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Family‑based gene‑environment 
interaction using sequence kernel 
association test (FGE‑SKAT) 
for complex quantitative traits
Chao‑Yu Guo1,2*, Reng‑Hong Wang1,2 & Hsin‑Chou Yang3 

After the genome‑wide association studies (GWAS) era, whole‑genome sequencing is highly 
engaged in identifying the association of complex traits with rare variations. A score‑based variance‑
component test has been proposed to identify common and rare genetic variants associated with 
complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial 
dependencies and adjusts for random confounding effects. However, the etiology of complex traits 
may involve the effects of genetic and environmental factors and the complex interactions between 
genes and the environment. Therefore, in this research, a novel method is proposed to detect 
gene and gene‑environment interactions in a complex family‑based association study with various 
correlated structures. We also developed an R function for the Fast Gene‑Environment Sequence 
Kernel Association Test (FGE‑SKAT), which is freely available as supplementary material for easy 
GWAS implementation to unveil such family‑based joint effects. Simulation studies confirmed the 
validity of the new strategy and the superior statistical power. The FGE‑SKAT was applied to the 
whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered 
concordant and discordant regions compared to the methods without considering gene by 
environment interactions.

After the genome-wide association  studies1–6, common genetic markers associated with complex diseases and 
quantitative traits have been successfully identified. However, so far, for most complex diseases and quantita-
tive traits, all identified genetic markers can only explain a small proportion of genetic components of complex 
diseases and quantitative traits, suggesting that there are still missing heritability to be discovered by genetic 
markers.

Genome-wide association studies have focused on the genetic association of common variants with complex 
diseases. However, rare variants may also play a key role in influencing certain complex diseases and  traits7 and 
explain additional disease risks or traits of heritability. A rare variation is usually defined as the minor allele 
frequency (MAF) < 0.5%.

With the advances in sequencing technology, new and useful whole-exome sequencing has been developed. 
As a result, robust and efficient statistical methods for the association between rare variants and complex diseases 
and traits are desired.

A conventional association test uses one genetic marker at one time to identify common variations that are 
associated with a disease or trait. Although one could repeatedly implement the simple technique to discover 
some rare variations, this approach suffers an insufficient statistical power after adjusting for multiple testing. As 
a result, the decision of the overall statistical testing is too  conservative8,9. Therefore, the genomic region-based 
assessment considers multiple variants and traits, such as the collapsing  method10 and the sequence kernel asso-
ciation test (SKAT)11, a flexible and efficient regression method for the associations between genomic regions and 
quantitative traits with consideration of covariates. The SKAT is based on a mixed effect model and overcomes 
the power issue in the collapsing method, especially when the genetic effects are positive in some variants and 
negative in the other ones. The kernel function interprets the gene segment, the random effect in the mixed 

OPEN

1Division of Biostatistics, Department of Medicine, Institute of Public Health, School of Medicine, National 
Yang-Ming University, Taipei, Taiwan. 2Institute of Public Health, School of Medicine, National Yang Ming Chiao 
Tung University, Hsinchu, Taiwan. 3Institute of Statistical Science, Academia Sinica, Taipei, Taiwan. *email: 
cyguo@ym.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-86871-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7431  | https://doi.org/10.1038/s41598-021-86871-2

www.nature.com/scientificreports/

effect model. If the subjects are correlated with family structures, the fast family-based SKAT (FFBSKAT) was 
developed to avoid invalid  results12,13.

In genetic studies, common variations could partially explain most diseases. SNPs may affect traits, but the 
environmental factors may modify the effect of SNPs. Tests for gene-environment interactions using one SNP 
and one environmental factor have been  proposed14. For better statistical power, such types of interactions using 
genomic regions are also  discussed15,16. Recent studies also showed surprising findings with gene-environment 
 interactions17,18.

This research aims to develop a novel and efficient statistical model for the genomic region-based assessment 
using multiple variants and traits to test gene-environment interactions under the complex familiar structures. 
Therefore, we extend the SKAT model under the family-based design to identify gene-environment interactions 
and the gene effect, named the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT). Simu-
lation studies with ten thousand repetitions confirm the validity of the new strategy. In addition to simulation 
studies, the new strategy is applied to the whole genome sequence data from the Genetic Analysis Workshop 18 
(GAW18). Finally, a freely available  R19 function with a detailed manual and an automatic pipeline for GWAS are 
ready for easy implementation of the new method FGE-SKAT, where six essential packages are also integrated, 
including "CompQuadForm", "kinship2", "SKAT", "survey", "rareGE", "ggplot2", and "quadprog".

Materials and methods
Following the previous  works12,13,16,20, the inheritance of a quantitative trait with gene-environment interac-
tions in the sample of "n" genetically related subjects could be presented in a linear mixed effect model, which is 
defined as y = Xα + h1 + h2 + b+ ε . The symbol y denotes the n× 1 vector of phenotypes and X is the n× p 
matrix of covariates,α is the p× 1 matrix of regression coefficients of the covariates. h1,h2 , b and ε are n× 1 vec-
tors of random effects for gene, gene-environment interaction, family effect, and random error, respectively. h1 is 
assumed to follow a normal distribution, N(0, τ1K1) . K1 is the n× n matrix with elements defined by the kernel 
function of individual phenotypes in the region to be analyzed. τ1 is the variance component representing the 
correlations resulting from the regional genotypes. K1 is also called the weighted linear kernel function, defined 
as K1 = ρGWWGT , where G denotes the n×m matrix of individual genotypes in the region to be analyzed, m 
is the number of SNPs, W is the m×m diagonal matrix of SNP weights. h2 follows N(0, τ2K2) , K2 is the n× n 
kernel function representing gene-environment interactions and K2 = (1−ρ)EGWWGTE , E is the n× n diagonal 
matrix of the environment  factor16. Vector b is assumed to be distributed as normal N(0, σ 2

b R) , where R is the 
n× n relationship (twice kinship) matrix, σ 2

b  is the variance component that models within-family correlations, 
ε is N(0, σ 2

e In) , and In is the n× n identity matrix, σ 2
e  is the variance component of random errors.

L e t  K = K1 + K2  ,  t h e n  K = K1 + K2 = ρGWWGt + (1−ρ)EGWWGtE  .  W h e n  H0:τ = 0  , 
V = σ 2

b R + σ 2
e In , where σ 2

b  , σ 2
e  , and α could be obtained by the Maximum likelihood  estimation12. Note that 

α = (XTV−1X)−1XTV−1y.
In the mixed effect model, τ is estimated by the restricted maximum likelihood (REML) estimation to limit the 

potential  bias12,13. The likelihood function is l = −0.5 ln |V | − 0.5 ln |XTV−1X| − 0.5(y − Xα̂)TV−1(y − Xα̂) . 
The  score  test  under  H0:τ = 0 i s  der ived  by  the  par t ia l  der ivat ive  of  τ  ,  where 
∂ l
∂τ

= −0.5tr(V−1 − V−1X(XTV−1X)−1XTV−1) ∂V
∂τ

+ 0.5(y − X
⌢
α)TV−1KV−1(y − X

⌢
α) . Detailed proofs are 

in Supplementary Materials. Following the Previous  works11–13,15,21–24, test statistics of the FGE-SKAT are based 
on the second term of the likelihood function.

In the proposed model, the quantitative trait follows a multivariate normal distribution with the vector of 
means Xα and the covariance matrix σ 2

b R+ τ1K1 + τ2K2 + σ 2
e In . Under the null hypothesis ( H0:τ1 = τ2 = 0 ), 

the covariance matrix becomes V = σ 2
b R + σ 2

e In , α = (XTV−1X)−1XTV−1y . The score statistics is 
Q = 0.5{(y− Xα)TV−1KV−1(y− Xα)}|φ,φ denotes the vector of maximum likelihood estimates of the param-
eters σ 2

b R , σ 2
e  and α . Based on the projection matrix, P = In − X(XTV−1X)−1XTV−1 , the score statistic using 

the projection matrix is Q = 0.5{yTPTV−1PKPTV−1Py}|φ , where Q follows 
∑

�ix
2
i  , � is the n× n eigenvalues 

of matrix 0.5V−1/2PKPTV−1/2 , x2i  is the chi-squared distribution with 1 degree of  freedom24, and p-value could 
be obtained by Kuonen’s  method25.

The Genetic Analysis Workshop 18 (GAW18) 26 provided the whole genome sequencing data that involved 
8,348,674 single nucleotide variations (SNVs), longitudinal phenotype data for hypertension, and related traits 
in 20 pedigrees. Raw data were processed, and the final sample included 835 individuals. Table 1 displays the 
descriptive statistics, and Table 2 presents the sample sizes of each family (N = 1389, not 835).

Fixed effects are age, sex, smoking, and medications for blood pressure controls (BPMEDS), where SNPs and 
familial structures are random effects. Dependent variables include systolic (SBP) and diastolic blood pressure 
(DBP). According to the Shapiro–Wilk normality test, p-values for DBP and SBP are 2.2× 10−16 and 1.35× 10−5 , 
respectively. Hence, Blom’s  transformation27 was applied before the analysis.

The linear mixed effect model for FFBSKAT is

The sample size n is 835. h is a random effect ~ N(0, τK) . K = GWWGT , where Gn×m represents every analysis 
block, and the number of SNVs "m" is 20. Wm×m is the weights for SNVs. b is a random effect ~ N(0, σ 2

b Rn×n) , 
where R is kinship correlations. This model was proposed by Svishcheva GR et al. 12.

The newly proposed mixed effect model for FGE-SKAT is:

yi = β0 + βageagei + βsexsexi + βBPMEDSBPMEDSi + βsmokesmokei + hi + bi ,
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G, W, and b are identical to that of the FFBSKAT, where h1 and h2 are random effects, h1 ~ N(0, τ1K1) with 
K1 = ρGWWGT , h2 ~ N(0, τ2K2) with K2 = (1−ρ)EGWWGTE , En×n is environmental factors. Here denotes 
smoking status. Let K = K1 + K2 which is similar to the "rareGE" package by Han  Chen13. ρ = 0, 0.1, 0.2, · · · , 0.9, 1 
(11 values). Since there are 834,030 sliding windows examined, the Bonferroni correction was applied to ensure 
the most conservative conclusions to avoid the multiple testing issue.

Although the default of the FGE-SKAT software examines only 11 points ( ρ = 0 to 1 by 0.1), results could 
reveal the patterns of the p-values with respect to the ρ′

s . If running time is not an issue, the user could adopt 
more points of ρ′

s in the FGE-SKAT software, such as ρ = 0 to 1 by 0.01, and the implementation is effortless. In 
machine learnings and artificial neural networks, the grid search for the optimal hyper-parameters using tenfold 
cross-validations is a common and powerful  technique28,29. A well-known regularized regression method, the 
elastic  net30, is a convex combination of the  ridge31 and  lasso32 regressions. The size of the respective penalty terms 
is tuned via cross-validations to find the model’s best fit. Regardless of the number of scenarios fitted to find the 
optimal combination, the searching procedure does not adjust for the multiple testing. The elastic net’s meth-
odology concept is similar to the FGE-SKAT that combines the FFBSKAT and rareGE via the hyper-parameter 
ρ . Since the optimal ρ follows the same strategy, Bonferroni’s correction should not depend on the number of 
grids used to find the optimal ρ . Instead, we adjust for the two joint tests in the FGE-SKAT using two times the 
Kuonen’s method p-value. Finally, the simulation studies demonstrated that the type-I error of the FGE-SKAT is 
valid under the significance levels 5% and 1%. Therefore, the adjusted minimum p-value was our decision theory.

yi = β0 + βageagei + βsexsexi + βBPMEDSBPMEDSi + βsmokesmokei + h1i + h2i + bi .

Table 1.  Descriptive Statistics of phenotype data.

Variable Exam 1 Exam 2 Exam 3 Exam 6

N 809 578 594 231

Year of exam 1992–1996 1997–2000 1998–2006 2009–2011

Mean age at exam (range) 39.4 (16–94) 42.6 (17–97) 46.5 (18–95) 50.9 (30–81)

Mean SBP (range) 122 (80–216) 125 (90–211) 125 (76–220) 128 (93–233)

Mean DBP (range) 71 (40–123) 72 (43–115) 71 (32–108) 78 (46–126)

Antihypertensive medication (%) 10.05 19.37 28.76 43.67

Hypertension (%) 18.00 29.58 36.58 52.38

Smoking status (%) 22.79 15.92 18.86 11.26

Table 2.  The sample size of each family by sex.

Pedigree number Sex Individual Pedigree number Sex Individual

2
Female 53

107 14
Female 30

60
Male 54 Male 30

3
Female 46

98 15
Female 24

57
Male 52 Male 33

4
Female 46

97 16
Female 32

59
Male 51 Male 27

5
Female 48

91 17
Female 28

57
Male 43 Male 29

6
Female 44

88 20
Female 26

51
Male 44 Male 25

7
Female 37

89 21
Female 22

50
Male 52 Male 28

8
Female 38

84 23
Female 18

46
Male 46 Male 28

9
Female 45

81 25
Female 21

44
Male 36 Male 23

10
Female 41

83 27
Female 24

44
Male 42 Male 20

11
Female 39

76 47
Female 11

27
Male 37 Male 16

N = 1389
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We conducted a permutation study with one thousand repetitions to obtain the empirical Type-I errors to 
ensure the validity of the FGE-SKAT. When the phenotypes are randomly permuted without disturbing the 
genetic components and the family structure, this procedure generated the null distribution. In other words, 
the phenotypes independent of the set of genetic predictors and other covariates. We arbitrarily selected the first 
50 SNVs on chromosomes 1, 3, and 5 for permutations from the GAW18 data. As a result, there are four sliding 
windows for each chromosome. Permutation studies evaluated both 5% and 1% nominal levels.

Regarding the power study, we choose the first 50 SNVs on chromosome 5 for simulations and randomly 
picked the 16th SNV to generate the SBP. The name of the SNV is X5_13329, and we assumed the recessive 
disease model to simulate the trait. Hence, the SBP would be elevated if the genotype of X5_13329 is 2, and the 
SBP would be normal if the genotype is 0 or 1. The environmental effect is the smoking status (yes vs. no). In this 
way, the first and the second sliding windows contain the genetic effect. However, the third and fourth sliding 
windows do not cover the main genetic effect but have linkage disequilibrium (LD). We examined four scenarios 
for each disease model in the FFBSKAT and FGE-SKAT with one thousand repetitions. The first scenario is the 
pure genetic effect without the smoking effect on the trait, where we expect that the FFBSKAT and FGE-SKAT 
should demonstrate similar statistical power. In the second scenario, we want to ensure that the FGE-SKAT 
would not detect the wrong environmental effect when the genetic effect is absent. Thus, the SBP only depends 
on the smoking variable but not the SNV. In the third scenario, we want to show that the FGESKAT could 
discover gene-environment interactions, but the FFBSKAT failed in this situation. Therefore, only the SNV by 
smoking interaction contributes to the SBP variations. Finally, we simulated a weaker interaction effect with 
some environmental and genetic effects to show dose–response in power evaluations such that we could have 
more confidence in the performance of the new strategy.

Results
We summarize the permutation results in Table 3, and the first column is the genetic disease model used in 
the FGE-SKAT software. Among the three chromosome results noted in the second column, the two methods 
demonstrate valid Type-I errors for all sliding windows well under the nominal level threshold of 0.05 or 0.01. 
Relative comparisons were not consistent since the FGE-SKAT may be randomly higher or lower than that of 
the FFBSKAT.

Table 4 shows the results of the power study. The first column is the genetic disease model used in the FGE-
SKAT software. The second column indicates the four mean SBPs among non-smokers without the SNV, non-
smokers with the SNV, smokers without the SNV, and smokers with the SNV. The standard deviation is 10 for the 
four groups. The first scenario (120,180,120,180) means that the recessive disease model of SNV (X5_13329 = 2) 
contributes to the elevated SBP, but the SBP is not affected by the smoking status. Regardless of the disease model 
used in the FGE-SKAT software, the FFBSKAT and the FGE-SKAT showed similar statistical power.

The second scenario (120,120,180,180) means that the SBP is higher, about 180 only when the smoking effect 
is present, but this value is not affected by the SNV. Both methods have valid results since the chance of detecting 
such erroneous information is less than 5%.

The third scenario (120,120,120,180) means that the mean SBP could be 180, higher than the other three 
groups only when the SNV by smoking interaction effect is present. The FGE-SKAT demonstrated much superior 
power to the FFBSKAT. This phenomenon explains the need for our new approach in genetic research.

The fourth scenario (120,120,150,180) has a weaker interaction effect and an extra genetic effect than the third 
scenario. Therefore, the FFBSKAT has small power but inferior to the FGE-SKAT. Simultaneously, we observed 
the dose–response effect since the FGE-SKAT has smaller power than itself in the third scenario.

When the disease model of the FGE-SKAT is correctly specified in the analysis, the power is almost 100%, 
and the relative comparisons are not clear. Therefore, we added additional four scenarios at the bottom of Table 5 
when the elevation of SBP is 140 but not 180. The results revealed similar patterns, which further confirms the 
superior performance of the FGE-SKAT even when the genetic or interaction effect is much weaker.

After the validity and performance of the FGE-SKAT are confirmed, this approach is applied to the GAW18 
data. Results of GWAS are displayed in Fig. 1. The Manhattan plots of normalized DBP revealed that all p-values 
in a scale of –log10 are lower than the red line, indicating that all p-values are over 5.995× 10−8 , which is adjusted 
for the Bonferroni’s correction with 834,030 sliding windows using α = 0.05( 0.05

834030 = 5.995× 10−8 ). Therefore, 

Table 3.  Permutation studies for Type-I errors. The first column, "Alpha" represents the nominal significance 
level and the second column, "Chr." represents the chromosome number.

Alpha Chr

Window 1 Window 2 Window 3 Window 4

FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT

0.05 1 0.056 0.045 0.056 0.054 0.044 0.054 0.048 0.052

0.05 3 0.045 0.048 0.054 0.049 0.046 0.054 0.044 0.0510

0.05 5 0.032 0.044 0.034 0.045 0.04 0.053 0.041 0.044

0.01 1 0.012 0.01 0.009 0.01 0.006 0.009 0.003 0.006

0.01 3 0.007 0.009 0.009 0.01 0.011 0.014 0.011 0.013

0.01 5 0.009 0.01 0.006 0.009 0.01 0.012 0.007 0.011
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Table 4.  Simulations for statistical power. The four numbers listed in the scenarios column are the four means 
of the normally distributed SBP with a standard deviation of 10 for four groups (non-smokers without the 
SNV, non-smokers with the SNV, smokers without the SNV, and smokers with the SNV).

Model Scenario

Window 1 Window 2 Window 3 Window 4

FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT FFBSKAT FGE-SKAT

Dom 120,180,120,180 0.14 0.03 0.624 0.295 0.999 0.992 0.985 0.92

Dom 120,120,180,180 0.049 0.053 0.05 0.046 0.054 0.056 0.05 0.051

Dom 120,120,120,180 0.027 0.367 0.025 0.462 0.013 0.172 0.008 0.06

Dom 120,120,150,180 0.057 0.187 0.061 0.189 0.033 0.078 0.025 0.046

Add 120,180,120,180 0.151 0.036 0.617 0.287 0.996 0.992 0.98 0.913

Add 120,120,180,180 0.054 0.048 0.05 0.047 0.04 0.034 0.043 0.042

Add 120,120,120,180 0.018 0.341 0.02 0.461 0.006 0.178 0.006 0.049

Add 120,120,150,180 0.041 0.191 0.035 0.188 0.023 0.066 0.021 0.045

Rec 120,180,120,180 1 1 1 1 0.019 1 0.019 1

Rec 120,120,180,180 0.056 0.048 0.05 0.05 0.049 0.047 0.049 0.045

Rec 120,120,120,180 0.99 1 1 1 0.005 1 0.005 1

Rec 120,120,150,180 0.746 1 1 1 0.022 1 0.022 1

Rec 120,140,120,140 0.999 0.999 1 1 0.059 0.989 0.059 0.988

Rec 120,120,140,140 0.036 0.038 0.033 0.037 0.037 0.041 0.037 0.04

Rec 120,120,120,140 0.458 0.964 0.999 1 0.028 0.961 0.028 0.959

Rec 120,120,130,140 0.16 0.0457 0.721 0.999 0.04 0.0471 0.04 0.0469

Table 5.  The most significant genes identified by both methods for normalized DBP.

Chromosome

FBSKAT FGE-SKAT

Gene_Seq UniGene Gene_Seq UniGene

Chr3 LOC105374165 0 LOC105374165 0

Chr5 – – 0 0

Chr7 CACNA2D1 CACNA2D1 CACNA2D1 CACNA2D1

Chr9 – – 0 0

Chr13 – – 0 0

Figure 1.  Manhattan plot for normalized DBP.
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the smallest p-values in Fig. 1 were selected to be compared with the analyses using the original DBP, but the 
results were similar and shown in Online Appendix A.

In Table 5, consistent results were found on chromosomes 3, 5, 7, 9, and 11. In the upper part of Table 6, we 
identified two segments on chromosome 7 from 18,473,528 to 18,478,318 base pairs and 18,475,056 to 18,479,387 
base pairs.

In Fig. 2, results of the normalized SBP also suggest non-significant p-values since all p-values in a scale of 
– log10 are lower than the red line. The FGE-SKAT yielded more signals in many genetic regions than that of 
the FFBSKAT since more points are over 4 in the right panel. Among the smallest p-values, 10 of the segments 
are further examined, where both FFBSKAT and FGE-SKAT identified the same regions. Chromosome 7 has 

Table 6.  Top 10 smallest p-values for normalized DBP and SBP.

CHR Trait Genomic region FFBSKAT P-value FGE-SKAT P-value

5 DBP 50,274,970–50,279,007 3.79246E−06 3.79246E−06

5 DBP 50,318,550–50,318,624 1.15102E−06 1.15102E−06

5 DBP 50,319,835–50,323,204 8.42894E−06 8.42894E−06

7 DBP 18,473,528–18,478,318 8.49578E−06 8.49578E−06

7 DBP 18,475,056–18,479,387 5.29517E−06 5.29517E−06

7 DBP 132,160,189–132,163,619 9.36002E−06 9.36002E−06

9 DBP 133,316,470–133,319,343 9.65182E−06 9.65182E−06

11 DBP 77,592,371–77,595,131 5.82584E−06 5.82584E−06

11 DBP 77,593,756–77,596,971 4.43435E−06 4.43435E−06

11 DBP 82,432,685–82,435,840 6.19042E−06 6.19042E−06

7 SBP 139,953,680–139,955,405 1.82164E−07 1.66733E−07

7 SBP 139,954,850–139,956,291 9.09435E−08 9.09435E−08

7 SBP 139,959,269–139,961,904 1.83966E−07 1.82164E−07

7 SBP 142,258,881–142,262,340 7.67391E−07 7.67391E−07

7 SBP 143,609,266–143,611,641 6.65998E−07 6.65998E−07

7 SBP 145,963,864–145,967,584 1.87147E−07 1.83966E−07

7 SBP 146,913,363–146,918,656 5.85388E−07 5.85388E−07

7 SBP 146,916,497–146,920,752 2.1425E−07 2.1425E−07

7 SBP 146,918,731–146,922,053 2.5671E−07 2.5671E−07

7 SBP 148,901,779–148,904,624 4.85975E−07 4.85975E−07

Figure 2.  Manhattan plot for normalized SBP.
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a peak with the smallest p-value in the lower part of Table 4. Even though the p-values do not exceed Bonfer-
roni’s threshold, the associations are indicative. Note that the results of the original SBP are similar and shown 
in Online Appendix B.

Discussions
The FGE-SKAT is the first proposed in the family-based SKAT method to detect genetic environment interactions 
based on rare variations. This research also provides a free R function that facilitates the implementation. The 
manual clearly describes the usage of FGE-SKAT with similar settings in the FFBSKAT. An automatic pipeline 
using the R code with an illustrative example facilitates the implementation of this new approach.

In the application of GAW18 data, FGE-SKAT identified the most significant genetic region with interaction 
signals. Note that all analyses were based on Blom’s transformation of SBP or DBP. However, analyses were also 
conducted for the original BP values. Although the p-values were much more significant than the normalized 
results, the regions discovered were very similar and hence not shown. Besides, using normalized outcomes 
avoids concerns regarding the validity of analyses.

The FGE-SKAT results were based on the smallest p-value among 11 points of ρ′s . In many regions, the 
p-values of FFBSKAT and FGE-SKAT are identical. This phenomenon suggests that interactions are absent with 
ρ = 1 . It is worth noting that the most significant results are mostly seen when ρ = 0or1 . Results of ρ = 0 are 
proof that interactions alone could enhance the chance of discovering significant regions.

In this research, the sliding window is chosen as 20 SNVs, with 10 SNVs shifted for the next window. If more 
biological information is available, the parameters could be modified to increase statistical  power12. The user 
could easily change the settings of sliding windows in the FGE-SKAT software. Besides, this research uses SKAT 
settings with minor allele frequency follows Beta distribution (1,25). This method’s kernel function is linear, but 
researchers could also adopt polynomial or Identity of State (IBS) for the kernel functions in the FGE-SKAT 
software.

Since mixed models are used in family-based studies as well as in studies with unrelated samples (Kinship 
replaced by GRM), the FGE-SKAT has the potential to be extended using other strategies such as efficiently con-
trolling for case–control imbalance and sample relatedness in large-scale genetic association  studies33 (SAIGE: 
https:// github. com/ weizh ouUMI CH/ SAIGE).

This work is based on samples from the Genetic Analysis Workshop 18 (GAW18). The samples were longi-
tudinal, and the majority of participants had three measurements collected at approximately 5-year intervals. 
Datasets included systolic and diastolic blood pressure measurements from a human whole-genome sequencing 
(WGS) study. Thus, this research is dealing with human data.

Evaluations of robustness for this approach against gene-environment correlation and miss-specified envi-
ronmental main effects require a tremendous effort. It is cumbersome research when several advanced methods 
are compared under more complicated scenarios. On the other hand, this issue is an excellent topic for future 
research to examine further such impact for FFBSKAT, rareGE, FGE-SKAT, and other existing methods.

The FGE-SKAT deals with one environmental factor. If there are multiple factors, one could apply the FGE-
SKAT repeatedly and control for multiple testing. Extending this new strategy to accommodate multiple factors 
further is also a promising future research plan.

Although the deep learning  model34 has demonstrated extraordinary prediction abilities, this approach 
requires tons of training samples with available features and outcomes. Besides, the computational burden is 
high. If the quality of training samples is not guaranteed, the model performance may not be satisfactory. In 
contrast, our statistical approach does not require these assumptions and is ready to use with a satisfying speed.
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