
used (see “Methods” for more details). The results are displayed with the thermal energy kBT and lateral distance 
between neighboring filaments ℓfil for the energy and length units, respectively.

Thermal equilibrium.  In thermal equilibrium (no interactions with the filaments), the height z = h(x, y) of 
the membrane exhibits a static spectrum that is controlled by the bending energy and tension29–32:

where q is the norm of the wave-vector in the x, y plane, κ is the bending rigidity, and γ is the mechanical surface 
tension33 conjugated to the projected membrane area Axy = N , respectively (see Fig. 2a). For  low wave-num-
bers ( q �

√
γ /κ  ), the tension is the dominant factor in determining membrane undulation, while the bending 

rigidity is at  high wave-numbers ( q �
√
γ /κ  ). In this study, κ = 10 is used. Thus, for γ = 10 , surface tension 

is dominant for most of the wave-number range; for γ = 1 , the tension and bending energies are dominant 
for low and high wave-numbers, respectively. To maintain the surface tension or membrane area, we employ 
two types of constraints: case I (tension constraint), in which the intrinsic surface tension γit conjugated to the 
real membrane area A is imposed by the potential Uit = γitA , and case II (area constraint), in which area A is 

(1)�|h(q)|2� =
1

κq4 + γ q2
,

Figure 1.   Motion of the membrane and filaments. (a) Schematic of the membrane and filaments. According to 
the Metropolis MC method, the membrane moves with a vertical (z) step taken from a uniform random number 
in [−�zmb,�zmb] . The filament grows stepwise with a probability pfil . (b) Snapshot of a part of the membrane 
and filaments at �zfil = 0.4 , pfil = 0.5 , γ = 0 , and N = 4096 in case I (tension constraint). The red mesh and 
blue bars represent the membrane and filaments, respectively. The origin of the z coordinate is taken at the 
minimum value of the filament position zfil.
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Figure 2.   Spectra of undulation modes �|h(q)|2� . (a) Membrane under thermal equilibrium at γ = 0 , 1, and 
10. The symbols ( × , ▽ , and + ) and ( ⋄ , △ , and � ) represent the spectra in cases I (tension constraint) and II 
(area constraint), respectively. Solid lines show 1/(κq4 + γ q2) with κ = 10 . (b, c) The undulation spectra 
of the membrane (red diamonds) and filament tips (blue cross marks) of tensionless membranes ( γ = 0 ) at 
�zfil = 0.004 for (b) case I and (c) case II. The error bars are smaller than the symbol size.
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constrained by a harmonic potential Uar = (KA/2A0)(A− A0)
2 , where KA is the area compression modulus. In 

these cases, γit or A0 is adjusted to obtain  the spectrum given by Eq. (1). Note that γit is slightly greater than γ 
because of the membrane undulation as discussed in the literature33–36. In case I, the membrane is a part of a cell 
membrane or liposome and the rest part of the membrane can act as a membrane reservoir to change the area, 
while no reservoir exist in case II. Both types of constraints lead to the same static spectrum as shown in Fig. 2a.

Steady‑state velocity.  As the filaments push the membrane upward, the membrane and filament tips 
relax to a steady-state, in which they move at the same speed 〈vz〉 . The growth speed 〈vz〉 exhibits a non-mono-
tonic dependence on the size of the filament growth units �zfil . For intermediate values of �zfil , a maximum 
speed is reached concomitantly with a minimum in the average of the gap distance zgap = zmb − zfil between 
the membrane and filament tips, as shown in Fig. 3. Hence, the averaged motion is not sensitive to the surface 
tension γ or to the constraint types (case I or II). In all cases a similar dependence on �zfil is found.

The two asymptotic regimes of large and small �zfil present distinct behaviors. For a large step of �zfil , the 
mean growth velocity 〈vz〉 and the gap distance 〈zgap〉 are independent of pfil and determined by �zfil , as shown 
in Fig. S1, because frequent growth trials of the filaments are rejected until the membrane moves by a sufficiently 
large distance for the filament growth units to be inserted. This corresponds to the diffusion limit in the Brownian 
ratchet model16,17. On the other hand, the behavior in response to small steps of �zfil is predominantly determined 
by the ratio of the filament growth rate pfil�zfil  to the mean membrane step size �zm0 = pmb�zmb/2 , where pmb 
is the mean acceptance ratio of the membrane motion in the absence of filaments ( pmb ≈ 0.5 in our simulations, 
see “Methods”). The velocity 〈vz〉 for pfil = 0.25 , 0.5, and 1 merge into one curve when they are plotted with the 
horizontal axis of pfil�zfil/�zm0 (see Fig. S1d), whereas a small difference remains in 〈zgap〉 (see Fig. S1e). The 
velocity approaches the growth velocity of free filaments, pfil�zfil , for �zfil → 0 , so that this corresponds to the 
reaction limit in the Brownian ratchet model16,17. The maximum velocity and minimum distance are obtained 
at pfil�zfil ∼ �zm0 , i.e., when the motion of the membrane opens gaps corresponding to the size of filament 
growth units at a frequency which is similar to that of the insertion of new growth units (see Fig. 3c and d as well 
as Fig. S1d and e). Furthermore, irrespective of the average value of the gap, the probability distribution P(zgap) 
of the gap zgap decreases monotonically with increasing zgap and exhibits a stepwise discontinuity at zgap = �zfil , 
because the filament growth is rejected at a smaller distance (see Fig. S2).

Undulation spectrum.  The pushed membrane exhibits a different undulation spectrum from that of 
equilibrium. Figure 2b and c show the spectra of the tensionless membrane ( γ = 0 ) at �zfil = 0.004 . At a low 
wave-number q (i.e., long wavelength), the membrane and filament surface connecting their tips have identical 
spectra. On the other hand, at a high q (i.e., short wavelength), the membrane spectra are not modified from 
the equilibrium spectrum in Fig. 2a, and the filament surface exhibits a flat spectrum of white noise, as in the 
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Figure 3.   Mean growth velocity 〈vz〉 and mean distance between the membrane and filament tips 〈zgap〉 . In 
(a) and (b), these quantities are plotted as a function of �zfil for γ = 0 , 1, and 10. The solid and dashed lines 
represent the data in cases I (tension constraint) and II (area constraint), respectively. In (c) and (d), the data 
around the maximum velocity and minimum distance are enlarged, and the mean filament growth distance 
pfil�zfil normalized by the mean distance �zm0 of the membrane motion at one MC step. The error bars are 
smaller than the line thickness.
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absence of membrane–filament interactions. The threshold qsep of separation of the spectra of the membrane and 
filament surface is correlated to the gap distance. With increasing �zfil , qsep increases, reaches a maximum when 
〈zgap〉 is minimum, and then decreases (see Fig. S3). Up to the maximum of qsep , the filament spectrum at high q 
is flat. However, above the maximum, the filament spectrum is not flat at high q; thus, the spectrum is modified 
by the membrane–filament interactions (see Fig. S3c). These high q behaviors are not qualitatively changed by 
the choice of constraints (cases I or II). However, a distinct difference is found in the spectra of low q. In case I 
(tension constraint), the membrane undulation are suppressed at low q. In contrast, the spectrum is enhanced 
at q ≃ 0.07π in case II (area constraint; compare Fig. 2b and c). Hence, the membrane buckles to maintain the 
membrane area A. A similar nonequilibrium buckling scenario resulting from the suppression of membrane 
fluctuations has been discussed as a mechanism that induces instability of the lamellar phase in shear flow37. 
Note that the membrane–filament interactions cannot be interpreted by the effective change of the surface ten-
sion, since the spectrum shapes in Fig. 2b and c are different from that for any value of γ.

To further examine the spectrum changes, Fig. 4 shows the membrane spectrum normalized by the equi-
librium spectrum as �|h(q)|2�/�|heq(q)|2� . Let us first discuss case I, with tension constraint. For tensionless 
membranes low-q undulations are suppressed for all values of �zfil , while it is slightly enhanced at the interme-
diate wave-number ( q ≃ 0.3π ) for large �zfil (Figs. 4a and 5a). A rough measure of the range of q for which the 
fluctuations are suppressed (i.e., �|h(q)|2�/�|heq(q)|2� < 1 ) during growth can be obtained from the evaluation 
of the value of q for which �|h(q)|2�/�|heq(q)|2� = 0.6 . This value of q plotted as the solid lines in Fig. 5c, is seen 
to exhibit a maximum for �zfil = 0.02 . Hence, the low q range where the modes are suppressed is widest around 
�zfil = 0.02 . This value is smaller than that corresponding to the minimum of the gap distance �zfil = 0.065 . 
This maximum range of suppressed modes changes only slightly (see Fig. 5c) at higher γ . However, when pfil is 
increased, the maximum of the suppression range increases while the corresponding value of pfil�zfil is constant 
(see Fig. S4). In addition to this suppression effect at small �zfil , an enhancement effect is seen for large �zfil 
for high tensions. For γ = 10 the undulation increases at q ≪ 1 with increasing �zfil (see Figs. 4 and 5a), and a 
steep increase is obtained at �zfil ∼ 1.

As a summary, for increasing �zfil , there are first a range of modes that are suppressed. This range reaches 
a maximum for some value of �zfil (here pfil�zfil = 0.01 ), and then decreases. Upon a further increase in �zfil , 
the low-q modes are enhanced for non-vanishing tensions.
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Figure 4.   Undulation spectra normalized by the equilibrium values �|h(q)|2�/�|heq(q)|2� for �zfil = 0.002 , 0.01, 
0.06 (or 0.065), 0.4, and 0.8. (a–c) Case I (tension constraint) and (d–f) case II (area constraint) for (a, d) γ = 0 ; 
(b, e) γ = 1 ; and (c, f) γ = 10 . The blue triangles represent the data at �zfil = 0.06 or 0.065, where the distance 
〈zgap〉 has the minimum value. The black pluses represent the data of the membrane with the totally asymmetric 
diffusion (tamb). The error bars are smaller than the symbol size except for low wave-numbers at small �zfil in 
case II.
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Under the area constraint (case II), a similar trend of suppression of low q modes with a maximum at small 
�zfil together with an enhancement of low q modes at large �zfil is found. However, there is an important super-
imposed feature: a peak at low q appears in the spectrum ratio for small γ . The peak can be clearly seen in Fig. 4d 
for γ = 0 . The position of this peak, shown as the lower dashed line in Fig. 5c, shifts to a higher q with increasing 
�zfil . For γ = 1 , the undulations are similar to those of γ = 10 and γ = 0 in cases I and II, respectively. Globally, 
the membrane undulation is strikingly changed by interactions with the filaments and strongly depends on the 
filament growth rate and membrane constraint types.

Moreover, we examined a totally asymmetric membrane (tamb) motion as a limited condition, in which the 
filaments are in complete contact with the membrane, and all of the downward membrane motion are rejected. 
The tamb spectra are close to those of the minimum gap distance, as shown in Fig. 4. Thus, the membrane under 
the minimum gap distance condition is well approximated by the asymmetric membrane motion. In this limit, 
the undulation due to the bending energy is modified ( γ = 0 and 1), while that due to the tension is not ( γ = 10 ). 
The tamb steady velocity 〈vz〉 is ≃ 50 % higher than that of the minimum gap distance condition: �vz� = 0.0183 
(0.0190), 0.0180 (0.0182), and 0.0162 (0.0164) for γ = 0 , 1, and 10 in case I (case II), respectively. This difference 
is reasonable as a smaller minimum distance gives a higher velocity, as shown in Fig. S1.

Vertical span.  In the studies of surface growth, the time evolution and finite-size scaling of the surface 
thickness (or width) have been analyzed1–6. Here, we call this the surface vertical span to avoid confusion with 
the thickness of the membrane itself, and defined it as z2span =

∑N
i (zi − zG)

2/N , with zG =
∑N

i zi/N . Due to 
Parseval’s identity, it corresponds to the sum of the spectrum over all modes.

Figure 6 shows 〈z2span〉 as a function of �zfil and the system size N. For very small or very large �zfil , the fila-
ment vertical span is greater than the membrane span, reflecting the difference of the undulation spectra at high q. 
The �zfil dependence of 〈z2span〉 is roughly captured by that of the undulation spectra at a low q (compare Figs. 5a, 
b and 6a, b). At a small �zfil , 〈z2span〉 provides slightly large and small values for pfil = 0.25 and 1, respectively, 
while they merge well at large �zfil (see Fig. S1c and f). Under thermal equilibrium at γ = 0 , the membrane 
vertical span linearly increases as �z2span� ∼ N following the amplitude of the lowest undulation mode30. For the 
pushed membrane, this increase is reduced for all values of �zfil (see Fig. 6c). On the other hand, for γ = 10 , 
a greater increase is obtained at large �zfil (see Fig. 6d). This observation reflects an amplitude increase in the 
lowest mode as seen in Fig. 5a.

The excess membrane area increases as �A�/Axy − 1 = (kBT/8πκ) ln(N)+ b for the tensionless membrane 
( γ = 0 ) under thermal equilibrium30,38,39, where b is a constant. The modification of this size dependence by the 
filament growth is similar to that in the vertical span, and the excess area increase is largely reduced at γ = 0 
(see Fig. S5). Note that the mean velocity 〈vz〉 and gap distance 〈zgap〉 exhibit negligibly small size dependence.

Membrane dynamics.  Finally, we describe the time evolution. After the filaments contact the membrane, 
both surfaces relax into steady states. The choice of the initial conformations, such as a flat or thermal equilib-
rium membrane conformation does not lead to any notable difference in the subsequent dynamics. In most of 
the conditions, the undulations increase monotonously on average despite large fluctuations, as shown in Fig. 7b. 
However, a characteristic evolution is found at �zfil � 0.01 for γ = 0 under the area constraint (see Fig. 7a and 
c). First, the membrane and filament surface buckle together and form a bump, as shown in the middle snapshot 
in Fig. 7a. This bump leads to a strong peak in the first mode of the spectrum |h(q)|2 and in 〈z2span〉 . Subsequently, 
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the higher modes develop, leading to a steady state (the bottom snapshot in Fig. 7a). The initial suppression of 
the membrane undulation induces this overshoot buckling, because the lowest mode can evolve the fastest. It 
is known that a similar buckling at the lowest mode is induced by a negative surface tension40, so that it may be 
interpreted that an effective negative tension is yielded by the interaction with the filaments. Such buckling could 
share also similarities with wrinkles forming when a membrane is confined between two walls41, which are also 
be suppressed by tension42.
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Discussion
We numerically studied the membrane pushed by filament growth. The growth velocity has a maximum at a 
slightly larger filament-growth step �zfil than for the minimum gap distance; they are not sensitive to the surface 
tension and the constraint types. It is found that the membrane undulation spectrum is non-monotonously 
changed from that of thermal equilibrium. Under the tension constraint, the low-wave-number (long wavelength) 
undulations are suppressed for the tensionless membrane, and the range of the suppression displays a maximum 
at a value of �zfil that is smaller than that corresponding to the maximum velocity and minimum gap. At a high 
surface tension, this suppression is altered to enhancement with increasing �zfil . Under the membrane-area 
constraint, we find similar features as in the tension constraint, but with two main differences for low tensions. 
First, a peak appears at some intermediate wave-number. Second, the membrane dynamics of relaxation to the 
steady-state is changed. The suppression of the undulation initially induces the buckling of the membrane at the 
lowest wave-number to maintain the membrane area. Subsequently, other modes are excited. The spectrum of the 
filament surface is identical to that of the membrane for low wave-numbers but deviates for high wave-numbers. 
The smaller the gap distance, the wider the identical region. Consequently, the vertical spans of the membrane 
and filaments deviate at small or large filament-growth steps.

Let us map the present model parameters to the membrane systems in living cells. In the model, 1/ℓ2fil is the 
lateral density of the filaments under the membrane. The membrane undulation is cut off at a membrane thick-
ness of approximately 5 nm, so that the available range is ℓfil � 5 nm. Our simulations clarified that the membrane 
undulation modes at high wave-numbers are not modified by the filament growth. Hence, we can conclude that 
the modes higher than 2π/ℓfil should also be unchanged, and we can only consider changes in the lower q modes.

An actin network pushes the plasma membrane of the leading edge in migrating cells12,13, in which the step 
size for actin growth is �zfil = 2.7 nm17,18,25. The density of actin filaments varies among cell types and with the 
cell state12,13. For high and low densities of ℓfil = 10 nm and 100 nm, �zfil/ℓfil = 0.27 and 0.027 are obtained, 
respectively. Thus, at a high density, the discreteness of the filament growth may play a significant role in mem-
brane–filament interactions. A microtubule is a hollow cylinder with a diameter of 25 nm, typically consisting 
of 13 protofilaments, and the growth unit length is �zfil = 8 nm14,19. When the microtubules are closely packed, 
the average distance is ℓfil ≃ 7 nm, such that �zfil/ℓfil ≃ 1 at the maximum.

Here, we consider the minimal model for filament growth, in which the membrane and filament tips have 
only a repulsive interaction and no interactions between filaments. In the previous studies, the contact energy 
between neighboring filaments20,21, attractive potentials between the membrane and filament tips22, acceleration 
of filament growth by the membrane contact27,28, and filament rigidity43 have been investigated. These interactions 
can be easily added to the present model to clarify their effects on the undulations. Actin filaments often bind to 
membranes via curvature-inducing proteins12. Under such conditions, the filament contact is accompanied by 
the local induction of a membrane spontaneous curvature. Propagation waves can be generated by the coupling 
of the curvature-inducing proteins with the actin and/or regulatory proteins44–46. The effects of such a spontane-
ous curvature on membrane undulation are also an interesting topic for further studies. The model presented 
here could therefore be a versatile tool for the investigation of the interactions that may affect the membrane 
undulations in nonequilibrium conditions.

In previous studies8–11 on nonequilibrium membrane fluctuations, membrane undulations are always 
enhanced by active energy inputs. In the present case, the opposite effect (suppression) is also found. Indeed, 
filament growth can either increase or decrease the undulations depending on the conditions, and in particular, 
it can induce an excitation at a specific wave-number. Such undulations could stimulate characteristic length-
scales or periodic structures that may give rise to filopodia and microspike coupling with the filament assembly.

Methods
The fluid membrane is modeled by a squared mesh of N vertices with periodic boundary condition, as described 
in Ref.33. The bending energy is given by Ubend =

∫

(κ/2)(C1 + C2)
2dA , where C1 and C2 represent the prin-

cipal curvatures29,47,48. The Monge representation ( z = h(x, y) ) is employed, and the curvature is calculated as 
C1 + C2 = [(1+ h2x)hyy + (1+ h2y)hxx − 2hxhyhxy]/(1+ h2x + h2y)

3/2 , where the subscripts represent spatial 
derivatives, such as hx = ∂h/∂x29. To control the membrane area, the intrinsic tension γit or the membrane 
area A is constrained by the addition of Uit or Uar to the Hamiltonian in case I or II, respectively. To remove 
the artificial entropy production by the membrane tilt, a correction potential Ucor = −kBT

∑

ln(cos θi) is also 
added to the Hamiltonian, where θi is the angle between the normal vector of the i-th site and the z-axis33. 
Straight filaments are arranged in the squared lattice ( xi , yi ) which is shared by the vertices of the membrane 
(see Fig. 1). Membrane–filament excluded-volume interactions are implemented by forbidding moves leading 
to inter-penetration ( zfil < zmb).

In the filament growth step, one of the filaments is randomly selected, and its tip moves upward with a 
probability pfil for a step of �zfil . If the filament overlaps with the membrane vertex, the trial is rejected. The 
membrane vertex is moved by a vertical step taken from a uniform random number in [−�zmb,�zmb] , and 
the motion is accepted or rejected by the Metropolis MC procedure. In each MC step, N trials are performed 
for both the filaments and membrane. In this study, �zmb = 0.2 and KA/A0 = 1 are used. For γ = 0 , 1, and 10, 
γit = 0.44 , 1.44, and 10.4 ( A0/N = 1.036 , 1.022, and 1.01 for N = 4096 in case II) are used, respectively. In our 
simulations, we have pmb ≈ 0.5 . More precisely, pmb = 0.5226 , 0.5128, and 0.4810 for γ = 0, 1 , and 10 in case I 
and pmb = 0.5228 , 0.5130, and 0.4813 for γ = 0, 1 , and 10 in case II, respectively. Error bars are calculated from 
three independent runs.
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