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Gaussian graphical 
modeling of the serum 
exposome and metabolome 
reveals interactions 
between environmental chemicals 
and endogenous metabolites
Vincent Bessonneau1,2, Roy R. Gerona3, Jessica Trowbridge4, Rachel Grashow5, Thomas Lin3, 
Heather Buren6, Rachel Morello‑Frosch4,7* & Ruthann A. Rudel1* 

Given the complex exposures from both exogenous and endogenous sources that an individual 
experiences during life, exposome‑wide association studies that interrogate levels of small molecules 
in biospecimens have been proposed for discovering causes of chronic diseases. We conducted a study 
to explore associations between environmental chemicals and endogenous molecules using Gaussian 
graphical models (GGMs) of non‑targeted metabolomics data measured in a cohort of California 
women firefighters and office workers. GGMs revealed many exposure‑metabolite associations, 
including that exposures to mono‑hydroxyisononyl phthalate, ethyl paraben and 4‑ethylbenzoic 
acid were associated with metabolites involved in steroid hormone biosynthesis, and perfluoroalkyl 
substances were linked to bile acids—hormones that regulate cholesterol and glucose metabolism—
and inflammatory signaling molecules. Some hypotheses generated from these findings were 
confirmed by analysis of data from the National Health and Nutrition Examination Survey. Taken 
together, our findings demonstrate a novel approach to discovering associations between chemical 
exposures and biological processes of potential relevance for disease causation.

Increasing evidence suggests that environmental, rather than genetic factors are the major causes of most chronic 
diseases. A recent study from Western European of monozygotic twins estimated that disease risk attributable to 
genetic plus shared environmental exposures ranged from 3.4% for leukemia to 48.6% for asthma with a median 
value of 18.5%1. Therefore, exploring associations between myriad exposures—originating from diet, lifestyle 
factors, consumer products and other sources of chemicals—received during the life course [i.e. the “exposome”2] 
and chronic diseases, may  elucidate new disease risk factors. Metabolomics is recognized as a powerful approach 
for characterizing the exposome since it can measure thousands of small molecules in  biospecimens3–5. These 
small molecules can be either substrates or end products of cellular metabolism and can originate from exogenous 
sources via inhalation, ingestion and dermal absorption, or from endogenous processes including human and 
microbial metabolism. This approach has been used to discover the joint microbial/human metabolism of the 
nutrient choline as a potential major cause of coronary heart  disease6–8 as well as novel risk factors for type 2 
 diabetes9,  hypertension10, and all-cause  mortality11 in the U.S. population.
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We recently demonstrated that the application of non-targeted metabolomics using high-resolution mass 
spectrometry can detect more than 600 environmental chemicals in serum samples, including phthalate 
metabolites, phosphate flame-retardant metabolites, phenols, pesticides, nitro and nitroso compounds, and 
per- and polyfluoroalkyl  substances12. This approach can detect both exogenous and endogenous molecules in 
 biospecimens13–16, making metabolomics data ideal for exploring associations between environmental exposures 
and metabolic changes that then generate hypotheses for targeted follow-up studies. One way to achieve this is to 
evaluate correlation networks between exogenous and endogenous small molecules. However, a major challenge 
of this method is to identify direct associations (i.e. associations representing the underlying biochemical reac-
tions), because Pearson correlations are generally high in omics data, and so it can generate indirect associations 
(i.e. associations between metabolites that are distantly connected in biological processes) that are not biologi-
cally relevant. One approach to circumvent the selection of indirect associations is to use Gaussian graphical 
models (GGMs). A GGM is an undirected probabilistic graphical model based on partial correlation coefficients 
between two variables (i.e. pairwise Pearson coefficients conditioned against all remaining variables)17. There-
fore, GGMs provide an estimate of the conditional dependencies between variables (i.e. metabolites). Previous 
studies using GGMs have demonstrated that high partial correlations between small molecules correspond to 
known metabolic  reactions17–19.

In this study, we employed GGMs to identify direct associations between environmental chemicals and 
endogenous metabolites measured in serum samples from 69 California women firefighters (FF) and 74 office 
workers (OW) enrolled in the Women Firefighters Biomonitoring Collaborative (WFBC)  study12,20 using non-
targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Then, we used 
National Health and Nutrition Examination Survey (NHANES) data to test several hypotheses generated from 
exposure-metabolite associations and evaluate whether these exposures to environmental chemicals are associ-
ated with phenotypic responses in adult women from the general U.S. population.

Results
Non-targeted metabolomics analysis via LC-HRMS in negative ionization mode tentatively identified 145 small 
molecules in serum samples of women FF and OW. Most of these molecules were annotated as level 2 or 3 
according to the metabolomics standard  initiative21. Eight environmental chemicals were validated as level 1 
(i.e. chemical identity confirmed using authentic standards).

GGM networks identify direct associations between small molecules. For this analysis, GGMs 
were built by combining the serum chemical exposome (i.e. environmental chemicals) data and metabolome 
(i.e. endogenous small molecules) data. The LC-HRMS data matrix contained 69 samples × 145 molecules (55 
environmental chemicals and 90 endogenous metabolites), 74 samples × 139 molecules (49 environmental 
chemicals and 90 endogenous metabolites), and 143 samples × 142 molecules (52 environmental chemicals and 
90 endogenous metabolites) for women FF, OW and the whole cohort, respectively. After applying GGM of the 
serum exposome and metabolome for the whole cohort, we found 74 significant partial correlations [partial 
correlation coefficients (PCC) ranged from − 0.21 to 0.49, p values (p) ranged from 2.2 ×  10–16 to 1.9 ×  10–4] at a 
False Discovery Rate (FDR) threshold of 0.1 (Fig. 1A). When stratifying by occupational group, we observed 54 
(PCC ranged from − 0.17 to 0.30, p ranged from 1.1 ×  10–15 to 1.4 ×  10–4) and 85 (PCC ranged from − 0.18 to 0.29, 
p ranged from 2.2 ×  10–16 to 3.3 ×  10–4) significant partial correlations for women OW (Fig. 1B) and FF (Fig. 1C), 
respectively (Supplementary Table S1).

GGM reconstructs biochemical reactions. GGMs displayed numerous significant partial correlations 
between endogenous metabolites which were organized into sub-networks. For example, we observed strong 
partial correlations between several fatty acids, including linoleic acid, stearidonic acid, eicosapentaenoic acid, 
docosapentaenoic acid, and docosahexaenoic acid (Fig. 2A) as well as between unconjugated and conjugated 
bile acids (Fig. 2C) in all three GGMs (i.e. FF, OW and the whole cohort) (Supplementary Information). Using 
metabolic pathway databases (i.e. KEGG PATHWAY 22 and  SMPDB23), we found that these molecules are in 
close proximity in the metabolic network related to their biosynthesis and degradation. As shown in Fig. 2B, the 
significant association between alpha-linoleic acid and stearidonic acid (PCC = 0.20, 2 ×  10–6) can be attributed 
to a desaturation step regulated by the FADS2 gene, while eicosapentaenoic acid is synthesized from stearidonic 
acid (PCC = 0.19, 6 ×  10–6) via ELOVL5-dependent elongation and FADS1-dependent desaturation. Similarly, 
we found that the significant associations between bile acids represented known biochemical reactions involved 
in the biosynthesis of primary and secondary bile acids via cytochrome P450-mediated oxidation of cholesterol 
in multi-step  process24 (Fig. 2D). Taurodeoxycholic acid and deoxycholic acid glycine are secondary bile acids 
resulting from bacterial dehydroxylation in the colon of taurocholic acid (PCC = 0.27, 5 ×  10–11) and cholic acid 
glycine (PCC = 0.18, 9 ×  10–6),  respectively24.

Identification of exposure‑metabolite associations and hypothesis generation. Among the 
significant partial correlations observed, we discovered many exposure-metabolite associations (Table  1). In 
women FF, we found that exposures to mono-hydroxyisononyl phthalate (PCC = − 0.13, p = 5.7 ×  10–5) and 4-eth-
ylbenzoic acid (PCC = 0.14, p = 4.9 ×  10–5) were associated with 11β-hydroxyprogesterone, and ethyl paraben 
was negatively associated with 11β-hydroxyandrosterone-3-glucuronide (PCC = − 0.12, p = 3.2 ×  10–4)—metabo-
lites involved in steroid hormones biosynthesis (Fig. 3A). We also observed that 4-hydroxyacetophenone was 
negatively associated with chenodeoxycholic acid (PCC = − 0.13, p = 1.0 ×  10–4) and positively associated with 
lithocholic acid glycine (PCC = 0.15, p = 1.1 ×  10–5)—bile acids involved in cholesterol homeostasis and energy 
balance (Fig. 3B). Exposures to perfluorohexanesulfonic acid (PFHxS) was also positively associated with one 
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microbial-derived secondary bile acid (sulfolithocholylglycine, PCC = 0.12, p = 2.6 ×  10–5), while perfluorooc-
tane sulfonic acid (PFOS) was correlated with one inflammatory signaling molecule (15d PGD2, PCC = − 0.13, 
p = 2.4 ×  10–4) and calcitriol, the biologically active form of vitamin D (PCC = 0.14, p = 4.4 ×  10–5) in women FF 
(Fig. 3B). In women OW, we observed a lower number of exposure-metabolite interactions (Table 1). We found 
that several phenols, including 4-hexyloxyphenol, butyl paraben, octylphenol diethoxylate and pentachlorophe-
nol were significantly associated with molecules involved in inflammation (12-HETE, eicosapentaenoic acid, 
alpha-linolenic acid and 12-HTT). We also observed that mono-isobutyl phthalate was negatively associated 
with two metabolites of linoleic acid metabolism and lipid peroxidation (DiHODE and 9-HODE). When com-
bining FF and OW exposome and metabolome data, we discovered only three associations between chemical 
exposures and metabolites (Table 1).

Next, we sought to further support exposure-metabolite associations observed from the GGM networks and 
evaluate whether exposure-induced metabolic perturbations are associated with phenotypic responses in adult 
women from the general U.S. population using NHANES. Among the significant exposure-metabolite associa-
tions, twelve were not tested because those chemicals were not measured in any NHANES cycles.

Exposures to PFHxS and metabolic syndrome (MetS). We observed that exposures to PFHxS were 
associated with changes in bile acid metabolism in women FF, and so we assessed whether exposure to this envi-
ronmental chemical was linked to changes in clinical measures related to cholesterol homeostasis and energy 
balance in NHANES. We tested for associations between serum PFHxS concentrations and MetS and individual 
components of MetS (Fig. 4) in women 20–79 years of age enrolled in NHANES 2003–2014.

Of the adult women in the NHANES sample, 28.3% with measured PFHxS met NCEP/ATPIII criteria for 
MetS. No clear associations were observed for PFHxS and MetS. Since we found that exposures to this chemical 
were associated with a microbial-derived bile acid in our GGMs, we also tested whether the differences in gut 

Figure 1.  Network representation of Gaussian graphical models (GGM) of the serum exposome and 
metabolome measured in the whole cohort (A), in women office workers (B), and in women firefighters (C). 
Blue and red nodes represent endogenous metabolites and environmental chemicals, respectively. Edges 
connecting nodes represent significant partial correlations at FDR < 10%.
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microbiota can confound associations with MetS. However, further adjusting for recent use of antibiotics as a 
proxy of microbial composition had no effect on the odds ratios (ORs) for MetS (data not shown).

Weak associations were found for PFHxS and individual components of MetS, with only the association with 
low HDL cholesterol reaching statistical significance (adj. OR for Q4 versus Q1: 0.43; 95% CI 0.21, 0.88). Further 
adjusting for recent use of antibiotics had no effect on the odds ratios (ORs) for MetS components and did not 
change the effect estimates (data not shown).

Exposures to PFAS and parabens and inflammatory responses. Because we observed significant 
partial correlations between PFOS, PFHxS, ethyl paraben and butyl paraben and inflammatory signaling mole-
cules in women FF and OW, we tested whether these exposures are associated with clinical markers of inflamma-
tory responses in adult women in NHANES by exploring associations between serum or urinary concentration 
of these chemicals and clinical markers of inflammation and immune system function (Table 2).

For PFAS, we found that each 100% increase in serum PFOS concentration was associated with 13% increase 
in CRP (95% CI 4, 23) and 4.5% increase in absolute lymphocyte count (95% CI 2.1, 6.9), whereas we observed a 
negative association between each 100% increase in serum PFHxS concentration and absolute neutrophil count 
(3.5% decrease; 95% CI: -5.9, -0.9) after adjusting for age, race/ethnicity, poverty, BMI and serum cotinine. For 
parabens, we found negative associations between CRP and each 100% increase in urinary ethyl paraben (7.5% 
decrease; 95% CI − 11.7, − 3.2) and butyl paraben (6.7% decrease; 95% CI − 11.3, − 2.2) concentrations, after 
adjusting for age, race/ethnicity, poverty, urinary creatinine and serum cotinine. Urinary butyl paraben was also 
associated with 1% decrease in white blood cell count (95% CI − 1.8, − 0.3). The associations between urinary 
parabens and CRP disappeared after further adjusting for BMI. For PFHxS, further adjusting for recent use of 
antibiotics did not change effect estimates.

Discussion
To our knowledge, this is the first study to combine the serum exposome and metabolome using GGMs. The 
main goal of this study was to explore the links between the chemical exposome and the metabolome and gener-
ate hypotheses about possible health effects of exposures to a complex mixture of environmental chemicals. We 

Figure 2.  Linoleic acid (A,B) and bile acid metabolism (C,D) models inferred from GGMs of women FF and 
OW. (A) and (C) represent the sub-networks obtained from GGMs. (B) and (D) represent overlapping sub-
networks of known biochemical reactions (black edges; labels correspond to regulating genes) obtained from 
KEGG pathway and from GGMs (red edges).
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computed GGMs of non-targeted LC-HRMS data to map direct associations between small molecules. After con-
trolling for multiple testing (FDR < 0.1), we observed many direct associations, including metabolite-metabolite, 
chemical–metabolite and chemical–chemical associations. We found that most of the significant associations 
between metabolites corresponded to known biochemical reactions, supporting previous studies on the ability 
of GGMs to reconstruct metabolic pathways from MS-based metabolomics  data17–19.

Some metabolite-metabolite associations seem to also reflect molecules originating from the same source 
of exposures. For example, tryptophan was significantly correlated with arachidonic acid and myristic acid. 

Table 1.  Summary of chemical-metabolite associations, biological changes and biological role of metabolites. 
a Metabolomics Standard Initiative (MSI) level of identification; level 1: match based on accurate mass 
(± 10 ppm), fragmentation pattern and retention time with authentic standards; level 2: match based on 
accurate mass (± 10 ppm) and fragmentation pattern using mass spectra from public metabolomics libraries 
or in-silico fragmentation software; level 3: match based on accurate mass (± 10 ppm) only. b Biological role of 
metabolite was inferred from the Metab2MeSH web application that annotates compounds with MeSH terms 
and HMDB database. c Partial correlation coefficient.

Environmental chemicals (MSI 
 levela) Endogenous metabolites (MSI  levela) Biological pathway Biological  roleb PCCc p value

Women FF (n = 69)

Phthalates

Mono-hydroxyisononyl phthalate (3) 11β-hydroxyprogesterone (2) Steroid hormone biosynthesis Female menstrual cycle, pregnancy 
and embryogenesis − 0.13 5.7 ×  10–5

Mono-isotridecyl phthalate (3) Myristic acid (3) Fatty acid biosynthesis Membrane integrity 0.13 2.4 ×  10–4

Mono-(2-ethylhexyl) phthalate (1) 12,13- -DHOME (2) Linoleic acid metabolism Lipid peroxidation 0.14 6.1 ×  10–5

Phenols

Ethyl paraben (1) 11β-hydroxyandrosterone-3-
glucuronide (2) − 0.12 3.2 ×  10–4

4-Hydroxyacetophenone (2) Chenodeoxycholic acid (3) Bile acid metabolism Cholesterol homeostasis and energy 
balance − 0.13 1.0 ×  10–4

Lithocholic acid glycine (3) Bile acid metabolism Cholesterol homeostasis and energy 
balance 0.15 1.1 ×  10–5

Eugenol (1) Bilirubin (3) Porphyrin metabolism Cellular anti-oxidant 0.12 3.2 ×  10–4

Phenol (3) Indoxyl sulfate (3) Tryptophan metabolism Oxidative stress 0.16 1.7 ×  10–6

Perfluorinated compounds

Pefluorohexanesulfonic acid (PFHxS) 
(1) Sulfolithocholylglycine (2) Bile acid metabolism Cholesterol homeostasis and energy 

balance 0.12 2.6 ×  10–5

Perfluorooctane sulfonic acid (PFOS) 
(1) 15d PGD2 (2) Arachidonic metabolism Inflammatory signaling − 0.13 2.4 ×  10–4

Calcitriol (3) Vitamin D metabolism Maintenance of blood calcium and 
phosphorus 0.14 4.4 ×  10–5

Pesticide

Pyrethrin II (3) 9,10,13-TriHOME (3) Linoleic acid metabolism Lipid peroxidation 0.13 1.7 ×  10–4

Women OW (n = 71)

Pesticide

Pyrethrin II (3) Leucine (3) Valine, leucine and isoleucine deg-
radation Protein biosynthesis 0.15 5.9 ×  10–5

Phenols

Butyl paraben (1) Eicosapentaenoic acid (2) Biosynthesis of unsaturated fatty acids Inflammatory signaling − 0.15 4.5 ×  10–5

Octyphenol diethoxylate (3) Alpha-linolenic acid (3) Linoleic acid metabolism Inflammatory signaling 0.17 2.7 ×  10–6

Pentachlorophenol (1) Calcitriol (3) Vitamin D metabolism Maintenance of blood calcium and 
phosphorus − 0.14 1.3 ×  10–4

12-HHT (2) Arachidonic metabolism Inflammatory signaling 0.15 9.8 ×  10–5

Phthalates

Mono-isobutyl phthalate (2) 9,10-DiHODE (2) Linoleic acid metabolism Lipid peroxidation − 0.14 1.2 ×  10–4

9- or 13-HODE (2) Linoleic acid metabolism Lipid peroxidation − 0.15 6.0 ×  10–5

Mono-isotridecyl phthalate (3) 5a-Tetrahydrocorticosterone (3) Steroid hormone biosynthesis Signaling molecule 0.15 4.2 ×  10–5

Women FF + OW (n = 140)

Phenols

Ethyl paraben (1) Linoleic acid (2) Linoleic acid metabolism Inflammatory signaling − 0.16 1.3 ×  10–4

Octyphenol diethoxylate (3) Alpha-linolenic acid (3) Linoleic acid metabolism Inflammatory signaling 0.18 2.2 ×  10–5

Phthalates

Mono-isotridecyl phthalate (3) 5a-Tetrahydrocorticosterone (3) Steroid hormone biosynthesis Signaling molecule 0.22 1.3 ×  10–7
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Although these metabolites are involved in different metabolic pathways, they possibly originated from dietary 
sources since they can co-occur within the same food component, such as eggs or  meat25.

When stratifying by occupation, most of metabolite-metabolite associations remained unchanged, while 
several chemical exposure-metabolite associations were only significant in FF. For example, the association 
between PFHxS and sulfolithocholylglycine was significant in FF (PCC = 0.12, p = 2.6 ×  10–5), but not observed in 
the whole cohort (PCC = 0.05, p = 0.01) or in OW (PC C = − 0.03, p = 0.02). The instability of certain associations 
is possibly due to inter-occupation variability in the levels of chemical exposures as well as the small sample size. 
LC–MS/MS analysis of PFAS revealed that serum levels of PFHxS were higher in FF [median = 4.1 ng/mL and 
interquartile range (IQR) = 5.7 ng/mL] compared to OW (median = 2.5 ng/mL and IQR = 3.8 ng/mL)20.

GGMs revealed that certain environmental chemicals were linked to endogenous metabolites involved in 
cholesterol homeostasis, energy metabolism, inflammation and steroid hormones biosynthesis. We found direct 
associations between 4-hydroxyactophenone, PFHxS and bile acids, including sulfolithocholylglycine, lithocholic 
acid glycine and chenodeoxycholic acid (CDCA) in women FF. PFHxS is a perfluoroalkyl substance (PFAS) used 
as an additive in a wide range of consumer products and food packaging due to surfactant and stain resistant 
 properties26. PFAS are also components of firefighting foam and firefighter’s protective clothing, so these are 
possible sources of exposure for women FF. A previous study of firefighters found positive associations between 
serum concentrations of PFOS and PFHxS and the number of years using firefighting  foam27. As previously 
mentioned, we also observed higher serum PFHxS in women FF in this cohort, compared to the control group 
of  OW20.

Bile acids (BAs) are cholesterol-derived signaling molecules with hormonal actions that regulate lipid, glucose 
and energy metabolism by activating several nuclear receptors, including the constitutive androstane receptor 

Figure 3.  Exposure-metabolites subnetworks identified by the GGMs inferred from the women 
FF metabolomics dataset. The subnetwork A represents associations of phenols and phthalates with 
metabolites involved in steroid hormone biosynthesis. The subnetwork B shows associations between 
4-hydroxyacetophenone, PFOS and PFHxS and metabolites involved bile acids, arachidonic and vitamin D 
metabolism. Blue and red nodes represent endogenous metabolites and environmental chemicals, respectively. 
Plain and dashed edges connecting nodes represent positive partial correlations and negative partial 
correlations, respectively. Edges connecting nodes represent significant partial correlations at FDR < 10%.
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(CAR), pregnane X receptor (PXR), farnesoid X receptor (FXR) and vitamin D receptor (VDR), as well as 
G-protein coupled  receptors24,28,29. For example, FXR activation has been found to induce expression of peroxi-
some proliferator activated receptor (PPAR)α and promote oxidation of  lipids30,31. Previous research suggests 
that modulation of BAs levels may be an effective strategy for the treatment of components of  MetS32.

Based on the correlations between PFHxS and BAs in FF, we hypothesized that exposure to PFHxS is associ-
ated with MetS in women. When assessing components of MetS in NHANES, we found higher levels of PFHxS 
to be associated with decreased odds of HDL cholesterol < 50 mg/dL in adult women 20–79 years of age enrolled 
in NHANES. However, PFHxS had neutral effects on the prevalence of the MetS in adult women. A previous 
study showed that increased levels of serum PFHxS were associated with a lower prevalence of central obesity 
among male and female adults participants of NHANES 1999–2000 and 2003–200433, but we did not see that 
association in our NHANES analysis of female adults. Although the study by Lin et al.33 found that increased 
serum PFHxS were correlated with decreased odds of HDL cholesterol < 50 mg/dL, the association did not reach 
statistical significance. Another study found that early-life exposure to PFHxS was inversely associated with 
serum concentrations of leptin—a marker of adiposity and metabolic dysfunction – among  children34. Similar 
to our results, these studies observed no evidence for an adverse effect of PFHxS on the prevalence of MetS.

BAs also mediate inflammatory and immunomodulatory  actions35,36. BAs have detergent properties, in that 
they dissolve fats, and they can cause membrane perturbations, resulting in production of pro-inflammatory mol-
ecules and reactive oxygen and nitrogen species which damage DNA, contributing to mutation and  apoptosis37,38. 
The immune system orchestrates a network of biological processes to recognize pathogens and fight infections. 
The deregulation of immune functions can lead to increased susceptibility to infectious, autoimmune (e.g. rheu-
matoid arthritis, type 1 diabetes, lupus…) and inflammatory diseases (e.g. asthma, eczema, allergic rhinitis…), 
and  cancer39. In addition to finding PFHxS correlated with BAs in our cohort, we also observed significant asso-
ciations between PFOS, ethyl paraben and butyl paraben, and endogenous molecules involved in inflammatory 
reactions. Consistent with our GGM findings for PFOS, we found that among adult women in NHANES, serum 
PFOS concentrations were positively associated with inflammatory and immune reactions (positive associations 

Figure 4.  Odds ratio (95% CI) for metabolic syndrome (MetS) and individual components of MetS in women 
20–79 years of age enrolled in NHANES 2003–2014 by quartile of serum PFHxS concentration. Models were 
adjusted for age, race/ethnicity, poverty, total caloric intake, physical activity, and smoking status. Central 
obesity: waist circumference ≥ 88 cm; hypertriglyceridemia: blood triglyceride ≥ 150 mg/dL; low HDL: high 
density lipid (HDL) cholesterol < 50 mg/dL; high blood pressure: blood pressure ≥ 130/85 mmHg or treatment 
for hypertension; hyperglycemia: fasting blood glucose ≥ 100 mg/dL or treatment for diabetes.
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with CRP and lymphocyte count), while PFHxS was negatively associated with the absolute neutrophil count. 
Also consistent with our GGM findings, ethyl paraben and butyl paraben were negatively associated with inflam-
mation markers in NHANES. Butyl paraben was also associated with a decrease in white blood cell count, while 
ethyl paraben did not affect markers of immunity. In previous cross-sectional studies, no significant associations 
were found between serum PFOS and CRP, and conflicting results were observed for other immune-related 
health  conditions40. However, a recent prospective study has observed that elevated PFHxS concentrations at age 
7 decreased anti-diphtheria and anti-tetanus antibody concentrations at age  1341. Parabens are widely used as 
antimicrobial preservatives in personal care products, pharmaceuticals, and food and  beverages42,43. Parabens can 
interact with hormone receptors and have been detected in breast  tissue44,45. Some parabens have demonstrated 
adverse effects on male reproduction at higher  doses46. A previous study among pregnant women found that 
urinary concentrations of propyl paraben were associated with lower CRP  concentrations47. Propyl paraben and 
butyl paraben have also been reported to increase the prevalence of aeroallergen sensitization in  children48,49.

The underlying mechanisms that mediate the effects of PFAS on cholesterol and glucose homeostasis, inflam-
mation and immune response are thought to be related to PPAR-α,γ activation and fatty oxidation  pathways50–52. 

Table 2.  Associations between markers of inflammation and immune system and each 100% increase 
in serum PFAS (NHANES 2003–2010) and urinary parabens (NHANES 2005–2010) concentrations in 
women 20–79 years of age enrolled in NHANES. Results in bold represent associations that are statistically 
significantly (p<0.05) Association estimates were obtained with general linear models using sampling weights 
and accounting for the complex survey design. a Adjusted for age, race/ethnicity, poverty, and log-transformed 
serum cotinine. b Adjusted for the same variables in a plus BMI. c Adjusted for the same variables in a plus 
log-transformed urinary creatinine. d Adjusted for the same variables in c plus BMI. e Adjusted for the same 
variables in c plus recent use of antibiotics. f Adjusted for the same variables in b plus recent use of antibiotics.

C-reactive protein (mg/dL)
White blood cells (×  103 
cells/µL) Lymphocytes (×  103 cells/µL)

n %  changea (95% CI) n %  changea (95% CI) n %  changea (95% CI)

Serum PFOSb 1693 13 (4, 23) 2042 1.2 (− 0.9, 1.9) 2039 4.5 (2.1, 6.9)

Serum PFHxS

Model  1b 1002 − 6.9 (− 16, 1.8) 1012 − 1.6 (− 3.5, 0.4) 1012 1.5 (− 0.9, 3.8)

Model 2f. 1002 − 6.9 (− 16, 1.8) 1012 − 1.6 (− 3.5, 0.4) 1012 1.5 (− 0.8, 3.9)

Urinary EPB

Model  1c 1529 − 7.5 (− 11.7, − 3.2) 1556 − 0.9 (− 1.9, − 0.01) 1552 − 1.2 (− 2.3, − 0.02)

Model  2d 1529 − 1.7 (− 5.4, 2.0) 1556 − 0.4 (− 1.4, 0.6) 1552 − 0.8 (− 1.9, 0.3)

Urinary BPB

Model  1c 1322 − 6.7 (− 11.3, − 2.2) 1472 − 1.1 (− 1.8, − 0.3) 1468 − 1.1 (− 2.1, 0.04)

Model  2d 1322 − 1.1 (− 5.4, 3.1) 1472 − 0.3 (− 1.2, 0.4) 1468 − 0.6 (− 1.7, 0.5)

Monocytes (×  103 cells/µL) Neutrophils (×  103 cells/µL) Platelets (×  103 cells/µL)

N %  changea (95% CI) n %  changea (95% CI) n %  changea (95% CI)

Serum PFOSb 2039 1.4 (− 1.6, 4.5) 2039 − 0.5 (− 3.1, 2.1) 2042 − 0.5 (− 1.8, 0.7)

Serum PFHxS

Model  1b 1012 − 0.5 (− 3.5, 2.6) 1012 − 3.5 (− 5.9, − 0.9) 1012 − 1.9 (− 4.0, 0.17)

Model 2f. 1012 − 0.6 (− 3.6, 2.5) 1012 − 3.4 (− 6.0, − 0.9) 1012 − 1.9 (− 4.1, 0.14)

Urinary EPB

Model  1c 1552 − 0.5 (− 1.3, 0.3) 1552 − 0.9 (− 2.1, 0.4) 1552 − 0.1 (− 1.3, 1.0)

Model  2d 1552 − 0.3 (− 1.2, 0.5) 1552 − 0.2 (− 1.5, 1.1) 1552 − 0.5 (− 1.7, 0.7)

Urinary BPB

Model  1c 1468 − 0.2 (− 1.1, 0.7) 1468 − 0.9 (− 1.9, 0.04) 1472 − 0.01 (− 0.8, 0.8)

Model  2d 1468 0.001 (− 0.9, 0.9) 1468 − 0.1 (− 1.2, 1.0) 1472 0.3 (− 0.5, 1.1)

Eosinophils (×  103 cells/µL) Basophils (×  103 cells/µL)

n %  changea (95% CI) n %  changea (95% CI)

Serum PFOSb 2039 − 0.2 (− 1.0, 0.6) 2039 0.3 (− 0.15, 0.79)

Serum PFHxS

Model  1b 1012 − 0.4 (− 1.1, 0.3) 1012 0.1 (− 0.3, 0.6)

Model 2f. 1012 − 0.4 (− 1.1, 0.3) 1012 0.1 (− 0.3, 0.6)

Urinary EPB

Model  1c 1556 − 0.03 (− 0.3, 0.3) 1556 − 0.2 (− 0.4, 0.03)

Model  2d 1556 0.05 (− 0.3, 0.4) 1556 − 0.1 (− 0.4, 0.06)

Urinary BPB

Model  1c 1468 − 0.02 (− 0.3, 0.3) 1468 − 0.01 (− 0.3, 0.1)

Model  2d 1468 0.08 (− 0.2, 0.4) 1468 − 0.01 (− 0.2, 0.1)
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The sub-networks of direct associations found in the present study seem to reinforce these relationships, which 
may possibly be mediated by PPAR-induced disruption of BAs metabolism and transport. Studies on the asso-
ciation between PFAS and BAs are limited. A previous animal study has demonstrated that mice treated with 
PFDA resulted in increased serum BAs, probably due to PPAR-α-driven down-regulation of BA transporters 
involved in the enterohepatic circulation, including the  Na+-taurocholate cotransporting polypeptide (NTCP)53. 
Recent studies have shown that PFHxS is a substrate for NTCP in both human and rat  hepatocytes54,55. A case 
study involving eight subjects has found that oral treatment with BAs sequestrant increased fecal elimination of 
 PFHxS56. Although no human study supporting the paraben-BAs association was found, in vitro studies have 
observed that paraben acts as a strong obesogenic compound through PPAR-γ-activation at high concentrations 
(high µM range) in murine 3T3-L1  cells57,58.

Since the BAs associated with PFHxS are produced by intestinal  bacteria38, we hypothesized that the gut 
microflora composition may confound associations between these chemicals and effects on metabolic function 
and inflammation. But adjusting for recent use of antibiotics—as a proxy for loss of bacterial diversity—did not 
modify the associations. Further studies employing direct measurements of gut bacteria diversity (e.g. targeted 
measurements of microbial-derived metabolites or 16S rRNA sequencing to characterize microbial communi-
ties) are needed to decipher the possible role of the microbiome on the association between chemical exposures 
and health outcomes.

Many exposure-metabolite associations were not further tested because chemical exposures and/or health 
outcomes hypothesized were not measured in NHANES. This included direct associations of phthalates with 
steroid hormones, and metabolites involved in oxidative stress and inflammatory response (Fig. 3A and Table 1). 
The associations we observed are discussed below in the context of relevant studies from the literature. Phtha-
lates are primarily used as plasticizers in automotive, building materials and consumers  products59 and known 
endocrine disrupting compounds that disrupt fetal testosterone and insulin-like hormone 3 (insl3) synthesis 
by an unknown  mechanism60. In our study, mono(hydroxyisononyl) phthalate (MHINP)—a major oxidative 
metabolite of diisononyl phthalate (DINP)—was negatively associated with one steroid hormone metabolite 
(11β-hydroxyprogesterone). Epidemiological studies have reported that phthalate exposure is associated with 
decreased levels of steroid hormones in males and  females61–64. Meeker and Ferguson observed a suggestive 
negative association between DINP exposure and serum testosterone in women 40–60 years of age enrolled in 
 NHANES63. Several phthalates affected steroid hormone synthesis pathways in human adrenocortical carcinoma 
cell lines (H295R assay), and different phthalates affected different parts of the  pathway65. Phthalate exposure 
has also been linked with inflammation and oxidative  stress66–70. Among phthalate metabolites associated with 
lipid peroxidation in our study, urinary levels of mono-(2-ethyl)-hexyl phthalate (MEHP) [metabolite of di(2-
ethylhexyl) phthalate (DEHP)] have been positively associated with increased serum levels of gamma glutamyl-
transferase (GGT)—a sensitive biomarker of oxidative stress—while mono-isobutyl phthalate (MiBP) [metabolite 
of dibutyl phthalate (DBP)] was linked to serum levels of CRP in participants enrolled in  NHANES66.

This study has several limitations. First, results are correlative in nature and from a small sample size. Sec-
ond, due to the cross-sectional study design, we are unable to determine whether higher exposures to these 
chemicals precede changes in levels of endogenous metabolites or are a consequence of metabolic perturbations 
due to changes in health conditions, diet or exposures to other environmental factors. Third, because no health 
outcomes were measured in the occupational cohort, exposure-metabolite-outcome associations were tested 
in another cohort (i.e. NHANES). These two populations probably exhibit significant differences in terms of 
chemical exposure levels. For example, median serum concentrations of PFHxS in both FF (4.05 ng/mL) and 
OW (2.55 ng/mL) were twice as high as those measured in NHANES (1.6 ng/mL for cycles 2003–2014)20. As 
such, our NHANES analysis may underestimate or overestimate the associations between chemical exposures 
and hypothesized health outcomes (e.g. MetS or inflammation) in the occupational cohort. Fourth, due to the 
LC-HRMS analysis in negative ionization mode, most of endogenous molecules tentatively identified are lipids 
or hormones. Also, we only identified potential chemicals in the cohort by using an in-house database of 700 
environmental  chemicals12, and so we may have missed other chemical-metabolite interactions that are present 
in the cohort. We may have missed other important molecules that are more easily detected in positive ionization 
mode, such as amino acids or vitamins, and involved in other metabolic pathways that would have generated 
additional exposure-outcome hypotheses.

Despite these limitations, the present study has several strengths. First, this study employed a data-driven 
approach that combines simultaneous measurements of a wide spectrum of environmental chemicals and 
endogenous metabolites detected in serum to generate hypotheses related to possible health effects of chemical 
exposures. This approach provides a comprehensive exploration of the impact of chemicals, individually or in 
combination, on critical metabolic processes. Second, exposomics and metabolomics data were combined using 
GGMs that provide identification of direct associations between chemicals and metabolic pathways. Pearson 
correlation coefficients are generally high in omics data and may lead to identification of many indirect asso-
ciations that are not biologically relevant. GGMs that are based on partial correlation coefficients provide an 
estimate of the conditional dependencies between variables and limit the selection of indirect associations. Third, 
some hypotheses generated from the non-targeted GGM analyses were tested using data from a representative 
sample of the U.S. population (i.e. NHANES) comprising adult women from diverse racial/ethnic background 
and socio-economic status, and some of these findings were consistent. For example, analysis of NHANES data 
confirmed associations found in GGMs between exposures to PFHxS and PFOS and cholesterol metabolism and 
inflammation. Fourth, GGMs revealed that exposures to previously unstudied chemicals (e.g. 4-hexyloxyphenol 
or certain phthalates metabolites) may potentially have adverse effects on critical metabolic pathways such as 
metabolism of arachidonic acid and linoleic acid involved in lipid peroxidation and inflammatory and immune 
responses as well as steroid hormone biosynthesis.
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Conclusion
In conclusion, we used GGMs, which have previously been shown to identify high partial correlations between 
endogenous small molecules that correspond to known metabolic reactions, to identify associations between 
tentatively identified exogenous chemicals and endogenous molecules in serum from a cohort of California 
women firefighters and office workers. These GGMs revealed many exposure-metabolite associations, including 
that exposures to mono-hydroxyisononyl phthalate, ethyl paraben and 4-ethylbenzoic acid were associated with 
metabolites involved in steroid hormone biosynthesis, and PFASs were linked to BAs and inflammatory signal-
ing molecules. Some hypotheses generated from these findings were further supported by analysis of data from 
NHANES, specifically the cross-sectional associations between some PFASs and cholesterol metabolism and 
inflammation. However, many hypotheses generated from this work were not further tested because chemical 
exposures and/or health outcomes were not measured in NHANES. Taken together, our findings demonstrate 
a novel approach to discovering associations between chemical exposures and upstream biological processes 
potentially involved in disease. We encourage further studies to apply these techniques in other cohorts and 
to further evaluate associations between chemical exposures and health outcomes that we have reported here.

Methods
Study population. This study was conducted using LC-QTOF/MS data available from an established 
cohort of California women workers known as the Women Firefighter Biomonitoring Collaborative (WFBC). 
The WFBC is a cross-sectional study designed to measure and compare exposures to potential breast carcino-
gens and other endocrine disrupting compounds (EDCs) in 69 San Francisco (SF) women firefighters (FF) and 
74 female controls among office workers (OW) from the City of San Francisco. Detailed description of this 
cohort has been published  elsewhere12,20. Demographic characteristics and breast cancer risk factor information, 
including menopausal status, history of hormone replacement therapy, and reproductive history were collected 
using questionnaires during in-person interviews. Body Mass Index (BMI; kg  m−2) was calculated from partici-
pants’ height and weight measured at the time of the in-person interview. A 50 mL blood sample was collected 
by a certified phlebotomist. Written informed consent was obtained from all participants. All research was per-
formed in accordance with relevant guidelines/regulation. The study following protocols were approved by the 
Institutional Review Board of the University of California, Berkeley (# 2013-07-5512).

Overall, the FF and OW cohorts were similar in terms of age, race/ethnicity, BMI, parity, and hormone use, as 
previously  reported12. However, the household income for women FF was significantly higher compared to OW. 
There were significantly more pre-menopausal women in the FF group and women FF had a higher proportion 
with a 4-year college as their highest degree, while a higher proportion of OW had additional degrees beyond 
4-year college degrees.

Non‑targeted LC‑QTOF/MS metabolomics analysis. Non-targeted analysis of serum samples was 
performed as previously  described71. Briefly, 250 µL of serum sample was spiked with 2.5 µL of 1 µg/mL of 
internal standard (2.5 ng BPA-d16) and centrifuged at 3000 rpm for 10 min. Analytes were extracted using solid-
phase extraction (SPE; Waters Oasis HLB 10 mg, 1 cc). Extracts were dried under a stream of nitrogen gas and 
reconstituted in 250 µL of 10% methanol.

Extracts were analyzed on a LC-QTOF/MS system consisting of an LC 1260 autosampler, pumps and a 
QTOF/MS 6550 (Agilent, Santa Cruz, CA, USA). Analytes were separated by a reversed-phase method using a 
C18 column (Agilent Poroshell 120, 2.1 mm × 100 mm, 2.7 µm particle size) maintained at 55 °C. Mobile phase 
A consisted of water with 0.05% ammonium acetate (pH = 7.8) and mobile phase B consisted of methanol with 
0.05% ammonium acetate (pH = 7.8). The elution gradient employed was: 0–0.5 min, 5% B; 1.5 min, 30% B; 
4.5 min, 70% B; 7.5–10 min, 100% B; 10.01–14 min, 5% B. The injection volume was 50 µL. Analyses were per-
formed with a QTOF/MS operating in negative electrospray ionization mode (ESI-). Ions were collected in the 
m/z 80–600 range at high resolution for eluates coming out of the LC from 1 to 12 min. Using the Auto MS/MS 
mode (information-dependent acquisition), a product ion scan (MS/MS) of the three most abundant peaks at 
high resolution was triggered each time a precursor ion with an intensity of ≥ 500 counts/second was generated 
in the TOF–MS scan using a collision voltage ranging from 0 to 40 V depending of ions m/z. The LC-QTOF/MS 
analysis produces a total ion chromatogram for each sample, which includes the following: the accurate mass of 
each unique compound (expressed as m/z of their respective anion), peak area, retention time and spectral data 
on the parent and fragment ions, including isotopic pattern.

Data processing. Exposome annotation. Chemical exposures were identified from non-targeted LC-
QTOF/MS data as previously  described12,71. Briefly, all detected m/z were matched with those from an in-house 
MS database of environmental chemicals with a mass tolerance value of 10 ppm. The in-house database consists 
of more 700 chemicals: (1) environmental organic acids including parabens and paraben metabolites, phthalates 
and phthalate metabolites and pesticides and pesticide metabolites; (2) chemicals that increase breast cancer risk 
including mammary carcinogens and mammary gland developmental  disruptors72,73; (3) known firefighting-
related occupational exposures including perfluorinated compounds found in firefighting foams, polychlorin-
ated and polybrominated dioxins and furans and other flame retardants. A list of tentatively annotated chemicals 
was generated for all samples, with corresponding exact mass, retention time, mass error, peak area, chemical 
formula, and match scores. Then, we performed retention time correction using an in-house R script in order 
to align LC-QTOF/MS data. We assigned the chemicals with the same formula to be two different entities if the 
difference in retention time of two adjacent chemicals was greater than 0.16 min. The exposome data matrix 
consisted of peak area and m/z of 620 unique chemicals which matched to 300 chemical  formulas12.
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Metabolome annotation. LC-QTOF/MS metabolomics data were pre-processed using the R package “XCMS”74 
for peak detection, retention time correction and peak alignment (the R script used for data pre-processing can 
be found in Supplementary Information). After pre-processing, a data matrix containing retention time, mass-
to-charge ratio (m/z) and intensity of features was generated. Metabolomics features were annotated using the 
R package “xMSannotator”75. We used the Human Metabolome Database 3.6 (HMDB) that contains detailed 
molecular information about 42,632 small  molecules76 as the reference library for annotation of metabolomics 
features. We retained only annotated molecules with a confidence score equal to 3 (the highest score of confi-
dence) and classified by HMDB as previously detected and quantified in biological matrices (the R script used 
for annotation of metabolomics features can be found in Supplementary Information). After this process, the 
metabolome data matrix contained m/z and intensity of 90 annotated molecules (Supplementary Table S5).

The identification level of environmental chemicals and endogenous metabolites was reported as proposed 
by the Metabolic Standards  Initiative21: level 1: match based on accurate mass (± 10 ppm), fragmentation pat-
tern and relative retention time with authentic standards; level 2: match based on accurate mass (± 10 ppm) 
and fragmentation pattern using mass spectra from public metabolomics libraries or in-silico fragmentation 
 software77.; level 3: match based on accurate mass (± 10 ppm) using public metabolomics libraries. Most small 
molecules tentatively identified in this study corresponded to level 2 or level 3 annotation. Eight environmental 
chemicals were validated as level 1 annotation (Supporting Information Table S1).

Statistical analysis. Gaussian graphical modeling (GGM). GGMs were built by combining the exposome 
data matrix with the metabolome data matrix. We first excluded molecules with more than 50% missing values. 
The filtered data matrix contained 69 samples × 145 molecules (55 environmental chemicals and 90 endogenous 
metabolites), 74 samples × 139 molecules (49 environmental chemicals and 90 endogenous metabolites), and 
143 samples × 142 molecules (52 environmental chemicals and 90 endogenous metabolites) for women FF, OW 
and the whole cohort, respectively. Missing values imputation, data normalization and transformation were 
conducted using MetaboAnalyst 3.078. Remaining missing values were imputed using the k-nearest neighbor 
(KNN)  method79. Exposome data (i.e. peak area) and metabolome data (i.e. metabolite intensity) were normal-
ized, separately, by the sum of peak area or peak intensity of each sample (i.e. sample normalization. Peak area 
or peak intensity of each molecule was divided by the sum of peak area or peak intensity of each sample) to 
reduce analytical variations. Then, normalized data were generalized log-transformed (i.e. feature normaliza-
tion), and exposome data and metabolome data were merged into one dataset. . We computed GGMs using the 
ggm.estimator.pcor function from the R package “GeneNet”80. We considered partial correlations between two 
molecules to be significant if the resulting p value was below the False Discovery Rate (FDR) threshold of 0.1 
(for FF p < 1.79 ×  10–4, for OW p < 1.21 ×  10–4 and for the whole cohort p < 1.71 ×  10–4). The GGM networks were 
constructed and visualized with Cytoscape 3.8.081 using “organic” as layout. Edges connecting nodes represent 
significant partial correlations. Partial correlation coefficients were used as the edge attributes.

Testing of exposome‑metabolome associations. For each significant exposure-metabolite partial correlation, we 
used several approaches to attempt to validate the associations by checking whether a similar type of chemical-
effect relationship has been reported elsewhere, for example in National Health and Nutrition Examination 
Survey (NHANES) or in PubMed.

We used NHANES to further support or not the association found in our occupational cohort if (1) the chemi-
cal of interest and (2) one marker of the biological pathway perturbed were measured in at least one NHANES 
cycle. NHANES is an ongoing cross-sectional study of the civilian noninstitutionalized U.S. population designed 
to collect data on dietary and health factors (ref, see Supplementary Information for more details). NHANES 
study protocols were approved by the National Center for Health Statistics’ Research Ethics Review Board. Since 
our study population consists of women workers, we selected only non-pregnant women adults (20–79 years of 
age) enrolled in NHANES. All NHANES data (demographics, examination data, laboratory data, and question-
naire data) were downloaded using the R package “RNHANES” 82. Full description of exposure measurements, 
outcomes and covariates in NHANES can be found in Supplementary Information.

To test our hypothesis that certain environmental chemicals measured in women’s serum affect the level of 
inflammatory signaling molecules, we explored the relationships between serum or urinary concentrations of 
each chemical and serum markers of inflammation [C-reactive protein (CRP), and the complete blood count 
which measured the number of white blood cells, lymphocytes, neutrophils, monocytes, eosinophils, basophils 
and platelets] in adult women 20–79 years of age. Details about measurements of environmental chemicals and 
markers of inflammation in NHANES can be found in Supplementary Information. Since we were interested 
only in the effects of chemicals on chronic inflammation, we excluded participants who reported poor health 
status, or acute infection at the time of examination, including head or chests colds, stomach or intestinal illness, 
or flu, pneumonia, or ear infection. We further excluded individuals with CRP concentrations > 10 mg/L because 
these extreme values likely reflect acute inflammation 83,84. We constructed multivariable linear regression models 
with natural log-transformed CRP or absolute blood cells count as the dependent variable and one natural log-
transformed chemical divided by 100 as a predictor (e.g. [ln(PFOS)]/100).

To test the hypothesis that exposures to PFHxS are associated with metabolic syndrome (MetS) through 
alteration of bile acid metabolism, we evaluated the relationships between serum PFHxS and MetS in women 
adults 20–79 years of age. Data were pooled from NHANES 2003–2014 for PFHxS. We excluded participants 
with fasting time < 8 h. We used the National Cholesterol Education Program’s Adult Treatment Panel III report 
(NCEP/ATPIII) to define  MetS85. The NCEP/ATPIII classifies women as having MetS, if at least 3 of the fol-
lowing 5 criteria are met: (1) waist circumference ≥ 88 cm; (2) triglyceride ≥ 150 mg/dL; (3) high density lipid 
(HDL) cholesterol < 50 mg/dL; 4) blood pressure ≥ 130/85 mmHg or treatment for hypertension; (5) fasting 
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blood glucose ≥ 100 mg/dL or treatment for diabetes (further details can be found in Supplementary Informa-
tion. To assess associations between chemical measurements and MetS, we used logistic regression models to 
estimate adjusted odds ratio (ORs) and corresponding 95% CIs. Serum concentrations of PFHxS were natural 
log-transformed to address skewness.

All models were adjusted for likely sources of confounding, including age (years, continuous), race and eth-
nicity (non-Hispanic white, non-Hispanic black, Mexican American, multiracial or other), and poverty/income 
ratio [PIR (the ratio of self-reported family income to the family’s appropriate threshold value), divided into 
tertiles]. When urinary concentrations of chemicals were used as predictors, we further adjusted for urinary 
creatinine (continuous, natural log-transformed) to adjust for urine dilution. For models with inflammatory 
markers as dependent variables, we further adjusted for serum cotinine (natural log-transformed, continuous 
exposure) as a measure of exposure to tobacco smoke. For models with MetS and individual components of 
MetS as dependent variables, we further adjusted for self-reported physical activity (none, moderate or vigor-
ous), smoking status (never, past or current), and total caloric intake derived from the average of 2-day 24 recalls 
and divided into quartiles. Association estimates for models with non-persistent chemicals (i.e. ethyl paraben 
or propyl paraben) as predictors were reported before and after adjustment for body mass index (BMI) since it 
can be argued that BMI can act as a confounder or a mediator. For chemicals associated with bile acids in GGM 
networks (i.e. PFHxS), ORs and association estimates were also reported before and after further adjustment 
for recent use of antibiotics (in the past 30 days, dichotomous) since the gut microbiota is a possible confounder 
of associations between exposures to these chemicals and outcome variables related to MetS and inflammation.

Data were analyzed using the R package “survey” to obtain estimates of association or ORs and 95% CIs 
accounting for the complex NHANES sampling design. We also used the weights to adjust for the oversampling 
of certain population subgroups and to account for non-response and non-coverage in NHANES. When mul-
tiple NHANES cycles were combined, we recalculated new sample weights for each participant by dividing the 
2-year sample weights provided by the number of cycles combined. All tests were two sided, and p < 0.05 was 
the level of significance.
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