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Prediction of single‑cell 
mechanisms for disease 
progression in hypertrophic 
remodelling by a trans‑omics 
approach
Momoko Hamano1, Seitaro Nomura2,3, Midori Iida1, Issei Komuro2 & Yoshihiro Yamanishi1*

Heart failure is a heterogeneous disease with multiple risk factors and various pathophysiological 
types, which makes it difficult to understand the molecular mechanisms involved. In this study, we 
proposed a trans‑omics approach for predicting molecular pathological mechanisms of heart failure 
and identifying marker genes to distinguish heterogeneous phenotypes, by integrating multiple omics 
data including single‑cell RNA‑seq, ChIP‑seq, and gene interactome data. We detected a significant 
increase in the expression level of natriuretic peptide A (Nppa), after stress loading with transverse 
aortic constriction (TAC), and showed that cardiomyocytes with high Nppa expression displayed 
specific gene expression patterns. Multiple NADH ubiquinone complex family, which are associated 
with the mitochondrial electron transport system, were negatively correlated with Nppa expression 
during the early stages of cardiac hypertrophy. Large‑scale ChIP‑seq data analysis showed that Nkx2‑5 
and Gtf2b were transcription factors characteristic of high‑Nppa-expressing cardiomyocytes. Nppa 
expression levels may, therefore, represent a useful diagnostic marker for heart failure.

Heart failure is one of the most serious problems associated with cardiovascular diseases, as reflected by an 
increase in the number of affected  patients1. Cardiac hypertrophy develops in response to hemodynamic overload 
to maintain cardiac function; however, this adaptive process results in cardiac dysfunction over time, manifesting 
as heart  failure2,3. Heart failure is a heterogeneous disease with multiple risk factors and various pathophysiologi-
cal types, which makes it difficult to identify and understand the molecular mechanisms  involved4,5.

An emerging approach for exploring the heterogeneity of diseases is single-cell RNA-sequencing (RNA-
seq), which has recently been applied to medical research on various diseases. Recent studies reported that 
cardiomyocytes demonstrate heterogeneous molecular mechanisms of heart failure. For example, the activation 
of mitochondrial translation/metabolism-related genes are correlated with cell size and linked to extracellular 
signal-related kinase ERK1/2 and nuclear respiratory factor NRF1/2 transcriptional networks during the process 
of heart  failure6. Cardiac hypertrophy has also been reported to occur with spatial and temporal heterogeneity 
in myosin heavy chain β (Myh7) expression in cardiomyocytes after pressure  overload7. These studies suggested 
that cardiomyocyte gene expression at the single-cell level, can influence cardiac phenotypes and therefore car-
diac functions. Elucidating the molecular mechanisms of heart failure by revealing conserved gene expression 
programs related to cardiac function at the single-cell level is expected to improve the accurate assessment and 
prediction of medical treatment responses of cardiomyocytes and progression of cardiac pathology.

The identification of the molecular signatures that underlie the heterogeneity of heart failure is a challenging 
issue faced by precision medicine. Molecular signatures play important roles in the choice of optimal treatment 
regimes, based on a patient’s genetic or biochemical background. For example, blood biochemical B-natriuretic 
peptide (BNP) and N-terminal (NT)-proBNP have been widely used as biomarkers of heart failure for diagno-
sis and  prognosis8,9, however, it is very difficult to characterize the heterogeneity of heart failure using existing 
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biomarkers. Histology can more accurately assess the variety of pathophysiological processes compared with 
blood biochemical examination, and facilitating the identification of spatial heterogeneity within the  heart10. 
The analysis of large-scale single-cell omics data for heart failure is expected to reveal the molecular pathological 
mechanisms associated with the heterogeneity at the single-cell level. The data-driven extraction of molecular 
signatures that may explain the heterogeneity of heart failure is, therefore, required.

In this study, we proposed a trans-omics approach for predicting molecular mechanisms for disease pro-
gression in heart failure at the single cell level, and identifying marker genes that explain the heterogeneity of 
heart failure, by integrating multiple omics data including single-cell RNA-seq, chromatin immunoprecipitation 
sequencing (ChIP-seq), and gene interactome data. Most biological functions are involved in various molecular 
interaction networks such as metabolic pathways, signalling pathways, and gene regulatory networks. Biological 
phenomena can be observed at multiple omics layers, including transcriptome, regulome, and interactome. Thus, 
we attempted to perform an integrative analysis of heart failure-related transcriptome data combined with other 
omics data in a trans-omics framework.

Results
Overview of the proposed trans‑omics approach. Figure 1 shows an overview of our proposed trans-
omics approach. First, we acquired single-cardiomyocyte RNA-seq data, from both mice that underwent trans-
verse aortic constriction (TAC) and control mice that underwent a sham operation, using cardiomyocytes col-
lected 3 days and 1, 2, 4 and 8 weeks after TAC, to identify disease-related genes, which we called marker genes, 
based on a time-series analysis of the transcriptome data at the single-cell level (Fig. 1a). Next, we estimated 
the central biological functions of cardiomyocytes characterized by marker genes, using network analysis of the 
interactome data. Finally, we detected the transcription factors characteristic of those cardiomyocytes character-
ized by marker genes by performing large-scale analysis of publicly available ChIP-seq data, reflecting the regu-
lome of transcription factors (Fig. 1b). The detailed procedures can be found in the Methods section.

Detection of genes with expression change in a single cardiomyocyte in the process of heart 
failure. To detect the genes with changes across the time points for the sham group and at 3 days and 1, 2, 4 
and 8 weeks after TAC, we performed analysis of variance (ANOVA) on time-series RNA-seq data. This analysis 
detected 3135 genes with significant change of expression level among the time points.

Next, we performed hierarchical clustering on the 3135 genes with expression change, and identified six dif-
ferent clusters with distinct expression patterns. Figure 2a shows a dendrogram of the hierarchical clustering of 
gene expression patterns for the 3135 genes, and the average gene expression pattern in each of six clusters. For 
the cluster 1 genes, the average expression level was promptly upregulated at 3 days after TAC and maintained at 
a high level compared to sham until 8 weeks. Thus, we focused on cluster 1 genes because they rapidly responded 
to stress and were suspected of being associated with heart failure  deterioration11,12. To examine the biological 
functions of all genes in cluster 1, we additionally performed an enrichment analysis using Gene Ontology (GO) 
terms. The list of the associated GO terms of the genes in cluster 1 is shown in Supplementary Table 1.

To identify the most highly upregulated genes, we calculated the fold change of gene expression of cluster 1 
genes against that in the sham group at day 3 after TAC. Figure 2b shows the top 10 genes in cluster 1 in terms 
of the largest fold expression change. Among the cluster 1 genes, fold change of the Nppa expression level was 
the highest, at 6355-fold, among the genes at day 3 after TAC. Therefore, we focused on Nppa and investigated 
its expression pattern in detail.

Nppa expression level varied among cardiomyocytes after TAC . We examined the Nppa upregula-
tion at the single cell level and compared it with the expression of Nppb, its  paralog13. Figure 3a shows violin plots 
for the distributions of the Nppa and Nppb expression levels at time points. Figure 3b shows dot plots for the 
distributions of the Nppa and Nppb expression levels at time points. From these figures, it was observed that that 
the Nppa expression level was upregulated at day 3 and then maintained at a high level until 8 weeks. Notably, 
the Nppa expression level varied among cardiomyocytes at each time point, while the Nppb expression level did 
not. This result suggests that the upregulation of Nppa exhibits cell-to-cell heterogeneity after TAC.

Cardiomyocytes with high Nppa expression had specific gene expression patterns compared 
with sham‑group cardiomyocytes. To visualize cell-to-cell variations, we performed t-distributed sto-
chastic neighbour embedding (t-SNE) for dimension reduction of gene expression profiles. Figure 4a shows a 
plot of the t-SNE coordinates for all cardiomyocytes, where colors represent sham-operation and TAC-treat-
ment at different time points. Sham-operated cardiomyocytes were densely clustered together. In contrast, TAC-
treated cardiomyocytes were dispersed regardless of time point. The results suggest that sham-operated cardio-
myocytes have similar gene expression patterns, while TAC-treated cardiomyocytes have high variability in gene 
expression patterns and in a time-independent manner.

We next investigated the gene expression patterns of cardiomyocytes with high expression of Nppa versus low 
Nppa expression, in the tSNE map. Figure 4b shows the distribution of cardiomyocytes based on the expression 
level of Nppa. One hundred forty-two cardiomyocytes with high expression of Nppa were separately clustered 
from those with low expression. Cardiomyocytes with high expression of Nppa (colored in red in Fig. 3b) were 
located furthest away from sham-operated cardiomyocytes (colored in orange in Fig. 4a). Moreover, cardio-
myocytes with high Nppa expression were densely distributed, whereas those with high Nppb expression were 
not, as shown in Fig. 4c. These results suggest that cardiomyocytes with high Nppa expression have similar gene 
expression patterns and they have different gene expression patterns from sham-operated cardiomyocytes.
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Several molecules have been proposed as cardiac stress response markers, so we compared the distributions of 
cardiomyocytes with high expression of Nppa with those of other stress response markers such as Atf3 (Fig. 4d)14, 
Ctgf (Fig. 4e)15 and Tgfb2 (Fig. 4f)16. Unlike Nppa, cardiomyocytes with high expression of Atf3, Ctgf and Tgfb2 

Figure 1.  Overview of the analysis of single-cardiomyocyte transcriptome data by a trans-omics approach. 
(a) Single-cell RNA-seq data were acquired from mice exposed to pressure overload by transverse aortic 
constriction (TAC) or sham operation. Day 3 (D3), week 1 (W1), week 2 (W2), week 4 (W4) and week 8 (W8). 
Marker genes were identified by time-series gene expression profiles at the single-cell level. (b) Biological 
functions of the marker genes are estimated by a network analysis of interactome data, and regulators of the 
marker genes are detected by a large-scale analysis of ChIP-seq data.
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were not densely distributed. These results suggest that only cardiomyocytes with high Nppa expression exhibit 
similar gene expression patterns, in contrast to sham-operated cardiomyocytes.

Cardiomyocytes with high and low Nppa expression differed in terms of differentially 
expressed genes and their biological functions. To understand the differences between cardiomyo-
cytes with high and low Nppa expression, we divided cardiomyocytes into two subgroups by taking the average 
Nppa expression level as a threshold. The numbers of cardiomyocytes with high Nppa expression in which Nppa 
expression was higher than average on day 3 and weeks 1, 2, 4 and 8 were 19, 36, 27, 28 and 32, respectively, while 
the corresponding numbers of cardiomyocytes with low Nppa expression in which Nppa expression was lower 
than the average were 50, 47, 55, 45 and 55, respectively (Supplementary Fig. 1).

For both subgroups, we calculated the average gene expression level of cardiomyocytes at each time point, 
and then performed hierarchical clustering based on the average gene expression levels over time. Figure 5a 

Figure 2.  Identification of genes with expression change in single cardiomyocytes in the process of heart failure. 
(a) The top panel shows a dendrogram of hierarchical clustering of genes with a temporal change of expression 
identified by ANOVA. Each of the bottom panels shows the average gene expression levels in each of the six 
clusters. The horizontal axis of each panel indicates the time points (sham, D3, W1, W2, W4, W8) and the 
vertical axis indicates the average of gene expression levels. (b) Bar plot of top 10 genes with the greatest fold 
change among the upregulated genes in cluster 1.
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shows a dendrogram of the hierarchical clustering of the subgroups at different time points. It was observed 
that cardiomyocyte subgroups with high and low Nppa expression were clustered furthest apart, implying that 
cardiomyocytes with high and low Nppa expression differed in terms of gene expression patterns.

We then compared TAC-induced and sham-operated cardiomyocytes to identify differentially expressed 
genes (DEGs) by applying unpaired two-tailed Student’s t-test with |log2Fold Change|≥ 1. Figure 5b shows the 
resulting numbers of DEGs in cardiomyocytes with high and low Nppa expression and those of common genes 
in cardiomyocytes with both high and low Nppa expression at each time point. “Common genes” indicate DEGs 
present in both high-Nppa expressing cardiomyocytes and low-Nppa expressing cardiomyocytes. It was observed 
that DEGs in cardiomyocytes with high Nppa expression were largely different from those in cardiomyocytes 
with low Nppa expression.

We further investigated the differences in biological functions of DEGs between cardiomyocytes with high 
and low Nppa expression by performing gene set enrichment analysis (GSEA). Supplementary Table 1 shows the 
enriched Gene Ontology (GO) categories associated with genes among high-Nppa-expressing cardiomyocytes 
compared with those with low expression. A variety of GO terms for biological functions were detected in Nppa 
high-expressing cardiomyocytes compared to Nppa low-expressing cardiomyocytes. For example, we detected 
the GO terms “Regulation of transcription elongation from RNA polymerase II promoter’ and ‘DNA packing’ 

Figure 3.  Nppa and Nppb expression levels in single cardiomyocytes and non-cardiomyocytes after TAC. (a) 
Violin plot on the left shows the distribution of Nppa expression levels at each time point. Violin plot on the 
right shows the distribution of Nppb expression levels at each time point. (b) Dot plot on the left shows the 
distribution of Nppa expression levels at each time point. Dot plot on the right shows the distribution of Nppb 
expression levels at each time point.
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Figure 4.  Distribution of cell-to-cell transcriptional variation in single cardiomyocytes. (a) Scatter-plot shows t-distributed stochastic 
neighbour embedding (t-SNE) visualization of cardiomyocytes. Cells represented by dots are coloured to reflect the time points when 
they were extracted. (b–f) Scatter-plots show t-SNE visualization of cardiomyocytes. Cells represented by dots are coloured to reflect 
the expression levels of Nppa (b), Nppb (c), Atf3 (d), Ctgf (e) and Tgfb2 (f). Red dots indicate cardiomyocytes in which the expression 
levels of Nppa (b), Nppb (c), Atf3 (d), Ctgf (e) and Tgfb2 (f) were higher than average, while blue dots indicate those in which the 
expression levels of Nppa (b), Nppb (c), Atf3 (d), Ctgf (e) and Tgfb2 (f) were lower than the average.
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at day 3 after TAC, implying that transcriptional regulation is promptly activated in cardiomyocytes with high 
Nppa expression. These results suggest that cardiomyocytes with high and low Nppa expression are different in 
terms of biological functions of DEGs.

Nppa upregulation correlates with Hdac2 induction. We examined the pathway upstream of Nppa 
induction at day 3 after TAC. It was reported that Nppa transcription was upregulated in the heart by histone 
deacetylase (Hdac) 2 activity under loading  stress17. To confirm the activity of Hdac2 at day 3 after TAC at the 
single-cell level, we investigated the expression levels of the following Hdac class I members: Hdac1, Hdac2, 
Hdac3 and Hdac8. Figure  6 shows the distributions of expression levels of Nppa and Hdac class I members 
in cardiomyocytes. It was observed that the expression level of Hdac2 was significantly upregulated in Nppa 
high-expressing groups compared with that in low-expressing group. On the other hand, the expression levels 
of Hdac1, Hdac3 and were not significantly upregulated. The expression of Hdac8 was not observed in most 
cardiomyocytes. These results suggest that the initial response to TAC of Nppa induction is regulated by Hdac2 
at the single-cell level.

Figure 5.  The difference of gene expression patterns in cardiomyocytes with high and low Nppa expression. (a) 
Hierarchical clustering of both genes and samples based on their gene expression profiles in the gene expression 
matrix. Cardiomyocytes were divided into two subgroups based on Nppa expression level; high-Nppa group 
and low-Nppa group. The average gene expression levels were calculated for samples from each time point in 
the high-Nppa group and low-Nppa group. (b) Bar graph shows the number of DEGs detected in high-Nppa, 
low-Nppa and common group, compared with sham group. “Common genes” indicate DEGs present in both 
high-Nppa expressing cardiomyocytes and low-Nppa expressing cardiomyocytes.
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Figure 6.  Nppa expression and Hdac class I expression in cardiomyocytes. (a–e) Box plots show the expression 
levels of Nppa (a), Hdac1 (b), Hdac2 (c), Hdac3 (d) and Hdac8 (e) at day 3 after TAC. Blue columns show the 
expression levels in cardiomyocytes with low Nppa expression and red columns show the expression levels in 
cardiomyocytes with high Nppa expression.
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Biological functions of cardiomyocytes with high Nppa expression. To detect the genes correlated 
with Nppa upregulation in the initial stage of heart failure, we calculated Pearson’s correlation coefficients of 
expression of Nppa and other genes at day 3 after TAC. Figure 7a shows the list of genes whose expression was 
positively and negatively correlated with that of Nppa. The genes positively correlated with Nppa are considered 
upregulated in Nppa high-expressing cardiomyocytes, while the genes negatively correlated with Nppa are con-
sidered downregulated.

Next, we performed GO enrichment analysis on the positively and negatively correlated genes in order to 
clarify the alteration of biological function in cardiomyocytes with high Nppa expression after TAC. Table 1a 
shows a list of the top 10 GO terms for the genes that were positively correlated with Nppa. The corresponding 
GO terms included ‘microtubule-based process’ and ‘actin cytoskeleton organization’, which are associated with 
the composition of cellular organelles in the sarcomere system that characterize the function of cardiomyocytes 

Figure 7.  Detection of genes correlated with Nppa and visualization of gene–gene association network 
involving genes negatively correlated with Nppa. (a) Correlation coefficient between the expression levels 
of Nppa and those of other genes at day 3 after TAC in cardiomyocytes. (b) The network shows a graphical 
representation of gene–gene associations involving 500 negatively correlated genes, where circles indicate genes. 
Genes involved in oxidative phosphorylation are represented by yellow nodes.
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and muscle. Table 1b shows a list of the top 10 GO terms for the genes that were negatively correlated with Nppa. 
The corresponding GO terms included ‘ATP biosynthetic process’, ‘ATP metabolic process’ and ‘oxidation–reduc-
tion process’, which are associated with mitochondrial function. These results suggest that, in cardiomyocytes 
with high Nppa expression, the composition of cellular organelles in the sarcomere system that characterize the 
function of cardiomyocytes and muscle are upregulated and mitochondrial function is downregulated.

Mitochondrial dysfunction is considered to be one of the principal mechanisms of heart failure via declining 
heart function caused by oxidative stress and reduction of ATP  synthesis18,19. In fact, multiple GO terms cor-
related with Nppa were associated with mitochondrial function, such as ‘oxidation–reduction process’ and ‘ATP 
biosynthetic process’ in this study. This suggests that mitochondrial dysfunction in cardiomyocytes with high 
Nppa expression may be involved in the pathophysiology of heart failure.

From the viewpoint of systems biology, we attempted to elucidate the overall biological systems by visual-
izing gene–gene association involving negatively correlated genes in cardiomyocytes with high Nppa expres-
sion. We then investigated whether the downregulation of mitochondrial function plays a significant role in 
downregulated biological functions in cardiomyocytes with high Nppa expression. We constructed a gene–gene 
association network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)20 based 
on negatively correlated genes with Nppa, and detected modular networks using  MCODE21 (see the Methods 
section for more details).

Figure 7b shows the resulting gene–gene association network involving genes whose expressions were nega-
tively correlated with Nppa, where the detected modules consisting of 61 genes are colored in yellow. The detected 
gene modules were involved in the oxidative phosphorylation pathway, and multiple members of the NADH 
ubiquinone complex family were densely located at the centre of the gene–gene association network. The results 
suggest that mitochondrial dysfunction plays a central role in the functions of cardiomyocytes with high Nppa 
expression and the related genes work in an interactive manner.

Nkx2‑5 and Gtf2b are predicted to be transcription factors regulating genes characteristic of 
cardiomyocytes with high Nppa expression. We further investigated the molecular mechanisms that 
regulate gene expression in cardiomyocytes with differential Nppa expression by identifying transcription fac-
tors (TFs) acting as master regulators of altered cardiomyocyte gene expression. We searched for TFs that were 
significantly associated with genes whose expression was correlated with Nppa based on large-scale ChIP-seq 
data acquired by ChIP-Atlas22 (see the “Methods” section for more details). Statistical significance was evaluated 
by two-tailed Fisher’s exact probability test (see he “Methods” section for more details).

Figure 8 shows ten high scoring TFs associated with genes negatively correlated with Nppa. The enrichment 
scores for NK-2 transcription factor related, locus 5 (Nkx2-5) and general transcription factor II B (Gtf2b) 

Table 1.  GO terms of genes correlated with Nppa. (a) List of GO terms of the genes whose expression patterns 
were positively correlated with that of Nppa. (b) List of GO terms of the genes whose expression patterns were 
negatively correlated with that of Nppa.

(a) Positively correlated genes

Category Term p-value

G0:0007017 microtubule-based process 6.76E−06

G0:0016310 phosphorylation 1.04E−05

G0:0030036 actin cytoskeleton organization 3.85E−05

G0:0007049 cell cycle 4.78E−05

G0:0001974 blood vessel remodeling 7.22E−05

G0:0007067 mitotic nuclear division 1.65E−04

G0:0098609 cell–cell adhesion 1.90E−04

G0:0016569 covalent chromatin modification 5.16E−04

G0:0006468 protein phosphorylation 6.08E−04

G0:0061025 membrane fusion 6.17E−04

(b) Negatively correlated genes

Category l Ferm p-value

G0:0055114 p xidation-reduction process 3.48E−30

G0:0006810 ransport 2.66E−11

G0:0015986 TP synthesis coupled proton transport 1.05E−09

G0:0006099 ricarboxylic acid cycle 1.44E−09

G0:0006754 TP biosynthetic process 3.06E−07

G0:0046034 TP metabolic process 8.99E−07

G0:0015992 proton transport 1.21E−06

G0:0008152 metabolic process 4.46E−06

G0:0006635 atty acid beta-oxidation 1.81E−05

G0:0006979 response to oxidative stress 2.51E−05
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were statistically significant, thus, Nkx2-5 and Gtf2b were identified as TFs regulating genes whose expression 
was negatively correlated with Nppa. In contrast, TFs regulating positively correlated genes were not detected. 
These results suggest that Nkx2-5 and Gtf2b are transcription factors characteristic of cardiomyocytes with high 
expression of Nppa.

Discussion
In this study, we investigated the molecular signatures of heart failure in response to TAC using single-cardiomy-
ocyte transcriptome data. By focusing on the significant induction of Nppa in single cardiomyocytes after stress 
loading, we identified potential molecular mechanisms behind the process of heart failure. Nppa expression level 
was notably induced by Hdac2 after stress loading, and exhibited cell-to-cell heterogeneity. We proposed that 
under the regulation of Nkx2-5 and Gtf2b, activation of components of muscle and mitochondrial dysfunction 
were induced in cardiomyocytes with high Nppa expression, resulting in heart failure by a trans-omics approach. 
Figure 9 shows an illustration of the mechanisms estimated by this study.

The novelty of this study is the observation that the expression levels of Nppa were variable among cardio-
myocytes after TAC and that the upregulation of Nppa was observed in a subset of cardiomyocytes (20–30%). 
Nppa, identified in this study, is a gene encoding atrial natriuretic peptide (ANP). ANP is a cardiac hormone that 
regulates salt–water balance and blood pressure by promoting renal sodium and water excretion and stimulating 
 vasodilation23,24. The Nppa gene is expressed primarily in the heart, where its expression level is higher in the 
atria than in the  ventricles23,25. In addition, Nppa, which has been reported as a stress response  marker23–25, was 
shown to be induced in pathological conditions such as cardiac  hypertrophy23–25, dilated  cardiomyopathy26 and 
heart  failure23–25. Previous studies also reported that Nppa expression is regulated by transcription factors such as 
 GATA427,28,  Klf417,28 and  Hdac229 in response to stress. Klf4 is a novel anti-hypertrophic transcriptional regula-
tor and mediates the HDAC inhibitor-induced prevention of cardiac hypertrophy and Nppa  upregulation17,30,31. 
However, regulatory mechanisms of Nppa induction at the single-cell level remain unknown. In this study, the 
expression level of Hdac2 was upregulated compared to sham group (Fig. 5). These results suggest that Hdac2 
activation is induced after TAC, resulting in the repression of Klf4 transcriptional response to stress and continu-
ous Nppa expression in the process of heart failure at the single-cell level.

This study clarified that Nppa expression was induced by TAC in a heterogeneous manner among single 
cardiomyocytes (Fig. 2a,b). The expression of myosin heavy chain β (Myh7), a representative fetal gene that is 
activated in response to hemodynamic overload through cardiac  hypertrophy32,33, was previously reported to be 
induced after TAC in a heterogeneous manner among single  cardiomyocytes7. Myh7-expressing cardiomyocytes 
were significantly more abundant in the middle layer of the heart, than in the inner or outer layer of the heart, 
at 2 weeks after TAC, while such spatial differences were not observed at 8 weeks after TAC. Myh7 expression 
were highly correlated with Nppa in  cardiomyocyte7, suggesting that Nppa-expressing cardiomyocytes were more 
abundant in the middle layer of the heart than in the inner or outer layer of the heart. Nppa is also considered 
as a fetal  gene34 and demonstrated heterogenous expression among cardiomyocytes. To clarify the molecular 
mechanism of heterogeneity of Nppa expression, we should investigate the correlation between the expression 
level of Nppa and spatial location of cardiomyocytes.

This study also found that cardiomyocytes with high Nppa expression demonstrated mitochondrial dysfunc-
tion associated with downregulation of NADH ubiquinone complex family (Fig. 6). Mitochondrial dysfunction 
is one of the principal mechanisms of heart failure because the heart is highly dependent on mitochondrial ATP 
production and the myocardium possesses the largest number of mitochondria of any  tissue18,19. Hdac class I 

Figure 8.  Prediction of transcription factors that regulate genes correlated with Nppa. High scoring 
transcription factors (TFs) for genes correlated with Nppa are shown. The horizontal axis in each panel indicates 
-log10P-values. TFs with statistical significance (P < 0.05) are represented by red bars, and TFs with non-
statistical significance (P > 0.05) are represented by blue bars.
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activation contributes to mitochondrial dysfunction in cardiomyocytes via regulating tumour necrosis factor-α 
(TNF-α), which impairs myocardial function by a variety of molecular mechanisms such as the production of 
reactive oxygen species (ROS) which induces mitochondrial  damage35. Mitochondrial dysfunction of the heart 
is correlated with the severity and prognosis of heart  failure18 suggesting that the measurement of biomarkers 
that evaluate mitochondrial dysfunction can be used to assess the progression and prognosis of heart failure. This 
study suggested that the evaluation of Nppa expression level from biopsy specimens may be useful to predict the 
prognosis of patients with heart failure. Our results suggest that Nppa upregulation correlates with mitochondrial 
dysfunction, but it is difficult to judge whether the relationship is direct or not. Fetal genes are downregulated 
during cardiac development, while they are upregulated in response to hemodynamic overload through cardiac 
hypertrophy and the progression of heart disease. It is known that the cardiomyocyte lose their functions and 
become immature during disease progression, and fetal genes play a critical role in the pathogenesis of heart fail-
ure. Mitochondrial dysfunction is one of the factors that characterize the metabolic failure of cardiomyocytes (i.e., 
myocardial immaturity). Based on these findings, Nppa upregulation and mitochondrial dysfunction are common 
indicators of "myocardial immaturity". This implies that Nppa up-regulation and mitochondrial dysfunction 
are biologically related. We would like to investigate the details of these biological findings in our future work.

Two famous biomarkers of heart failure, ANP and brain/B-type natriuretic peptide (BNP), are primarily 
produced by, and secreted from, heart tissue. Since plasma ANP and BNP concentrations, as well as expression, 
are elevated in response to increased body fluid volume and pressure load on the heart wall, these peptides are 
widely utilized as diagnostic biomarkers for evaluating heart  failure23,24,36. However, the validity of the measure-
ment of Nppa and Nppb expression level in biopsy specimens has not been verifyed. This study supposed that 
Nppb cannot explain the cell heterogeneity and implies that Nppa expression in cardiomyocytes can explain 
the heterogeneity of cardiomyocytes. We evaluated the expression level of NPPA histologically by using human 
myocardium tissue (Supplementary Fig. 2). The ISH results show that the expression of NPPA was significantly 
upregulated with heterogeneity in the heart of patients with heart failure in comparison with healthy subjects. As 
further evidence, Sergeeva and Christoffels, in a previous study of the expression of Nppa under stress loading 
in the heart, subjected the hypertrophied hearts of mice to  immunostaining37. These results demonstrated that 
Nppa was upregulated with heterogeneity in cardiac hypertrophy in mice. The results show that the expression of 
NPPA was significantly upregulated with heterogeneity in the heart of patients with heart failure in comparison 
with healthy subjects. Combining both the measurement of ANP or BNP blood concentration and the measure-
ment of biopsy Nppa expression levels, might improve the accuracy of predicting the pathological progression 
and prognosis of heart failure.

This study also revealed that genes correlated with Nppa were regulated by Gtf2b and Nkx2-5. Gtf2b, is 
involved in the formation of the RNA polymerase II preinitiation complex and aids in stimulating transcription 
initiation. It is therefore associated with transcription in the heart which is targeted by microRNAs in pressure-
induced cardiac  hypertrophy38. The homeodomain factor Nkx2-5 is a central regulator of cardiogenesis that 
specifies the spatial definition, formation, and maintenance of heart  structures39. Deletion or mutation of Nkx2-5 
results in pathological phenotypes such as congenital heart failure and  cardiomyopathy40–42. This study showed 

Figure 9.  A summary of the molecular mechanisms in the process of heart failure, as inferred by this study. 
Nppa expression level was notably induced by Hdac2 after stress loading, and exhibited cell-to-cell heterogeneity. 
Under the regulation of Nkx2-5 and Gtf2b, activation of components of muscle and mitochondrial dysfunction 
were induced, resulting in heart failure.
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that these TFs are associated with pathological responses to TAC at the single-cell level, suggesting that, Gtf2b 
regulates global transcription initiation and Nkx2-5 is associated with pathological phenotypes in cardiomyo-
cytes with high Nppa expression. Additional analysis is needed to determine whether mitochondrial dysfunction 
is regulated by Nkx2-5 or Gtf2b in cardiomyocytes with high Nppa expression. To investigate the validity, we 
performed additional analyses on Nkx2-5 using the ChIP-seq data (GSM862698) that contained the sequence 
results of Nkx2-5 binding regions in the heart of Mus musculus. We were able to confirm that Nkx2-5 bound the 
promoter regions of the genes (e.g., Ndufa4, Ndufab1and Ndufa3) in the gene–gene association network module 
(as shown in Supplementary Fig. 3). These results suggest the validity of the master regulator.

In conclusion, this study showed that it is possible to identify an initial marker that aids our understanding 
of the molecular mechanisms involved in heart failure by statistical analysis of time-course data without using 
pseudo-time analysis. Pseudo-time analysis increases the temporal resolution of transcriptome dynamics col-
lected at multiple pseudo-time points, and can be used to recover single-cell gene expression kinetics from a wide 
array of cellular processes, including differentiation, proliferation and oncogenic  transformation43. As a result, 
it is possible to elucidate the cell dynamics as checkpoints and novel molecular mechanisms related to cell and 
organ development, cell fate, and disease  progression6,44,45. However, if single-cell RNA-seq data are observed 
over time, the information regarding true time axis lost, by using the pseudo-time analysis. The use of the original 
time points of single cell RNA-seq data could provide the information that pseudo-time analysis fails to extract. 
Moreover, the trans-omics analysis of single-cell transcriptome data with regulome data can help to understand 
the detailed molecular mechanisms of disease progression in heart failure. The proposed approach proposed in 
this study is therefore expected to be useful for the investigation of many other diseases.

Methods
Animal model and isolation of cardiomyocytes. This study was carried out in compliance with the 
ARRIVE guidelines. All animal experiments were approved by the Ethics Committee for Animal Experiments 
of the University of Tokyo (RAC150001) and Osaka University (22-056) and adhered strictly to the animal 
experiment guidelines as previously  descrived6. C57BL/6 mice were purchased from CLEA JAPAN. In brief, 
8-week-old mice underwent TAC to induce heart failure or were subjected to a sham operation. Sham-operated 
mice, which were used as controls, underwent a similar surgical procedure without TAC 2 weeks previously. 
Cardiomyocytes were isolated from the left ventricular free wall after sham operation and at 3 days and 1, 2, 4 
and 8 weeks after TAC using the Langendorff  method6. To evaluate the early, middle, and late stages of disease 
progression, we acquired single cardiomyocytes at 3 days and 1, 2, 4, and 8 weeks after TAC. TAC reduces the 
volume of beats from the aorta, thereby increasing pressure in the left ventricle. It induces cardiac hypertrophy 
at approximately 2 weeks postoperatively and heart failure at 4–8 weeks in 8-week-old C57bL/6  mice7,46. Thus, 
we chose 3 days and 1,2,4, and 8 weeks for the analysis. We collected the cardiac function data from the mice 
who underwent the TAC model, where the fractional shortening and left ventricular diastolic diameter were 
measured in the previous  work6. Mice whose hearts were not appropriately exposed to pressure overload were 
excluded from the single-cell RNA-seq analysis.

Enzymatic dissociation using Langendorff perfusion was performed with 37 °C pre-warmed 35 mL enzyme 
solution (collagenase Type II 1 mg/mL, protease type XIV 0.05 mg/mL, NaCl 130 mM, KCl 5.4 mM,  MgCl2 
0.5 mM, NaH2PO4 0.33 mM, D-glucose 22 mM, HEPES 25 mM, pH 7.4) at a rate of 3 mL/min. Enzymes 
were neutralized with fetal bovine serum (FBS) at a final concentration of 0.2%. Cell suspensions were filtered 
through a 100-μm nylon mesh cell strainer and centrifuged at 100 g for 2 min. The supernatant was discarded. 
Cardiomyocytes were purified from non-cardiomyocytes by discarding the supernatant. Live cardiomyocytes 
were isolated from precipitated cells containing non-cardiomyocytes by visual selection. Rod-shaped live cardio-
myocytes (viability of cardiomyocytes at all the time points, ≥ 80%) were manually collected with a 0.2- to 2-µL 
pipette, visualized by an inverted microscope (OLYMPUS CKX31) and incubated in Smart-seq2 lysis buffer.

Single‑cell RNA‑seq analysis of mouse cardiomyocytes. Subsequent reverse transcription, PCR 
amplification, and PCR purification were conducted in accordance with the Smart-seq2 protocols as previously 
 described6. The efficiency of cDNA library generation was assessed by examining the cycle threshold (Ct) values 
of the control genes (Tnnt2, Cox6a2) from quantitative real-time polymerase chain reaction (qRT-PCR) using 
a CFX96 real-time PCR detection system (Bio-Rad) and by examining the distribution of the lengths of cDNA 
fragments using a LabChip GX (Perkin Elmer) and/or TapeStation 2200 (Agilent Technologies). The following 
primer sets were used for qRT-PCR: Tnnt2 mRNA forward, TCC TGG CAGA GAG GAG GAAG; Tnnt2 mRNA 
reverse, TGC AGG TCGA ACT TCT CAGC; Cox6a2 mRNA forward, CGT AGC CCTC TGC TCC CTTA; and 
Cox6a2 mRNA reverse, GGA TGC GGA GGT GGT GAT AC. A Ct value of 25 was set as the threshold. According 
to the Smart-seq2 protocol, the remaining cDNA libraries were used for the generation of sequencing libraries, 
which were subsequently subjected to paired-end 51-bp RNA sequencing on a HiSeq 2500 in rapid mode.

We used RPKM normalization for quantitative gene expression analysis of scRNA-seq data in this study. The 
RefSeq transcripts (coding and non-coding) were downloaded from the UCSC genome browser (http:// genome. 
ucsc. edu). Using Bowtie (version 1.1.1) with the parameters “-S -m 1 -l 36 -n 2 mm9”, we mapped the readings 
to the mouse genome (mm9). Using DEGseq (version 1.8.0), RPKM was calculated with reads mapped to the 
nuclear genome. These procedures of calculating RPKM were also described in a previous  study6. UMI is known 
to be another normalization method, and Smart-seq2 was not compatible with UMI. However, the present study 
applied RNA spike-in to Smart-seq2 and confirmed a good correlation between RNA spike-in concentrations 
and their expected RPKM values (Supplementary Fig. 1c in Nomura et al. Nat Commun. 2018). t-SNE analysis 
of single cardiomyocyte transcriptome for normal C57BL/6 mice (RPKM values) was performed in two differ-
ent batches, and it was confirmed that cardiomyocytes could not be classified by batch (Supplementary Fig. 1d 

http://genome.ucsc.edu
http://genome.ucsc.edu
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in Nomura et al. Nat Commun. 2018). On the basis of these observations, we used RPKM normalization for 
quantitative gene expression analysis. The gene expression profiles with normalized RPKM values were used for 
hierarchical clustering of cardiomyocyte groups (Fig. 5a), calculation of gene expression levels (Figs. 2b, 3, 5b, 
6), and detection of genes correlated with Nppa (Fig. 7). We used 22,135 genes that were annotated in Refseq 
and calculated the expression values in scRNA-seq. We sequenced 482 cells for scRNA-seq. Out of them, 396 
cells with more than 5,000 expressed genes (RPKM > 0.1) were used for the data analysis.

Single-cell RNA-seq datasets were acquired from GEO-NCBI (GEO accession number: GSE95143). The 
numbers of RNA-seq cardiomyocyte samples in the sham group and the TAC group at day 3 and week 1, 2, 4 
and 8 after operation were 88, 69, 83, 82, 73 and 87, respectively.

Gene ontology enrichment analysis for DEGs. The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID)47 (https:// david. ncifc rf. gov/) was used for GO analysis of 1000 genes whose expres-
sion was positively or negatively correlated with Nppa. The top three GO terms in the annotation clusters that 
ranked in the Functional Annotation Clustering function with statistical significance (P < 0.05) were extracted. 
The enrichment P-values of all extracted GO terms for each module were calculated using DAVID.

Gene set enrichment analysis (GSEA)48 was used to determine whether a priori defined sets of genes showed 
significantly enriched GO terms. GSEA was also used to identify the GO terms associated with significantly 
enriched genes in cardiomyocytes with high Nppa expression compared with cardiomyocytes with low Nppa 
expression.

Visualization of gene–gene association network and module detection. A gene–gene asso-
ciation network was constructed from molecular interaction data stored in Search Tool for the Retrieval of 
Interacting Genes (STRING) Database (https:// www. string- db. org/), where gene–gene associations are based 
on evidence such as experiments, databases, co-expression, neighbourhood, gene fusion, and co-occurrence21. 
We used a dataset of gene–gene associations of Mus Musculus in the STRING database. The dataset consisted of 
11,944,806 protein–protein interactions involving 21,291 proteins. We extracted the gene–gene association net-
work involving 500 genes that negatively correlated with Nppa. The gene–gene association network was visual-
ized by  Cytoscape49. To detect modular networks, the gene–gene association network was subjected to a graphi-
cal theoretical clustering algorithm, Molecular Complex Detection (MCODE)21, and modular networks with 
tightly connected nodes were detected. In this study, MCODE was performed with the following criteria: degree 
cut-off = 2, node score cut-off = 0.2, k-core = 2 and max. depth = 100.

Prediction of the associated transcription factors. TFs regulating genes whose expression were cor-
related with Nppa were predicted based on large-scale ChIP-seq data in the ChIP-Atlas database (http:// chip- 
atlas. org/) 22. ChIP-Atlas contains 76,217 experimental ChIP-seq and DNase-seq datasets, and the enrichment 
analysis option enables us to search for proteins such as TFs enriched at given genes and genomic regions. In 
this study, 1000 genes positively or negatively correlated with Nppa were subjected to enrichment analysis to 
predict TFs compared with randomly selected genes. We used the threshold for significance as 100 calculated by 
peak-caller MACS2 (-10*Log10[MACS2 Q-value]) and the distance range from transcription start site (TSS) as 
5000 bp up- or downstream. The locations of TSSs and gene symbols were obtained from refFlat files (at UCSC 
FTP site: https:// genome. ucsc. edu/ golde nPath/ help/ ftp. html). 50 Only protein-coding genes were used for this 
analysis. On the basis of information in the refFlat files, the promoter region was set to “ ± 5,000 bp from the 
TSS” according to the procedure in the ChIP-Atras  database22. P-values were calculated with two-tailed Fisher’s 
exact probability test as follows:

where n is total genes, a is the number of TFs binding heart-specific genes, b is the number of TFs not binding 
heart-specific genes, c is the number of TFs binding randomly selected genes, and d is the number of TFs not 
binding randomly selected genes.

Statistical analyses in the trans‑omics approach. Genes whose expression changed across the time 
points were detected by one-way ANOVA. We applied hierarchical clustering using average linkage algorithm 
with Euclidean distance and identified expression patterns of genes. We calculated the intracluster sum of 
squared error (SSE) to identify the number of clusters that was optimal for classifying the genes (Supplemen-
tary Fig S3). Supplementary Fig S3a shows the intracluster SSE, and Supplementary Fig S3b shows the rate of 
decrease in the intracluster SSE when the number of clusters increases by one. A distinct cluster structure is 
known to be formed when the intracluster SSE is small and its rate of decrease is  large51. The intracluster SSE 
decreased as the number of clusters increased. The intracluster SSE was decreased to a greater extent when the 
numbers of clusters were 2 and 6, but less so after 7. From these results, we decided to classify genes into 6 clus-
ters, and the corresponding threshold value (1.22) was set. To detect DEGs in cardiomyocytes with high and low 
Nppa expression, fold change of gene expression was calculated compared with that in the sham group, using 
the thresholds of |log2Fold Change|≥ 1. Unpaired two-tailed Student’s t-test was applied using adjusted P < 0.05. 
Multiple group comparisons among sham-treated cardiomyocytes and those with high and low Nppa expression 
were performed by one-way ANOVA with Tukey’s post hoc test. All statistical analyses and graphical construc-
tions were performed using R version 3.5.2.

p =
(a+ b)!(c + d)!(a+ c)!(b+ d)!

n!a!b!c!d!

https://david.ncifcrf.gov/
https://www.string-db.org/
http://chip-atlas.org/
http://chip-atlas.org/
https://genome.ucsc.edu/goldenPath/help/ftp.html
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To visualize the distributions of gene expression levels, violin plots were generated with the ‘ggplot2′ pack-
age in R. To visualize cell-to-cell variations, dimensional reduction was performed on gene expression profiles 
using t-SNE algorithm (perplexity = 30) with the ‘Rtsne’ package in R. The location of all points in the map 
was determined by a stochastic minimization of the Kullback–Leibler divergence of the original distances with 
respect to the mapped distances.

RNA in situ hybridization. Human cardiac tissues were fixed with G-Fix (Genostaff), embedded in par-
affin on CT-Pro20 (Genostaff), using G-Nox (Genostaff) as a less toxic organic solvent than xylene, and sec-
tioned at 5 µm. RNA in situ hybridization was performed with an ISH Reagent Kit (Genostaff) according to 
the manufacturer’s instructions as previously  descrived6. Tissue sections were de-paraffinized with G-Nox and 
rehydrated through an ethanol series and phosphate-buffered saline (PBS). The sections were fixed with 10% 
neutral buffered formalin (10% formalin in PBS) for 30 min at 37 °C, washed in distilled water, placed in 0.2 N 
HCl for 10 min at 37 °C, washed in PBS, treated with 4 µg/mL proteinase K (Wako Pure Chemical Industries) 
in PBS for 10  min at 37  °C, washed in PBS, and placed in a Coplin jar containing 1 × G-Wash (Genostaff), 
equal to 1 × saline-sodium citrate. Hybridization was performed with sense and anti-sense probes for the NPPA 
gene (250 ng/mL) in G-Hybo-L (Genostaff) for 16 h at 60 °C. After hybridization, the sections were washed in 
1 × G-Wash for 10 min at 60 °C and in 50% formamide in 1 × G-Wash for 10 min at 60 °C. Next, the sections were 
washed twice in 1 × G-Wash for 10 min at 60 °C, twice in 0.1 × G-Wash for 10 min at 60 °C, and twice in TBST 
(0.1% Tween 20 in Tris-buffered saline) at room temperature. After treatment with 1 × G-Block (Genostaff) for 
15  min at room temperature, the sections were incubated with anti-DIG AP conjugate (Roche Diagnostics) 
diluted 1:2000 with G-Block (Genostaff; dilated 1/50) in TBST for 1 h at room temperature. The sections were 
washed twice in TBST and incubated in 100 mM NaCl, 50 mM MgCl2, 0.1% Tween 20, and 100 mM Tris–HCl 
(pH 9.5). Coloring reactions were performed with NBT/BCIP solution (Sigma-Aldrich) overnight and then 
washed in PBS. The sections were counterstained with Kernechtrot stain solution (Muto Pure Chemicals) and 
mounted with G-Mount (Genostaff).
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