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On solution existence of MHD 
Casson nanofluid transportation 
across an extending cylinder 
through porous media 
and evaluation of priori bounds
Sohaib Abdal1, Sajjad Hussain2, Imran Siddique3, Ali Ahmadian4,5* & Massimiliano Ferrara5 

It is a theoretical exportation for mass transpiration and thermal transportation of Casson nanofluid 
over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced 
by magnetic field of uniform strength. Appropriate similarity functions are availed to yield the 
transmuted system of leading differential equations. Existence for the solution of momentum 
equation is proved for various values of Casson parameter β , magnetic parameter M, porosity 
parameter Kp and Reynolds number Re in two situations of mass transpiration (suction/injuction). 
The core interest for this study aroused to address some analytical aspects. Therefore, existence of 
solution is proved and uniqueness of this results is discussed with evaluation of bounds for existence 
of solution. Results for skin friction factor are established to attain accuracy for large injection values. 
Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and 
shooting technique. The flow speed retards against M, β and Kp for both situations of mass injection 
and suction. The thermal boundary layer improves with Brownian and thermopherotic diffusions.

Nomenclature
u  Radial velocity component
w  Axial velocity component
a  Radius of cylinder
c  Strain rate of oncoming radial flow
Nb  Brownian motion
DB  Brownian diffusion coefficient
Le  Lewis number
T  Non-dimensional temperature
C  Non-dimensional nanoparticles concentration
Cw  Nanoparticles concentration at surface
C∞  Nanoparticles concentration away from the surface
Nux  Nusselt number
Pr  Prandtl number
Cfx  skin friction
Shx  Sherwood number
Nt  Thermophoresis parameter
DT  Thermophoretic diffusion coefficient
Tw  Temperature at surface
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T∞  Temperature away from the surface
Re  Reynolds number
M  Magnetic field
Kp  Permeability of porous medium
Uw  Velocity of stretching sheet.

Greek symbols
ρ  Density of fluid
ν  Kinematic viscosity
τ  Ratio between hear capacities of the fluid and nanoparticles
µ  Dynamic viscosity
γ  Permeability parameter
α  Thermal diffusivity
θ  Dimensionless temperature
ν  Kinematic viscosity
β  Casson parameter
�  Nanoparticles volume fraction.

Non Newtonian fluids do not satisfy the Newton’s law of viscosity e.g. juice of apple, fuel oils, cream, honey, blood, 
toothpaste etc. Casson fluid is a prominent type of fluid among all of them. It is claimed that for some fluids this rheo-
logical model is better as compared to the viscoelastic model. This model is suitable for blood as well as for chocolate 
rheology. Basically, the sample of casson fluids is made up due to the connections or interactions between the phases 
of liquids and solid. When yield stress becomes compulsory and it is lower than the shear stress, Cason fluids behaves 
like solids. e.g. Soup, tomato, honey, etc. Human blood is also an example of Casson fluid. Shah et al.1 investigated 
the flow of Casson nano fluid along with activation energy as well as the chemical reaction by using the stretched 
surface. Oyelakin et al.2 studied gyrotactic micro-organism in Casson nano-fluid flow. Reza et al.3 utilized finite dif-
ference analysis on unsteady MHD flow of Casson fluid. Effect of slip boundary conditions of time dependent Casson 
nano-fluid passing over sheet were discussed by Oyelakin et al.4,5. Mondal et al.6 discussed three dimensional casson 
nano-fluid over a porous stretch sheet. Non-Newtonian fluid together with various geometries are studied  in7–10.

Some analytical uses of straight-line flows along with the stretching/shrinking sheet or by the regular string 
consist in different processing of collecting i.e. industry of polymer, a porous stretching/shrinking of plastic films, 
artificial filaments, fibers of counterfeit, melting of metals, expulsion of metals, persistent throwing, glass blowing 
etc.11. Firstly, the problem of the stretching sheet was discussed by  Sakiadis12,13. Awaludin et.al.14 discussed the 
boundary layer flow of magnetohydrodynamic over stretching and shrinking sheet. Dzulkifli et. al.15 analyzed 
the flow of stagnation point as well as relocation of heat over stretching and stretching sheet by using the nano 
fluid along with the impact of slip velocity. Bakar et.al.16 disussed on analysis of relocation of heat along with the 
nanofluid by using stretching / shrinking surface with the impact of suction. Malvandi et al.17 discussed about 
the flow of stagnation point by using the nonlinear stretching/shrinking sheet which is a porous surface.

In 1942, Haanas Alfren introduced terminology of MHD “Magnetohydrodynamic”. Large number scholars has 
done researches to understand the properties of MHD and to check these properties impact with various terms 
of nanofluid Now a days using in various fields of life such as astrophysics, medical science, geography, and many 
other. Impact of activation energy of Arrhenius over a nonlinear stretching surface with convective third grade 
nanofluid in MHD flow investigated by Hayat et al.18. Nanomaterials treatment regardless of the imposition of 
MHD streamline considering the melting sheet reviewed by Dinh et al.19. Explored MHD nanofluid flow over 
a porous formation of shrinking walls of entropy conducted by Rashid et al.20. Research taken on magnetohy-
drodynamic current of nanofluid through a vertical permeable plate that flows semi-infinitely by Pavar et al.21. 
Oyelakin et al.22 discussed MHD flow of tangent hyperbolic. Chen et al.23 studied Mixed convection nanofluid 
stream in vertical channel entropy production in magnetohydrodynamic. Arifuzzaman et al.24 studied heat and 
mass transfer analysis of MHD through a porous plate.

Nano liquids are potential heat exchange fluids with improved thermos-physical properties and heat trade 
execution can be associated with various tools for better exhibitions Work nowadays in the area of nano-materials 
grown rapidly due to its comprehensive implementations in variety of fields. Scholars paid so interest in recent array 
in this field due to their various applications, heat and mass  transfer25, in the engineering and industrial appliances 
sector, for example Nuclear reactor cooling, furnace, coolant, polymer Process, filament plastics. Improving fluid 
thermal conductivity of nanoparticles studied by Choi and  Eastman26. Nanofluid jet cooling fluid flow and heat 
transfer analysis on a hot surface with varying roughness studded by Mahdavi et al.27. Oyelakin et al.28 discussed 
non-linear radiation in Casson nano-fluid flow. Bagh et al.29 discussed time dependent water based nano fluid on 
an extending sheet. Ali et al.30 studied the impact of Stefan blowing for nanofluid flow. Three dimensional casson-
carreau nanofluid flow numerical scrutinization interrogated by Shahid et al.31. Reza et al.32 studied multiphase 
behavior of fluid flow with nanoparticles. Sadeghi et al.33 studied ferro-fluid with the presence of two cylinders. 
Seyyedi et al.34 solved different shape nano-particles by using entropy generation. Dogonchi et al.35 investigated 
heat and mass transfer effects of nanofluid in an irregular triangular enclosure. Similar work were done  by36–40.

A glance of the related studies of flow across a cylindrical surface is mostly treated with implementation of 
numerical methods. Mastroberardino and  Siddique41 presented numerical solution for MHD flow of Newtonian 
fluid towards a stretching cylinder. They discussed the conditions for existence and uniqueness of the solution. 
Motivated from this rarely considered work we studied the fluid flow through porous medium in the existence 
of applied magnetic field. To our interest we proved the existence and uniqueness of this extended fluid flow 
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problem. we also evaluated the priori bounds for skin friction factor, As for as we know these aspects for the flow 
of Casson fluids are never explained in the existing studies. The innovation of the work highlighted the existence 
of solution with uniqueness of results and bounds for skin friction. Moreover, numerical solution of this work 
is obtained by employing shooting base numerical method codded in matlab script. This exploration may find 
application in blood rheology, food processing and metallurgy.

Mathematical analysis
In this segment, we are concerned with the following incompressible Casson nanofluid  model42

Consider an incompressible and electrically conducting Casson fluid which flows steady state across an axially 
extending cylinder of radius = a. Velocity of the stretching wall of the cylinder is Uw = caγ . The mass suction 
across the wall is ww = 2cz , Here c is strain rate of the radial flow and γ is permeability parameter. The fluid flows 
through a porous medium of Darcy resistance. There is a non varying magnetic field of intensity Bo that acts 
normally to the axis of symmetry (see Fig. 1). The temperature Tw and concentration Cw are taken at the cylinder 
and T∞ and C∞ are the far field temperature and concentration. Casson fluid parameter is β and k′ is the porosity 
of medium. The formulation in (r, θ , z) is constituted keeping in view with the assumptions as mentioned above.

with boundary conditions:

(1)

∂tρ + u.∇ρ = 0

ρ(∂tu+ u.∇u) = −∇ρ − (1+ 1
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(3)
u = Uw , w = ww , T = Tw , C = Cw , at r = a,

w → 0, T → T∞, C → C∞, as r → ∞.

}

Figure 1.  Physical configuration and coordinate system.
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In order to yield dimensionless form, similarity transformations are entitled as:

The first expression in (2) becomes an identity and the remaining’s take the form as follows:

Where the expression (3) are transformed:

Where M = σB20a
2

4νρ
 is magnetic parameter, Re = ca2

2ν
 is Reynolds number, Pr = ν

α
 is Prandtl number, 

Nb = τDB(Cw−C∞)
ν

 is Brownian motion, Nt = τDT (Tw−T∞)
T∞ν

 is thermophoresis parameter, Le = ν
DB

 represents 
Lewis number. The physical quantities of interest are Cfx (skin friction coefficient), Nux (local Nusselt number) 
and Shx (local Sherwood number):

Cfx = τw
ρU2w

 , Nux = aqw
k(Tw−T∞)

 , Shx = xqm
DB(Cw−C∞)

,

where τw , qw and qm denotes shear stress, surface heat flux and surface mass flux,

τw = µ∂w
∂r  , qw = −K ∂T

∂r  , qm = −DB
∂C
∂r  at r = a,

On solving these quantities with the help of given similarity transformation, we obtain:

Cf (Rex)
−1/2 = (f ′′(1) , Nux(Rex)−1/2 = −2θ ′(1) , Shx(Rex)−1/2 = −2φ′(1),

where, (Rex) = xUw
ν

 is the local Reynolds number.

Existence
Consider the BVP (boundary value problem)

with

In order to get the corresponding IVP (initial value problem), the missing initial condition is assumed to be

Here ǫ , is a free parameter is relevant to skin friction parameter and f (ξ ; ǫ) denotes the solution. It is because an 
IVP can be uniquely solved (locally). Thus, a topological shooting argument for some choice of ǫ . For convince, 
the dependence of f on ǫ may be skipped for some time. The existence of f ′(ξ ; ǫ) for all ξ > 1 to satisfy Eq. (8). 
It may yield a solution to BVP. Two sets X and Y are taken as:

and

Both of these sets are shown to be open and non-empty in the two Lemmas below:

Lemma 1 The set X is non-empty and open.

Proof From Eqs. (9) and (10), for ξ = 1,

(4)ξ = (
r

a
)2, u = −ca

f (ξ)√
ξ
, w = 2cf ′(ξ)z, θ(ξ)− T − T∞

Tw − T∞
= 0, φ(ξ)− C − C∞

Cw − C∞
= 0.

}

(5)(1+ 1

β
)ξ f ′′′ + f ′′ − Re[f ′2 − ff ′′] − (M + Kp)f

′ = 0

(6)ξθ ′′ + (1+ PrRef )θ ′ + ξPr[Nbθ ′φ′ + Ntθ ′2] = 0

(7)ξφ′′ + (1+ LeRef )φ′ + Nt

Nb
[ξθ ′′ + θ ′] = 0

(8)
f (1) = γ , f ′(1) = 1, θ(1) = 1, φ(1) = 1,

f ′(∞) → 0, θ(∞) → 0, φ(∞) → 0,

}

(9)(1+ 1

β
)ξ f ′′′ + f ′′ − Re[f ′2 − ff ′′] − (M + Kp)f

′ = 0

f (1) = γ , f ′(1) = 1, f ′(∞) → 0.

(10)f ′′(1) = ǫ,

X = ǫ < 0| a first point ξX > 1 is such that f ′(ξ) > 0 and f ′′(ξX) = 0 on [1, ξX ]

Y = ǫ < 0| a first point ξY > 1 such that f ′(ξ) < 0 and f ′′(ξY ) = 0 on [1, ξY ]
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When ǫ = 0 , it implies that f ′′′(1) = Re > 0 . Then initially f ′ > 1 and f ′′ > 0 on (1, 1+ δ] for some δ > 0 . The 
continuity of the solutions of IVP and for ǫ < 0 approaching zero, f ′(ξ ; ǫ) approaches f ′(ξ ; 0) , i.e., f ′(ξ ; ǫ) > 0 
on (1, 1+ δ] with f (1+ δ; ǫ) > 1 . But f ′(ξ ; ǫ) < 1 and non-increasing for ξ ∈ (1, 1+ δ1) for some 0 < δ1 < δ . 
f ′ is to have a minimum if it is to go over 1. So the existence of first point ξX such that f ′′(ξX ; ǫ) = 0 and 
f ′(ξX; ǫ) > 0 on [1, ξX ] . Therefore in case of ǫ < 0 approaching to 0 this implies that ǫ belong to A. In order to 
show that X is open, let ǭ ∈ X is open, let ∈̄X . It is to show that all ǫ approaching ǭ are in X. Then f ′′(ξX) = 0 and 
0 < f ′(ξX) < 1 . At ξX(ǭ) , the Eq. (5) yields

As the situation for IVP is continuous in its initial conditions, ǫ is approaching close to ǭ , f ′′(ξ ; ǫ) has a root 
ξX(ǫ) , near ξX(ǭ) with f ′(ξ ; ǫ) > 0 . Thus ǫ ∈ X . We are there with the only possibility that f ′′ = 0 and f ′ = 0 
simultaneously. When these values are substituted in Eq. (5), then f ′′′ = 0 to imply f ′(ξ) = 0 for all ξ . This is a 
contradiction to Eq. (8).   �

Lemma 2 The set Y is open and non-empty.

Proof Equation (5) after integration yields as:

and a subsequent integration by parts yields

It is to show that there is ǫ < 0 , such that f ′ is equated to zero in the interval (1,2], say, before f ′′ = 0 in strict. 
Suppose this assertion is not true and consider.

Case (1A). Taking f ′′ < 0 , 0 < f ′ < 1 for ξ ∈ (1, 2] , when γ ≥ 0 : By integrating 0 < f ′ < 1 yields 
γ < f < γ + ξ − 1 on (1,2]. Then Eq. (13), provides:

By selecting ǫ < −2(M + Kp)− 2Reγ − 4Re − 2 to have f ′′ < −1(1+ 1
β
) on (1,2] and thus f ′(2) < 0 which 

contradicts f ′ > 0 on (1,2].
Case (1B). f ′′ < 0 , 0 < f ′ < 1 for ξ ∈ (1, 2] , γ < 0 . Also, the integration of 0 < f ′ < 1 on (1,2] yields 

γ < f < γ + ξ − 1 on (1,2]. By employing these conditions in Eq. (13) to get

Choosing ǫ < −2(M + Kp)− 4Re − 2 then f ′′ < −1(1+ 1
β
) on (1,2] and f ′(2) < 0 , it is a contradiction to 

f ′ > 0 on (1,2].
Case (2). If there is first point ξ1 ∈ (1, 2] when f ′′(ξ1) = 0 with f ′′ < 0 on (1, ξ1) . By taking conditions on f ′′ 

as in case (1), it results in

for ξ ∈ (1, ξ1] . Choosing

implies that f ′′(ξ1) < 0 it contradicts f ′′(ξ1) = 0.
Case (3). We are left with options that f ′′ = 0 and f ′ = 0 , but the process of Lemma 1, yields that f ′ ≡ 0 to 

contradict Eq. (8).
Hence Y is non void. Now it is to see that Y is open, let ǭ ∈ Y  with existence of ξY (ǭ) such that f ′′ξY (ǭ) < 0 

and f ′ξY (ǭ) = 0 . The continuity of the solution of IVP, for ǫ close to ǭ , there exist ξY (ǫ) with f ′′ξY (ǫ) < 0 and 
f ′ξY (ǫ) = 0 , and so, Y is open.

(11)(1+ 1

β
)f ′′′(1) = Re − ǫ[(1+ 1

β
)+ Rγ ] + (M + kp)

f ′′′(ξX) =
1

(1+ 1
β
)ξX

[Ref ′2(ξX)+ (M + Kp)f
′(ξX)] > 0.

(12)(1+ 1

β
)ξ f ′′(ξ) = (1+ 1

β
)ǫ + Re

∫ ξ

1

(f ′2(z)− f (z)f ′′(z))dz + (M + Kp)(f (ξ)− γ )

(13)(1+ 1

β
)ξ f ′′(ξ) = (1+ 1

β
)ǫ + 2Re

∫ ξ

1

f ′2(z)dz + Re[γ − f (ξ)f ′(ξ)+ (M + Kp)(f (ξ)− γ )]

f ′′ < [ ǫ
2
+ 2Re + Reγ + (M + kp)](1+

1

β
)

f ′′ < [ ǫ
2
+ 2Re + Reγ + (M + kp)](1+

1

β
)

f ′′ < [2Re + ǫ

2
],whenγ < 0,

f ′′ < [Reγ + 2Re + ǫ

2
],whenγ ≥ 0.











f ′′ < [−4Re,whenγ < 0,

f ′′ < −(2Reγ + 4Re),whenγ ≥ 0.

}
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Thus X and Y are non empty, disjoint and open sets, but (−∞, 0) is connected and so XUY  = (−∞, 0) . 
Thus, there is ǫ∗ such that ǫ∗ �∈ X and ǫ∗ �∈ Y  . As already noticed it in not possible to have f ′ = 0 and f ′′ = 0 
simultaneously; thus, thus only choice is f ′′(ξ ; ǫ∗) < 0 and f ′(ξ ; ǫ∗) > 0 for all ξ > 1.

Since f ′ is bounded below and decreasing, f ′(∞; ǫ∗) = Z exists where 0 ≤ Z < 1 . It is to see that Z = 0 . 
We let 0 ≤ Z < 1 . As f ′′ < 0 for ξ > 1 , f ′ is bounded below by Z > 0 , and so, f approaches to positive infinity. 
Finally the term ff ′′ is negative. Equation (5) provides as below:

for ξ to be large enough, there exists a point ξ2 > 1 and ξ > ξ2 to imply that

By integrating the above expression

Let ξ → ∞ then f ′′ → ∞ , it contradicts to the fact that f ′′ < 0 . Hence we have f ′(∞; ǫ∗) = 0 the following 
theorem is established.   �

Theorem 1 There exists a solution to the boundary value problem for any Re > 0 and −∞ < γ < ∞ , to satisfy 
f ′(ξ) > 0 and f ′′(ξ) < 0 for all ξ > 1.

Uniqueness
Now, we prove uniqueness of results:

Theorem 2 If −∞ < γ < ∞ and Re > 0 , then we cannot have two solutions for BVP (see 8)

when f ′(ξ) > 0.

Proof From Eq. (5), f ′(ξ ; ǫ∗) cannot attain maximum. Thus for a solution with f ′(ξ ; ǫ∗) > 0 , f ′′(ξ ; ǫ∗) < 0 . 
So for any positive solution 0 < f ′(ξ ; ǫ∗) < 1 . Let v = ∂f

∂α
 . The differentiation of Eq. (5) with respect to ξ yields:

associated with

Thus for ξ > 1 , we have v′ positive and increasing and v′ > 0 and increasing for ξ > 1.
It is to show a positive maximum does not exists for v′(ξ , ǫ∗) . Let a maximum exists at first point for which 

v > 0 , v′ > 0 , v′′ = 0 and v′′′ ≤ 0 . Substituting v′′ = 0 into Eq. (15) yields

It becomes contrary and hence v′ cannot have a maxima. So v′ = ∂f ′

∂α
> 0.

IF we let two solutions f ′(ξ ; ǫ∗) and f ′(ξ ; ǫ∗∗) with ǫ∗∗ > ǫ∗ , and using Mean Value Theorem

where ǫ∗ < ǫ̂ < ǫ∗∗ . Now v′ is bounded below by L > 0 for ξ large as it cannot have a maximum. Suppose 
M = L(ǫ∗∗ − ǫ∗) and ξ → ∞ , From Eq. (18), 0 = 1− 1 = f ′(ξ ; ǫ∗∗)− f ′(ξ ; ǫ∗) = v′(ξ ; ǫ̂)(ǫ∗∗ − ǫ∗) > M > 0

It becomes contrary.
It is to mentioned that the bounds for skin friction factor are evaluated and presented in the next part.   �

ξ f ′′′(ξ) =
[

−f ′′(ξ)− (1+ 1

β
)−1

[

Re(ff ′′ − f ′2)+ (M + Kp)f
′(ξ)

]

]

> ReC2 = K > 0

ξ f ′′′(ξ) >
K

2

f ′′(ξ) > f ′′(ξ2)+
K

2
[ln ξ − ln ξ2] for ξ > ξ2,

(1+ 1

β
)ξ f ′′′(ξ)+ f ′′(ξ)− Re(f ′2 − ff ′′)− (M + Kp)f

′(ξ) = 0

(14)(1+ 1

β
)ξ f iv + f ′′′ − Re[2f ′f ′′ − ff ′′′ − f ′f ′′] − (M + Kp)f

′′ = 0

(15)(1+ 1

β
)ξv′′′ + v′′ − Re[2f ′v′ − vf ′′ − fv′′] − (M + Kp)v

′ = 0

(16)v(1) = v′(1) = 0, v′′(1) = 1.

(17)(1+ 1

β
)ξv′′′ = Re[2f ′v′ − vf ′′] + (M + Kp)v

′ > 0

(18)f ′(ξ ; ǫ∗∗)− f ′(ξ ; ǫ∗) = (
∂f ′

∂ǫ
)ǫ=ǫ̂ (ǫ

∗∗ − ǫ∗) = v′(ξ ; ǫ̂)(ǫ∗∗ − ǫ∗)
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Bounds for skin friction factor. Bounds are derived for coefficient of skin friction f ′′(1) = ǫ∗ . As 
f ′(ξ ; ǫ∗) be a solution of the BVP to satisfy f ′′(1; ǫ∗) = ǫ∗ < 0 and cannot have a maximum. It is claimed that 
for a solution to company the boundary condition (8), yields

Consider,
Case-1: Solutions with f ′(ξ ; ǫ∗) > 0 for ξ > 1 : let f ′′′(1) < 0 as f ′ is down concave initially. To satisfy Eq. 

(8), f ′ must change concavity at some point. For some ξ3 such that f ′(ξ3) > 0 , f ′′(ξ3) < 0 , and f ′′′(ξ3) = 0 with 
f iv(ξ3) ≥ 0 . Differentiating Eq. (5), yields:

From Eq. (20), at ξ = ξ3

Also, seen in Lemma 1, f ′′′(ξ3) = f ′′(ξ3) = 0 , so it becomes contrary. Next let f ′′′(1) = 0 , in Eq. (20) to get:

Then initially, f ′′′ < 0 for ξ > 1 , and f ′′′ cannot change sign.
Case-2: Solution for which f ′(ξ ; ǫ∗) < 0 : let f ′′′(1) < 0 and f ′ is down concave initially. Because there exist 

a first point ξ4 such that f ′(ξ4) = 0 and f ′′(ξ4) < 0 , f ′ is not positive for all ξ . Also, f ′ should be concave up to 
satisfy Eq. (8) for some ξ > ξ4 and it attained a minimum. As f ′ does not attain maximum, f ′ necessarily increase 
from its minimum monotonically, and then tends to 0 from below to become concave down.

It becomes clear that, f ′′′ must change sign from minus to plus and back to minus. Thus a point ξ5 is such 
that f ′′′ has a positive max, i.e., f ′′′(ξ5) > 0 , f iv(ξ5) = 0 , and f (v)(ξ5) ≤ 0 . The Eq. (20) is differentiated and 
evaluated at ξ5 to produce,

If f ′′(ξ5) �= 0 , contradiction is arrived: Taking the case f ′′(ξ5) = f v(ξ5) = 0 . The Eq. (20) is differentiated two 
times to have f vi(ξ5) = 0 . Then Eq. (20) is differentiated thrice to get a result for ξ = ξ5

So finally, f iv(ξ5) = f v(ξ5) = f vi(ξ5) = 0 with f vii(ξ5) > 0 . For ξ nearly greater than ξ5 , f iv is positive and f ′′′ 
is increasing to contradict if f ′′′ is to possess maximum at ξ5 . We have

This bounds provides useful information, if γ ≥ − 1
Re . However, we have

then an upper bound on ǫ∗ can be attained if γ ≤ − 2
R . At this stage , it is assumed that

First if f iv(1) > 0 , then there exists a first point ξ6 such that f vi(ξ6) = 0 with f v(ξ6) ≤ 0 ; otherwise,

It will leads to a contradiction. Integration of Eq. (27) yields:

where K = 1

(1+ 1
β
)
[Re − ǫ(1+ Reγ )+ (M + Kp)] > 0 . Integrating second time

When ξ → ∞ , let f ′′ → ∞ then f ′ → 0 as needed for Eq. (8).

(19)f ′′′(1) = 1

(1+ 1
β
)
[Re − ǫ(1+ Reγ )+ (M + Kp)] > 0

(20)(1+ 1

β
)ξ f iv + (2+ 1

β
+ Ref )f ′′′ − Ref ′f ′′ − (M + Kp)f

′′ = 0, 1 < ξ < ∞,

(21)(1+ 1

β
)ξ3f

iv(ξ3) = Ref ′(ξ3)f
′′(ξ3)+ (M + Kp)f

′′(ξ3) < 0

(22)f iv(1) = 1

(1+ 1
β
)
[Re + (M + Kp)]ǫ < 0

(23)ξ5f
(v)(ξ5) =

1

(1+ 1
β
)
Re(f ′′(ξ5))

2 ≥ 0

ξ5f
(vii)(ξ5) =

1

(1+ 1
β
)
2Re(f ′′′(ξ5))

2 > 0.

(24)f ′′′(1) = 1

(1+ 1
β
)
[Re − ǫ∗(1+ Reγ )+ (M + Kp)] > 0

(25)
Re + (M + Kp)

1+ Reγ
< ǫ∗, if γ < − 1

Re

(26)f iv(1) = 1

(1+ 1
β
)
(Re +M + Kp)ǫ −

1

(1+ 1
β
)
(2+ 1

β
+ Reγ )[Re − (1+ Reγ )ǫ + (M + Kp)] < 0

(27)f iv(ξ) > 0, for ξ > 1

(28)f ′′′(ξ) > K , for ξ > 1

(29)f ′′(ξ) > ǫ + K(ξ − 1), for ξ > 1
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Thus f iv goes to decrease from 0 at some point ξ6 . Differentiate Eq. (20) and evaluate at ξ6 to get

If f ′′(ξ6) �= 0 , it makes a contradiction. If f ′′(ξ6) = 0 , then a similar procedure as above provides f vi(ξ6) = 0 
and f vii(ξ6) > 0 . Thus f iv > 0 for right interval of ξ6 , it is not negative as needed, so f iv(1) �> 0.

If f iv(1) = 0 then Eq. (24) becomes f v(1) = Rǫ2 > 0 then contradiction is attained through above arguments. 
Solving for ǫ in Eq. (28) and using Eq. (25) yields.

It can be noticed that both bounds converge to zero, and so, f ′′(1) converges to zero as γ (γ < 0) tends to infinity. 
Computations of skin friction coefficient f ′′(1) = ǫ∗ are provided in Table 1. Here sharpening of the bounds on 
f ′′(1) is elucidated for a fixed a Re = 1 , as the parameter γ enhances.

The bound are acceptable for the solutions of the BVP if γ ≤ − 2
R . Now we discuss the bounds for γ > − 1

2R . 
firstly for f ′(ξ ; ǫ∗) > 0 when ξ > 1 , and secondly for f ′(ξ ; ǫ∗ < 0) . A lemma is presented for proof of Theorem 3.

Lemma 3 Suppose f ′(ξ ; ǫ∗) > 0 is solution of Eq. (5) with associated conditions (8). If γ > − 1
2Re , then

Proof From theorem 1 we take f ′(ξ ; ǫ∗) > 0 for ξ > 1 and f ′′(ξ ; ǫ∗) < 0 for ξ > 1 . Then f is increasing and 
f ′ is decreasing function. As γ > − 1

2Re , then 1− 1
β
+ 2Reγ > 0 for ξ > 1 . Multiplication of Eq. (5) with f ′′(ξ) 

and integrating to get

Here, the LHS of equation Eq. (31) is an increasing function and similarly the RHS. As f ′(ξ ; ǫ∗) is a solution 
to the B.V.P, we have f ′ → 0 as ξ → ∞ . As −(1+ 1

β
)ξ(f ′′(ξ))2 increases and bounded above by 0, its limit as 

ξ → ∞ exists.
Also let limit is l  = 0 . Since limξ→∞ f ′(ξ) = 0 and −(1+ 1

β
)ξ(f ′′(ξ))2 < 0 for ξ > 1 , we must have l < 0 . 

Suppose l = −m . Keeping in view That RHS of Eq. (31) is increasing, we have

and by skipping second term on LHS to get:

It implies as:

As the second term on the left is negative,

ξ6f
(v)(ξ6) = Re(f ′′(ξ6))

2 ≥ 0

(30)
Re + (M + Kp)

1+ Reγ
< ǫ∗ <

(Re +M + Kp)(2+ 1
β
+ Reγ )

(1+ 1
β
)(R −M − Kp)+ (2+ 1

β
+ Rγ )(1+ Rγ )

, if γ ≤ − 2

R

lim
ξ→∞

[−ξ(f ′′(ξ))2 + 2Re

3
(f ′(ξ))3 + (M + Kp)(f

′(ξ))2] = 0.

(31)

∫ ξ

1

(1− 1

β
+ 2Ref (z))(f ′′(z))2dz − (1+ 1

β
)ǫ2 + 2Re

3
+ (M + Kp) = (1+ 1

β
)ξ(f ′′(ξ))2 + 2Re

3
(f ′(ξ))3 + (M + Kp)(f

′(ξ))2
}

−(1+ 1

β
)ξ(f ′′(ξ))2 + 2R

3
(f ′(ξ))3 + (M + Kp)(f

′(ξ))2 < −m for ξ ≥ 1

(1+ 1

β
)ξ(f ′′(ξ))2 > m for ξ ≥ 1.

(f ′′(ξ)−
√

m

(1+ 1
β
)ξ

)(f ′′(ξ)+
√

m

(1+ 1
β
)ξ

) > 0 for ξ ≥ 1,

Table 1.  Values of f ′′(1) for Re = 1,M = Kp = 0.1 and β = 10.

γ Lower bounds on f ′′(1) f ′′(1) num. approx Upper bounds on f ′′(1)

− 0.5 NA − 1.0007 NA

− 1.0 NA − 0.8389 NA

− 3.0 − 0.600 − 0.4432 − 0.402

− 4.0 − 0.400 − 0.3414 − 0.340

− 6.0 − 0.240 − 0.2260 − 0.220

− 8.0 − 0.170 − 0.1663 − 0.160

− 10.0 − 0.133 − 0.1320 − 0.131
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Integration of this inequality provides as:

and let ξ → ∞ then f ′ → −∞ which is contradiction to Eq. (8).   �

Theorem 3 Let f ′(ξ ; ǫ∗) > 0 is a solution of Eq. (5)associated with boundary conditions (8).If γ > − 1
2R , then 

ǫ∗ < −
√

1

(1+ 1
β
)
[ 2Re

3
+ (M + Kp)]

Proof Using Lemma 3 results and letting ξ → ∞ in Eq. (31)

since 1− 1
β
+ 2Rf > 0 for ξ > 1 . Thus ǫ∗ < −

√

1

(1+ 1
β
)
[ 2Re

3
+ (M + Kp)].

Although the existence of solutions where f ′(ξ ; ǫ∗) < 0 is yet an open problem. Suppose such solution exist, 
then a bound on the skin friction coefficient is established in next Theorem 4. Two lemmas are required for the 
proof of this bounds.

Lemma 4 suppose there exist a solution of Eq. (5) associated with boundary conditions (8) where f ′(ξ ; ǫ∗) < 0 . 
Then limξ→∞(1+ 1

β
)ξ f ′′(ξ) = 0.

Proof In preview of the case γ ≤ − 2
Re , f

′ must attain a negative minimum and then turn concave down as 
f ′ → 0 from below. Thus there exist a point ξ7 such that f ′ < 0 , f ′′ > 0 , and f ′′′ < 0 for ξ > ξ7 . By using these 
inequalities and rearranging Eq. (5) into the form

It is concluded that f (ξ) > − 1
Re for ξ > ξ7.

Hence f is decreasing and bounded below for ξ > ξ7 , and so, f (∞) = l ≥ − 1
Re where l is finite. This results in

Hence for all ǫ1 > 0 , there is ξ̄ > ξ7 to yield:

Keeping in view of contradiction, suppose that limξ→∞(1+ 1
β
)ξ f ′′(ξ) �= 0 , there exist an ǫ1 > 0 and a sequence 

ξi → ∞ such that |(1+ 1
β
)ξi f

′′(ξi)| ≥ ǫ1 for i = 1, 2, ..... and since f ′′ > 0 for ξ > ξ̄7 , we have

For any positive integer N, the inequalities (34), (37) hold where ξN > ξ̄ > ξ7. We get

Arrangements of Eq. (13) yields

here LHS is increasing. It is concluded that the inequality (36) stands for all ξ ≥ ξN and (36) becomes

and using (34) in (38) yields �(1+ 1
β
)ξ f ′′(ξ) ≥ ǫ1

2
 for ξ ≥ ξN.

f ′′(ξ) <

√

m

(1+ 1
β
)ξ

for ξ ≥ 1.

f ′(ξ) < 1− 2

√

m

(1+ 1
β
)
(
√

ξ − 1) for ξ ≥ 1,

∫ ξ

1

(1− 1

β
+ 2Ref (z))(f ′′(z))2dz = (1+ 1

β
)ǫ2 − 2Re

3
+ (M + Kp) > 0,

(32)(1+ 1

β
)ξ f ′′′ + (1+ Ref )f ′′ − Re(f ′)2 − (M + Kp)f

′ = 0, 1 < ξ < ∞,

(33)lim
ξ→∞

Ref (ξ)f ′(ξ) = 0.

(34)− ǫ1

4
< Ref (ξ)f ′(ξ) <

ǫ1

4
for ξ > ξ̄7.

(35)(1+ 1

β
)ξi f

′′(ξi) ≥ ǫ1 for ξi > ξ7.

(36)(1+ 1

β
)ξi f

′′(ξi)+ Ref (ξi)f
′(ξi) > ǫ1 −

ǫ1

4
= 3ǫ1

4
for ξi ≥ ξN .

(37)

2Re

∫ ξ

1

(f ′(z))2dz + Reγ + (1+ 1

β
)ǫ = (1+ 1

β
)ξ f ′′(ξ)+ Ref (ξ)f ′(ξ)+ Re[(M + Kp)(f (ξ)− γ )],

(38)(1+ 1

β
)ξ f ′′(ξ) ≥ 3ǫ1

4
− Ref (ξ)f ′(ξ) for ξ ≥ ξN
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Dividing both sides by ξ and integrating results in f ′(ξ) ≥ f ′(ξN )+ ǫ1
2
[lnξ − lnξN ] for ξ ≥ ξN.

Finally, suppose ξ → ∞ and f ′ → ∞ which contradict Eq. (8) and thus proof of lemma is complete.

Lemma 5 Let there exists a solution of Eq. (5) with boundary conditions (8) when f ′(ξ ; ǫ∗) < 0provided that 
γ > − 1

2R , 
∫∞
1

(1− 1
β
+ 2Rf (z))(f ′′(z))2dz > 0.

Proof It is sufficient to show that 1− 1
β
+ 2Rf > 0 for ξ ≥ 1 . From Lemma 4,it is seen that f ′ < 0 , f ′′ > 0 and 

f ′′′ < 0 for ξ > ξ7 . Hence f ′′ > 0 and decreasing and f ′(∞) exists, then f ′′(∞) = 0 . Suppose ξ → ∞ in Eq. 
(31) and using Lemma 4 to get

and thus

Also, we have

It is to note that both terms on the right are negative, and so,

Thus 
∫ ξ

1
(1− 1

β
+ 2Ref (z))(f ′′(z))2dt tends to infinity from below, and 1− 1

β
+ 2Ref  is to be positive for large 

values of ξ . Since γ > − 1
2Re , and 1− 1

β
+ 2Ref  starts out positive because f ′ has only one sign change − from 

positive to negative −f  attains one maximum and so does 1− 1
β
+ 2Ref  . Thus 1− 1

β
+ 2Ref > 0 for ξ ≥ 1 and 

hence, the proof of lemma.

Theorem 4 Let there is a solution for Eq. (5) associated with the boundary conditions (8) where f ′(ξ ; ǫ∗) < 0 . If 
γ > − 1

2Re , then ǫ∗ < min[−
√

1

(1+ 1
β
)
[ 2Re

3
+ (M + Kp)],− Reγ

(1+ 1
β
)
].

Proof Suppose ξ → ∞ , using Lemma 4, Eq. (33) in Eq. (37) to achieve as below

Using Lemma 5 in Eq. (41) to get

From combining the inequalities (42), (43), we get ǫ∗ < min[−
√

1

(1+ 1
β
)
[ 2Re

3
+ (M + Kp)],− Reγ

(1+ 1
β
)
] , if γ > − 1

2Re .

  �

Results and discussion
The current results are checked for validation as listed in Table 2 and 3. Their acceptable accord with those by 
Mastroberardino and  Siddique41 has established the accuracy of the present numeric scheme. The pictorial rep-
resentation for Casson nano-fluid’s velocity, temperature and concentration of nano-entities graphed for two 
cases of mass transpiration (γ > 0, γ < 0).

The outcomes for velocity f ′(ξ) , temperature θ ′(ξ) and concentration φ′(ξ) are sketched in Figs. 2, 3, 4 and  
5 for two cases of γ (γ = −0.5andγ = 0.5) with the variation of other influential parameters. The velocity f ′(ξ) 
is vividly decelerated against the increments in magnetic parameter M as well as that of porosity parameter Kp as 
seen in Fig. 2. The strength of M means growth of electromagnetic resistive force (Lorentz force) which inhibits 
the flow. Similarly, parameter of porous matrix (Kp) offers enhanced resistance to the velocity. There is sound 

lim
ξ→∞

[−ξ(f ′′(ξ))2 + 2Re

3
(f ′(ξ))3 + (M + Kp)(f

′(ξ))2] = 0,

(39)
∫ ∞

1

(1− 1

β
+ 2Ref (z))(f ′′(z))2dz = (1+ 1

β
)ǫ2 − 2Re

3
+ (M + Kp).

(40)

� ξ

1

(1− 1

β
+ 2Rf (z))(f ′′(z))2dz − (1+ 1

β
)ǫ2 + 2Re

3
+ (M + Kp) =

−(1+ 1

β
)ξ(f ′′(ξ))2 + (M + Kp)(f

′(ξ))2 + 2R

3
(f ′(ξ))3 < 0 for ξ > ξ7















(41)
∫ ξ

1

(1− 1

β
+ 2Ref (z))(f ′′(z))2dz = (1+ 1

β
)ǫ2 − 2Re

3
++(M + Kp) for ξ > ξ7.

(42)

� ∞

1

(f ′′(z))2dz =





�

1+ 1
β

�

ǫ + Reγ

2Re



 > 0,

ǫ∗ < − Reγ
�

1+ 1
β

�

(43)ǫ∗ < −
√

1

(1+ 1
β
)
[2Re
3

+ (M + Kp)], if γ > − 1

2Re
,
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reason behind this fact that Kp is related reciprocally with permeability and hence higher inputs of Kp means 
lesser permeability. Thus the flow decelerates in this case. The incremented values of Re and Casson parameter 
β also slowed the flow velocity f ′(ξ) as delineated in Fig. 3. Here the viscous effects are enhanced (to oppose to) 
momentum. Furthermore, it is noticed that velocity of flow is faster in case of injection (γ > 0) than for suc-
tion (γ < 0) . Figure 4 exposed that the nanofluid diffusion parameters namely Nb (Brownian diffusion) and Nt 
(Thermophoresis diffusion) are responsible to raise the temperature function θ(ξ) but the progressive values of Pr 
reduced θ(ξ) . The faster random motion of nano-entities is associated with larger Nb. This rapidity in the move-
ment of these small material particles causes greater thermal distribution. In the similar behavior due to enhanced 
enhanced thermophoresis. The particles move fastly towards cooler regimes and hence raises the temperature. It 
is also noticed that the fluid temperature for suction is higher than for injection. The greater values of Le and Re 
diminish the nanoparticle concentration φ(ξ) in the boundary layer region as depicted in Fig. 5. Physically, the 

Table 2.  The skin friction coefficient by varying M and Re.

M Re γ = 0.541
γ = 0.5 (Present 
results) Percentage deviation γ = − 0.541

γ = −0.5 (present 
results)

Percentage 
deviation

0 10 − 6.62227 − 6.6223 0.000453 − 1.67757 − 1.6778 − 0.013710

2 − 6.88470 − 6.8847 0.000000 − 1.92938 − 1.9294 0.001036

5 10 − 7.24505 − 7.2451 0.000690 − 2.27933 − 2.2793 − 0.001316

2 1 − 2.21659 − 2.2180 0.063611 − 1.72075 − 1.7214 0.037774

5 − 4.33228 − 4.3330 0.016619 − 1.86364 − 1.8638 0.008585

10 − 6.88470 − 6.8847 0.000000 − 1.92938 − 1.9294 0.001036

Table 3.  Nusselt number table for varying γ , Re, M, and Pr.

γ Re M Pr Mastroberardino and  Siddique41 Present results Percentage deviation

0.5 10 2 7 36.60283 36.6027 − 0.0003551

0.0 6.08375 6.0857 0.0320525

− 0.5 0.00002 0.00002 0.0000000

0.5 1 4.57611 4.5741 − 0.0439237

5 18.99556 18.9952 − 0.0018951

10 36.60283 36.6027 − 0.0003551

10 0 36.60105 36.6115 0.0285510

2 36.60283 36.6027 − 0.0003551

5 36.60551 36.5906 − 0.0407315

2 0.7 4.18133 4.1801 − 0.294164

2 11.13801 11.1360 − 0.0180463

7 36.60283 36.6027 − 0.0003551
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Figure 2.  Plot for velocity profile f ′(ξ) with varying values of M and Kp.
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Figure 3.  Plot for velocity profile f ′(ξ) with varying values of Re and β.
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Figure 4.  Plot for temperature profile θ(ξ) with varying values of Nb, Nt and Pr.
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Figure 5.  Plot for concentration profile φ(ξ) with varying values of Le and Re.

Table 4.  Skin friction − f ′′(0) for varying Kp , M, Re, and β.

Kp M Re β γ = − 0.5 γ = 0 γ = 0.5

0.5 2 10 0.5 1.5608 2.2392 3.1970

1.0 1.6001 2.2818 3.2380

1.5 1.6386 2.3234 3.2781

0.5 0 1.3953 2.0576 3.0218

2 1.5608 2.2392 3.1970

5 1.7862 2.4814 3.4307

2 1 1.2200 1.3002 1.3851

5 1.4208 1.7861 2.2385

10 1.5608 2.2392 3.1970

10 0.5 1.5608 2.2392 3.1970

1.0 1.7271 2.6988 4.1909

1.5 1.8000 2.9378 4.7615

Table 5.  Nusselt number − θ ′(0) and Sharwood number −φ′(0) for varying Pr, Nb, Nt, Le and Re .

Pr Nb Nt Le Re − θ ′(0) −φ′(0)

0.72 0.1 0.1 1 10 4.2980

0.1 5.6546

1.3 7.0521

0.72 0.1 4.2980

0.2 4.1206

0.3 3.9488

0.1 0.1 4.2980

0.2 4.2028

0.3 4.1100

0.1 1 2.4484

2 7.8881

3 13.1081

1 1 0.6743

5 1.4877

10 2.4484
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Lewis number Le is inversely related to diffusion coefficient of concentration and hence its development impairs 
φ(ξ) . Moreover as seen above, the larger Re slows the flow which results in decrement of φ(ξ)

The absolute values of skin friction are augmented in direct proportion with Kp , M, Re and β for three cases 
of γ (γ < 0, γ = 0, γ > 0) as enumerated in Table 4. Physically, Kp signifies the resistance of porous matrix, M 
for electromagnetic resistive force, Re (Reynolds number) and β the non-Newtonian viscous effects (for Cas-
son fluid). Hence the drag force enhances. Table 5 indicates that Nusselt number −θ ′(0) increases with Pr but it 
diminishes against Nb and Nt. Physical ground for augmentation of Nusselt number with Prandtl number lies in 
the fact that thermal diffusivity being reciprocal to prandtl number is responsible to decrease the temperature of 
the fluid and more heat transfer takes place at the surface and hence the magnitude of Nusselt number is boosted. 
Further the growing thermopherotic and Brownian diffusion raise the fluid temperature and heat transfer rate at 
the surface is decreased and the Nusselt number decreases against these parameters. Also, the Sherwood number 
−φ′(0) exceeds directly with Le and Re (see Table 5).

Conclusion
We discussed the existence of solution for Casson fluid flow towards a porous stretching cylinder. The fluid flows 
through porous medium and it is influenced by magnetic field. It is shown that the boundary value problem for 
any Re > 0 and −∞ < γ < ∞ , to satisfy f ′(ξ) > 0 and f ′′(ξ) < 0 for all ξ > 1 . The uniqueness of the result 
is established in the sense that we cannot have two solutions for the boundary value problem if −∞ < γ < ∞ 
and Re > 0 . Moreover, the bounds for skin friction factor are evaluated. Numerical solution of the flow and heat 
transfer for Casson nano-fluid is also obtain to reveal that:

• It is observed that for the magnetic parameter M and porosity parameter kp reduces velocity when takes large 
values for three cases of γ.

• Velocity recedes with the higher inputs of Re and β.
• Temperature decreases with the boosting values of Pr but it uplifted with higher values of Nb and Nt.
• Le and Re cause deprecation in concentration when takes larger values.
• Skin friction factor is boosted up significantly when takes larger Kp , M, Re and β.
• Nusselt number and Sherwood number up surged directly with larger Pr, Le and Re while recedes for larger 

Nb and Nt.

Received: 5 January 2021; Accepted: 22 March 2021

References
 1. Shah, Z., Kumam, P. & Deebani, W. Radiative MHD Casson nanofluid flow with activation energy and chemical reaction over past 

nonlinearly stretching surface through entropy generation. Sci. Rep. 10, 1–14 (2020).
 2. Oyelakin, I., Mondal, S., Sibanda, P. & Sibanda, D. Bioconvection in Casson nanofluid flow with gyrotactic microorganisms and 

variable surface heat flux. Int. J. Biomath. 12, 1950041 (2019).
 3. Reza-E-Rabbi, S., Arifuzzaman, S., Sarkar, T., Khan, M. S. & Ahmmed, S. F. Explicit finite difference analysis of an unsteady MHD 

flow of a chemically reacting Casson fluid past a stretching sheet with brownian motion and thermophoresis effects. J. King Saud 
Univ. Sci. 32, 690–701 (2020).

 4. Oyelakin, I. S., Mondal, S. & Sibanda, P. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective 
and slip boundary conditions. Alexandria Eng. J. 55, 1025–1035 (2016).

 5. Oyelakin, I., Lalramneihmawii, P., Mondal, S. & Sibanda, P. Analysis of double-diffusion convection on three-dimensional mhd 
stagnation point flow of a tangent hyperbolic casson nanofluid. Int. J. Ambient Energy 1–12, (2020).

 6. Mondal, S., Oyelakin, I. & Sibanda, P. Unsteady mhd three-dimensional casson nanofluid flow over a porous linear stretching 
sheet with slip condition. Front. Heat Mass Transfer 8, (2017).

 7. Ali, L., Liu, X., Ali, B., Mujeed, S. & Abdal, S. Finite element simulation of multi-slip effects on unsteady MHD bioconvective 
micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions. Coatings 9, 842 (2019).

 8. Ali, B., Nie, Y., Khan, S. A., Sadiq, M. T. & Tariq, M. Finite element simulation of multiple slip effects on MHD unsteady Maxwell 
nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction. Processes 
7, 628 (2019).

 9. Abdal, S., Ali, B., Younas, S., Ali, L. & Mariam, A. Thermo-diffusion and multislip effects on MHD mixed convection unsteady flow 
of micropolar nanofluid over a shrinking/stretching sheet with radiation in the presence of heat source. Symmetry 12, 49 (2020).

 10. Ali, L., Liu, X., Ali, B., Mujeed, S. & Abdal, S. Finite element analysis of thermo-diffusion and multi-slip effects on MHD unsteady 
flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source. Appl. Sci. 9, 5217 (2019).

 11. Yu, B., Chiu, H.-T., Ding, Z. & Lee, L. J. Analysis of flow and heat transfer in liquid composite molding. Int. Polym. Process. 15, 
273–283 (2000).

 12. Sakiadis, B. C. Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and 
axisymmetric flow.  AIChE J.  7, 26–28 (1961).

 13. Sakiadis, B. Boundary-layer behavior on continuous solid surfaces: Ii. the boundary layer on a continuous flat surface.  AiChE J. 
7, 221–225 (1961).

 14. Awaludin, I. S., Ishak, A. & Pop, I. On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Sci. Rep. 8, 
1–8 (2018).

 15. Dzulkifli, N. F., Bachok, N., Yacob, N. A., Md Arifin, N. & Rosali, H. Unsteady stagnation-point flow and heat transfer over a per-
meable exponential stretching/shrinking sheet in nanofluid with slip velocity effect: A stability analysis. Appl. Sci. 8, 2172 (2018).

 16. Bakar, N. A. A., Bachok, N., Arifin, N. M. & Pop, I. Stability analysis on the flow and heat transfer of nanofluid past a stretching/
shrinking cylinder with suction effect. Results Phys. 9, 1335–1344 (2018).



15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7799  | https://doi.org/10.1038/s41598-021-86953-1

www.nature.com/scientificreports/

 17. Malvandi, A., Hedayati, F. & Ganji, D. Nanofluid flow on the stagnation point of a permeable non-linearly stretching/shrinking 
sheet. Alexandria Eng. J. 57, 2199–2208 (2018).

 18. Hayat, T., Riaz, R., Aziz, A. & Alsaedi, A. Influence of arrhenius activation energy in mhd flow of third grade nanofluid over a 
nonlinear stretching surface with convective heat and mass conditions. Physica A 124006 (2020).

 19. Dinh, M. T. et al. Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer. Physica A 541, 
123036 (2020).

 20. Rashid, I., Sagheer, M. & Hussain, S. Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking 
wall. Physica A 536, 122608 (2019).

 21. Pavar, P., Krishna, L. H. & Reddy, M. S. Mhd flow of nano fluid past a vertical permeable semi-infinite moving plate with constant 
heat source. In AIP Conference Proceedings, vol. 2246, 020020 ( AIP Publishing LLC, 2020).

 22. Oyelakin, I. S., Lalramneihmawii, P., Mondal, S., Nandy, S. K. & Sibanda, P. Thermophysical analysis of three-dimensional mag-
netohydrodynamic flow of a tangent hyperbolic nanofluid. Eng. Rep. 2, e12144 (2020).

 23. Chen, B.-S. et al. Entropy generation in mixed convection magnetohydrodynamic nanofluid flow in vertical channel. Int. J. Heat 
Mass Transfer 91, 1026–1033 (2015).

 24. Arifuzzaman, S. et al. Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through 
porous plate with chemical reaction. J. King Saud Univ. Science 31, 1388–1398 (2019).

 25. Khan, M. S., Zou, R. & Yu, A. Computational simulation of air-side heat transfer and pressure drop performance in staggered 
mannered twisted oval tube bundle operating in crossflow. Int. J. Thermal Sci. 161, 106748 (2021).

 26. Choi, S. U. & Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Tech. Rep.,Argonne National Lab., IL 
(United States) (1995).

 27. Mahdavi, M., Sharifpur, M. & Meyer, J. P. Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various 
roughness. Int. Commun. Heat Mass Transfer 118, 104842 (2020).

 28. Oyelakin, I., Mondal, S. & Sibanda, P. Nonlinear radiation in bioconvective Casson nanofluid flow. Int. J. Appl. Comput. Math. 5, 
1–20 (2019).

 29. Ali, B., Naqvi, R. A., Ali, L., Abdal, S. & Hussain, S. A comparative description on time-dependent rotating magnetic transport 
of a water base liquid h2o with hybrid nano-materials al2o3-cu and al2o3-tio2 over an extending sheet using buongiorno model: 
Finite element approach. Chin. J. Phys. (2021).

 30. Ali, B., Hussain, S., Abdal, S. & Mehdi, M. M. Impact of Stefan blowing on thermal radiation and Cattaneo–Christov characteristics 
for nanofluid flow containing microorganisms with ablation/accretion of leading edge: Fem approach. Eur. Phys. J. Plus 135, 1–18 
(2020).

 31. Naga Santoshi, P., Ramana Reddy, G. & Padma, P. Numerical scrutinization of three dimensional Casson–Carreau nano fluid flow.  
J. Appl. Comput. Mech. 6, 531–542 ( 2020).

 32. Reza-E-Rabbi, S., Ahmmed, S. F., Arifuzzaman, S., Sarkar, T. & Khan, M. S. Computational modelling of multiphase fluid flow 
behaviour over a stretching sheet in the presence of nanoparticles. Eng. Sci. Technol. 23, 605–617 (2020).

 33. Sadeghi, M., Tayebi, T., Dogonchi, A., Nayak, M. & Waqas, M. Analysis of thermal behavior of magnetic buoyancy-driven flow in 
ferrofluid-filled wavy enclosure furnished with two circular cylinders. Int. Commun. Heat Mass Transfer 104951 (2020).

 34. Seyyedi, S. M., Dogonchi, A., Nuraei, R., Ganji, D. & Hashemi-Tilehnoee, M. Numerical analysis of entropy generation of a nano-
fluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field. Eur. Phys. J. Plus 
134, 1–20 (2019).

 35. Dogonchi, A. et al. The influence of different shapes of nanoparticle on cu-h2o nanofluids in a partially heated irregular wavy 
enclosure. Physica A 540, 123034 (2020).

 36. Seyyedi, S. M., Dogonchi, A., Hashemi-Tilehnoee, M., Waqas, M. & Ganji, D. Investigation of entropy generation in a square 
inclined cavity using control volume finite element method with aided quadratic lagrange interpolation functions. Int. Commun. 
Heat Mass Transfer 110, 104398 (2020).

 37. Dogonchi, A., Waqas, M., Seyyedi, S. M., Hashemi-Tilehnoee, M. & Ganji, D. A modified Fourier approach for analysis of nanofluid 
heat generation within a semi-circular enclosure subjected to mfd viscosity. Int. Commun. Heat Mass Transfer 111, 104430 (2020).

 38. Dogonchi, A., Asghar, Z. & Waqas, M. Cvfem simulation for fe3o4-h2o nanofluid in an annulus between two triangular enclosures 
subjected to magnetic field and thermal radiation. Int. Commun. Heat Mass Transfer 112, 104449 (2020).

 39. Sadeghi, M. S., Tayebi, T., Dogonchi, A. S., Armaghani, T. & Talebizadehsardari, P. Analysis of hydrothermal characteristics of 
magnetic Al2O3-H2O nanofluid within a novel wavy enclosure during natural convection process considering internal heat 
generation. Math. Methods Appl. Sci. (2020).

 40. Seyyedi, S. M., Dogonchi, A., Hashemi-Tilehnoee, M., Waqas, M. & Ganji, D. Entropy generation and economic analyses in a 
nanofluid filled l-shaped enclosure subjected to an oriented magnetic field. Appl. Therm. Eng. 168, 114789 (2020).

 41. Mastroberardino, A. & Siddique, J. Magnetohydrodynamic stagnation flow and heat transfer towards a stretching permeable 
cylinder. Adv. Mech. Eng. 6, 1–5 (2014).

 42. Sarojamma, G. & Vendabai, K. Boundary layer flow of a Casson nanofluid past a vertical exponentially stretching cylinder in the 
presence of a transverse magnetic field with internal heat generation/absorption. Int. J. Math. Comput. Sci. 9, 138–143 (2015).

Author contributions
S.A.: Conceptualization, methodology, design; S.H.: Data curation, writing—original draft preparation. A.A. 
and I.S.: Supervision and validation of data—reviewing original draft. M.F.: Supervision, Reviewing and editing 
the final version and validation of data.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7799  | https://doi.org/10.1038/s41598-021-86953-1

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	On solution existence of MHD Casson nanofluid transportation across an extending cylinder through porous media and evaluation of priori bounds
	Mathematical analysis
	Existence
	Uniqueness
	Bounds for skin friction factor. 

	Results and discussion
	Conclusion
	References


