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Association of pre‑ 
and early‑pregnancy factors 
with the risk for gestational 
diabetes mellitus in a large Chinese 
population
Min Zhao1,2,3,4*, Shuyu Yang1,4, Tzu Chieh Hung1, Wenjie Zheng2 & Xiaojie Su2 

Gestational diabetes mellitus (GDM) has aroused wide public concern, as it affects approximately 
1.8–25.1% of pregnancies worldwide. This study aimed to examine the association of pre‑pregnancy 
demographic parameters and early‑pregnancy laboratory biomarkers with later GDM risk, and further 
to establish a nomogram prediction model. This study is based on the big obstetric data from 10 
“AAA” hospitals in Xiamen. GDM was diagnosed according to the International Association of Diabetes 
and Pregnancy Study Group (IADPSG) criteria. Data are analyzed using Stata (v14.1) and R (v3.5.2). 
Total 187,432 gestational women free of pre‑pregnancy diabetes mellitus were eligible for analysis, 
including 49,611 women with GDM and 137,821 women without GDM. Irrespective of confounding 
adjustment, eight independent factors were consistently and significantly associated with GDM, 
including pre‑pregnancy body mass index (BMI), pre‑pregnancy intake of folic acid, white cell count, 
platelet count, alanine transaminase, albumin, direct bilirubin, and creatinine (p < 0.001). Notably, per 
3 kg/m2 increment in pre‑pregnancy BMI was associated with 22% increased risk [adjusted odds ratio 
(OR) 1.22, 95% confidence interval (CI) 1.21–1.24, p < 0.001], and pre‑pregnancy intake of folic acid can 
reduce GDM risk by 27% (adjusted OR 0.73, 95% CI 0.69–0.79, p < 0.001). The eight significant factors 
exhibited decent prediction performance as reflected by calibration and discrimination statistics 
and decision curve analysis. To enhance clinical application, a nomogram model was established by 
incorporating age and above eight factors, and importantly this model had a prediction accuracy of 
87%. Taken together, eight independent pre‑/early‑pregnancy predictors were identified in significant 
association with later GDM risk, and importantly a nomogram modeling these predictors has over 85% 
accuracy in early detecting pregnant women who will progress to GDM later.

As a serious complication of pregnancy, gestational diabetes mellitus (GDM) is a major public health  problem1, 
affecting approximately 1.8–25.1% of pregnancies  worldwide2. This problem has attracted much attention in 
obstetrics, because GDM usually leads to a variety of adverse maternal and neonatal outcomes, including cesar-
ean delivery, fetal macrosomia, preterm birth, preeclampsia, and neuropsychiatric  morbidity3–5. Despite a vast 
amount of resources spent and years of progress made in basic and clinical  research6,7, challenges remain in the 
identification of pregnant women who are at a high risk of developing GDM in the second or third trimester and 
who could benefit from effective prevention or timely intervention strategies.

Several risk factors such as older age and pre-pregnancy  obesity8 have been well established in susceptibility to 
GDM, yet the prediction accuracy is not  ideal9,10, mainly because the development of GDM is a multifactorial and 
complex process, involving many risk  factors11. Considering that glucose challenge test and oral glucose tolerance 
test (OGTT) for the diagnosis of GDM are usually performed during the third trimester (24th to 28th weeks), it is 
of importance to seek promising risk predictors especially at early pregnancy (8th to 12th weeks of pregnancy)12 
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to identify high-risk women for effective surveillance and prevention efforts, which can gain 12 to 16 weeks of 
intervention time. Currently, published data on this subject mainly focus on demographic parameters. In addi-
tion, considering the complex nature of GDM, the impact of any risk predictor on the development of GDM 
may be small when assessed in isolation, but may be more obvious in combination with other risk  factors13,14. 
In the literature, dozens of studies have attempted to construct a risk prediction model for  GDM14–16, yet the 
prediction performance remains untested or less satisfactory, curbing its translation into clinical application.

To fill this gap in knowledge and yield more information for future research, we, based on the big obstetric 
data from Xiamen, China, aimed to examine the association of potential risk predictors (including pre-pregnancy 
demographic parameters and early-pregnancy laboratory biomarkers) with later GDM risk, and further to estab-
lish a nomogram prediction model by regressing conventionally-recognized and newly-identified predictors of 
significance.

Methods
Study design and ethical approval. This is a multicenter hospital-based cohort study. Maternal and 
child health data from 10 “AAA” hospitals in Xiamen during the period between 2008 and 2018 were obtained 
from the Xiamen Primary Health Information System. The 10 “AAA” hospitals included The First Affiliated 
Hospital of Xiamen University, The First Affiliated Hospital of Xiamen University—Siming Branch, The First 
Affiliated Hospital of Xiamen University—Xinglin Branch, Zhongshan Hospital Xiamen University, The Second 
Affiliated Hospital of Xiamen Medical College, The First Affiliated Hospital of Xiamen University—Tongmin 
Branch, Xiamen Maternal and Child Care Service Center, Xiamen Haicang Hospital, Xiamen Xianyue Hospital, 
and Xiamen Traditional Chinese Medicine Hospital. Informed consent was signed by all participants from each 
participating hospital.

Ethical approval was obtained from the Institutional Review Boards at all participating hospitals, and 
informed consent was signed from all participants undergoing direct interview. Data sharing certification com-
plied with the relevant policies set forth by the Xiamen Health Bureau.

Study participants. Study participants were restricted to gestational women aged ≥ 18 years who had the 
expected date of confinement falling from the year 2008 to 2018, as well as data on standard glucose challenge 
test and/or OGTT. Gestational women with pre-pregnancy diabetes mellitus were excluded from the current 
analysis.

Diagnosis of gestational diabetes mellitus. GDM was diagnosed according to criteria set forth by 
the International Association of Diabetes and Pregnancy Study Group (IADPSG)17. During the 24th to 28th 
gestational weeks, women who had non-fasting plasma glucose ≥ 7.8 mmol/L with a 1-h 50-g glucose challenge 
test were requested to undertake a 2-h 75-g OGTT, which was carried out in the morning after an overnight 
fasting of over 8 h, with blood samples abstracted at fasting, 1 h and 2 h after the glucose load. A pregnant 
woman is diagnosed to have GDM if one or more of the following criteria are satisfied: fasting plasma glu-
cose ≥ 5.1 mmol/L, 1-h plasma glucose ≥ 10.0 mmol/L, or 2-h plasma glucose ≥ 8.5 mmol/L.

Demographic characteristics. Pre-pregnancy demographic data were self-reported by study participants 
at the first pre-natal visit during the 8th to 12th weeks of pregnancy, including age, age at menarche, cigarette 
smoking, alcohol drinking, education, medical histories of diabetes mellitus and hypertension, pre-pregnancy 
intake of folic acid, pregnancy week, the presence of hemopathy, epilepsy, hyperthyroidism, cardiovascular dis-
eases, liver diseases, kidney diseases, and lung diseases, as well as maternal family histories of diabetes mellitus 
and hypertension. Data on the previous histories of GDM and macrosomia were missing.

Cigarette smoking status was classified as never smoking and ever (former or current) smoking. Alcohol 
drinking was classified as never drinking and ever (former or current) drinking. Education was classified as high 
(college or equivalent degree or above) and low (high school degree or below) education. A maternal family his-
tory of diabetes mellitus or hypertension was defined as one or more of affected relatives within three generations 
who had clinically confirmed diabetes mellitus or hypertension.

Body height (to the nearest 0.1 cm) and pre-pregnancy weight (to the nearest 0.1 kg) were measured by nurses 
or trained staff. Pre-pregnancy body mass index (BMI) was calculated as pre-pregnancy weigh (kg) divided by 
the square of body height (m).

Laboratory biomarkers. Besides recording demographic information, fasting blood samples were also 
abstracted at the first pre-natal visit during the 8th to 12th weeks of pregnancy for the measurement of labora-
tory biomarkers. In this study, because coverage on laboratory biomarkers differed across participating hospi-
tals, only white cell count, platelet count, hemoglobin, alanine transaminase (ALT), aspartate aminotransferase 
(AST), albumin, direct bilirubin, conjugated bilirubin, creatinine, and blood urea nitrogen (BUN) were included 
for analysis. In view the strong biological relevance between direct bilirubin and conjugated bilirubin, only direct 
bilirubin was retained in the analysis. The concentrations of these biomarkers were quantified by the clinical 
laboratory or department of each participating hospital.

Statistical analyses. Utilizing the extract-transform-load process in SQL server 2008 R2, crude variables 
containing missing (> 50%) values were removed. In addition, implausible values or extreme outliers that might 
represent transcription or data entry errors were checked. All outliers were reported to the data entry techni-
cians, who corrected the database by comparing against the paper records or in consultation with the obstetri-
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cians. Then, variables were imported into the Stata software version 14.1 for Windows (Stata Corp, TX) for data 
cleaning and management.

All study participants were divided into the patient group and the control group according to the diagnosis 
of GDM. The distributions of continuous characteristics, summarized as mean (standard deviation) and median 
(interquartile range), were appraised for normality by use of 1-sample Kolmogorov–Smirnov test. Continuous 
characteristics that were found to deviate from normality were compared between the two groups using the 
Wilcoxon–Mann–Whitney rank sum test, and the t test otherwise. Categorical characteristics, summarized as 
count and percentage, were compared using the χ2 test.

To assess the possibility of non-random measurement error for clinical biomarkers resulting from procedural 
differences across the ten “AAA” hospitals in this study, the intraclass correlation coefficient (ICC) was employed, 
and it is a statistic that can be used to quantify the degree to which observations within a cluster differ from those 
between  clusters18. The confidence limits for ICC were estimated using the multivariable delta  method19. The 
ICC ranges from 0 to 1, with an ICC of 0 indicating the variance in clinical biomarkers is not due to variation 
between the hospitals.

The identification of significant factors for the risk of GDM was done by using the Logistic regression analysis 
before (model 0) and after adjusting for confounding factors (model 1 and model 2). Confounders in model 1 
included age, cigarette smoking, alcohol drinking, education, and age at menarche, and confounders in model 
2 additionally included maternal family histories of diabetes mellitus and hypertension, and the presence of 
hemopathy, epilepsy, hyperthyroidism, cardiovascular diseases, liver diseases, kidney diseases, and lung dis-
eases. The risk for GDM was denoted by odds ratio and its 95% confidence interval (95% CI). Significant factor 
is identified if statistical significance (p value < 0.05) is fulfilled simultaneously across three different models.

For continuous significant factors identified, Spearman rank correlation coefficients were calculated to check 
for collinearity. If pairwise correlation coefficient is over 0.6, only one factor is retained for analysis.

To examine the prediction performance of significant independent factors, two models were constructed: 
basic model and full model. Factors in the basic model included age, alcohol drinking, cigarette smoking, edu-
cation, age at menarche, maternal family histories of diabetes mellitus and hypertension, as well as the pres-
ence of hemopathy, epilepsy, hyperthyroidism, cardiovascular diseases, liver diseases, kidney diseases, and lung 
diseases. The full model additionally included significant independent factors. Prediction accuracy gained by 
adding significant independent factors to the basic model was appraised by use of the following statistics or tests: 
Akaike information criteria (AIC), Bayesian information criteria (BIC)20, likelihood ratio test, net reclassifica-
tion improvement (NRI), integrated discrimination improvement (IDI)21, and area under receiver operating 
characteristic curve (AUROC) under both calibration and discrimination aspects. What’s more, the net benefits 
gained by adding significant independent factors were visually appraised in decision curve  analysis22. In the plot 
of decision curve analysis, the X-axis represents thresholds for GDM risk, and the Y-axis represents net benefits 
hinged on different thresholds. The farthest the curve is, the highest the net benefit is.

To facilitate clinical application, a risk prediction model illustrated as a nomogram was established by regress-
ing conventionally-recognized and newly-identified significant independent factors. The performance of this 
nomogram model was appraised by using both concordance index (C-index, which equals to the AUROC) and 
calibration curve. The larger the C-index, the more accurate was the risk prediction for GDM. The C-index 
ranges from 0.0 to 1.0, and it is generally accepted that the C-index of < 0.7 suggests no improvement in model 
 performance23. In calibration curve, the 45° line denotes the optimal prediction in calibration curve, showing 
how far the predicted probabilities of the nomogram are from the actual observations. The nomogram model 
was established using the R programming environment (version 3.5.2) “rms”  package24.

All reported p values are based on two-sided tests of significance, and p value less than was considered as 
statistically significant.

Results
Study participants. Data on 258,466 gestational women at 10 “AAA” hospitals were extracted from the 
Xiamen Primary Health Information System. After excluding 64,335 women with missing values on glucose 
challenge test and/or OGTT, 3161 women with abnormal values, and 578 women with pre-pregnancy diabetes 
mellitus, 187,432 gestational women were eligible for inclusion, with 49,611 women diagnosed with GDM and 
137,821 women free of GDM in the final analysis.

Baseline characteristics. Table  1 shows the baseline characteristics of all study participants. Women 
with GDM were older (mean: 29.33 vs. 28.34 years, p < 0.001), had higher pre-pregnancy BMI (mean: 21.27 vs. 
20.59 kg/m2, p < 0.001) and lower education levels (23.20% vs. 25.70%, p < 0.001) than women free of GDM. No 
differences were noted for age at menarche, cigarette smoking, alcohol drinking, and maternal family history of 
hypertension between the two groups.

The possibility of measurement error for clinical biomarkers resulting from procedural differences across 
multiple hospitals was assessed using the ICC statistic (Supplementary Table 1). The ICCs for all clinical biomark-
ers were all relatively low (< 0.07), indicating a low probability of clustering within hospitals and a less likelihood 
of differences in measurement techniques between hospitals.

Identification of significant factors. Three models, namely model 0, model 1, and model 2, were con-
structed under the Logistic regression models to identify potential factors in significant association with GDM 
risk (Table 2). Before and after adjusting for confounders, eight factors were consistently and significantly associ-
ated with GDM at a significance level of 0.001, including pre-pregnancy BMI, pre-pregnancy intake of folic acid, 
white cell count, platelet count, alanine transaminase, albumin, direct bilirubin, and creatinine. Of note, per 
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3 kg/m2 increment in pre-pregnancy BMI was associated with a 22% increased risk of GDM (adjusted OR 1.22, 
95% CI 1.21–1.24, p < 0.001), and pre-pregnancy intake of folic acid can reduce the risk by 27% (adjusted OR: 
0.73, 95% CI 0.69–0.79, p < 0.001). Additionally, increased levels of white cell count, platelet count, and alanine 
transaminase were associated with a significantly increased risk of GDM, whereas that of albumin, direct biliru-
bin, and creatinine corresponded to a reduced risk.

Correlation analysis of significant factors. Spearman correlation analysis was performed to test col-
linearity of significant continuous factors identified above. As reflected by the Spearman correlation coefficients 
(Table 3). The correlation coefficients ranged from − 0.08 to 0.29.

Prediction performance assessment. The prediction performance of eight significant independent fac-
tors was assessed by means of calibration and discrimination statistics. As showed in Table 4, the differences in 
AIC and BIC values were significantly greater than 10 between the basic model and the full model, indicating 
the significant prediction by adding eight significant factors, which was further confirmed by the likelihood ratio 
test (p < 0.001).

In addition, the significance of NRI and IDI statistics revealed that the addition of eight significant independ-
ent factors to the basic model can differentiate women with GDM from gestational women under study, which 
was further reinforced by the significant AUROC difference between the two models (p < 0.001).

Furthermore in the decision curve analysis, there were evident net benefits after adding these eight factors 
to the basic model (Fig. 1).

Table 1.  The baseline characteristics of the study participants. SD standard deviation, IQR inter-quartile 
range (25% quantile to 75% quantile), OGTT  oral glucose tolerance test. Besides age expressed as mean (SD), 
the other continuous variables are expressed as median (IQR). Categorical data are summarized as count 
(percentage). *Between patients and controls, age was compared by using the t test, and the other continuous 
variables were compared using the Wilcoxon–Mann–Whitney rank sum test; all categorical variables were 
compared using the χ2 test.

Characteristics Patients (n = 49,611) Controls (n = 137,821) p*

During the 8th to 12th gestational weeks

Age (years) 29.33 (4.88) 28.34 (4.45) < 0.001

Pre-pregnancy body mass index (kg/m2) 20.81 (19.10–23.01) 20.13 (18.73–22.04) < 0.001

Age at menarche (years) 14 (13–15) 14 (13–15) 0.049

Alcohol drinking 20 (0.04%) 72 (0.05%) 0.294

Cigarette smoking 8 (0.02%) 33 (0.02%) 0.306

High education 11,771 (23.73%) 36,067 (26.17%) < 0.001

Maternal family history of diabetes mellitus 1790 (3.61%) 3498 (2.54%) < 0.001

Maternal family history of hypertension 3200 (6.45%) 8725 (6.33%) 0.496

Hypertension 120 (0.24%) 224 (0.16%) < 0.001

Pre-pregnancy intake of folic acid 49,444 (99.66%) 137,494 (99.76%) < 0.001

Hemopathy 110 (0.22%) 319 (0.23%) 0.663

Epilepsy 17 (0.03%) 58 (0.04%) 0.444

Hyperthyroidism 446 (0.9%) 1306 (0.95%) 0.29

Cardiovascular diseases 125 (0.25%) 304 (0.22%) 0.228

Liver diseases 2468 (4.97%) 6903 (5.01%) 0.603

Kidney diseases 153 (0.31%) 524 (0.38%) 0.019

Lung diseases 103 (0.21%) 283 (0.21%) 0.959

Hemoglobin (g/L) 124 (117–131) 124 (117–130) 0.477

White cell count  (109/L) 8.50 (7.26–9.91) 8.11 (6.96–9.48) < 0.001

Platelet count  (109/L) 229 (196–265) 225 (194–261) < 0.001

Alanine transaminase (U/L) 14 (10.90–20) 14 (10.70–19.50) < 0.001

Aspartate aminotransferase (U/L) 16.20 (14–20) 16.10 (14–20) 0.282

Albumin (g/L) 42 (39.10–44.40) 42.50 (40–44.70) < 0.001

Direct bilirubin (μmol/L) 9.50 (7.40–12.10) 9.80 (7.60–12.50) < 0.001

Creatinine (μmol/L) 53 (45–63) 53 (45–64) < 0.001

Blood urea nitrogen (mmol/L) 2.80 (2.30–3.37) 2.80 (2.30–3.34) 0.237

During the 24th to 28th gestational weeks

OGTT fasting glucose (mmol/L) 5.20 (4.69–6.54) 4.42 (4.18–4.66) < 0.001

OGTT1h glucose (mmol/L) 9.270 (7.77–10.40) 7.48 (6.43–8.42) < 0.001

OGTT2h glucose (mmol/L) 7.80 (6.51–8.90) 6.320 (5.60–7.06) < 0.001
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Table 2.  Identification of significant pre- and early-pregnancy factors for later gestational diabetes mellitus 
before and after adjusting for confounding factors. OR odds ratio, 95% CI 95% confidence interval, BMI body 
mass index. No confounders were adjusted in model 0; variables under adjustment in model 1 included age, 
alcohol drinking, cigarette smoking, education, and age at menarche; additional variables under adjustment 
in model 2 included maternal family histories of diabetes mellitus and hypertension, and the presence of 
hemopathy, epilepsy, hyperthyroidism, cardiovascular diseases, liver diseases, kidney diseases, and lung 
diseases on the basis of model 1.

Characteristics

Model 0 Model 1 Model 2

OR 95% CI p OR 95% CI p OR 95% CI p

Pre-pregnancy BMI (per + 3 kg/m2) 1.28 1.26–1.29 < 0.001 1.23 1.21–1.24 < 0.001 1.22 1.21–1.24 < 0.001

Pre-pregnancy intake of folic acid (yes vs. no) 0.76 0.71–0.81 < 0.001 0.74 0.69–0.79 < 0.001 0.73 0.69–0.79 < 0.001

Hypertension (+ vs. −) 1.48 1.19–1.85 0.001 1.28 1.00–1.58 0.046 1.26 0.99–1.57 0.062

Hemopathy (+ vs. −) 0.95 0.77–1.18 0.663 0.95 0.76–1.18 0.634 0.95 0.76–1.18 0.614

Epilepsy (+ vs. −) 0.81 0.47–1.39 0.445 0.85 0.49–1.46 0.551 0.86 0.5–1.48 0.577

Hemoglobin (per + 40 g/L) 1.02 0.98–1.06 0.372 1.01 0.98–1.06 0.474 1.01 0.98–1.06 0.467

White cell count (per + 1 *  109) 1.10 1.1–1.11 < 0.001 1.11 1.1–1.11 < 0.001 1.11 1.10–1.11 < 0.001

Platelet count (per + 50 *  109) 1.06 1.05–1.07 < 0.001 1.06 1.05–1.07 < 0.001 1.06 1.05–1.07 < 0.001

Alanine transaminase (per + 20 U/L) 1.06 1.04–1.08 < 0.001 1.05 1.03–1.06 < 0.001 1.05 1.03–1.06 < 0.001

Aspartate aminotransferase (per + 20 U/L) 1.04 1.01–1.07 0.004 1.03 1.00–1.06 0.057 1.03 1.00–1.06 0.058

Albumin (per + 5 g/L) 0.85 0.84–0.86 < 0.001 0.86 0.85–0.88 < 0.001 0.86 0.85–0.87 < 0.001

Direct bilirubin (per + 5 μmol/L) 0.93 0.93–0.95 < 0.001 0.93 0.92–0.95 < 0.001 0.94 0.92–0.95 < 0.001

Creatinine (per + 15 μmol/L) 0.96 0.95–0.97 < 0.001 0.95 0.94–0.96 < 0.001 0.95 0.84–0.96 < 0.001

Blood urea nitrogen (per + 10 mmol/L) 1.02 0.94–1.10 0.708 1.03 0.95–1.12 0.456 1.02 0.94–1.11 0.560

Table 3.  Correlation analysis of continuous significant factors in predicting gestational diabetes mellitus in 
both patients and controls. coef. Coefficient, ALT alanine transaminase. The lower triangular data represent 
the correlation coefficients in patients, and the upper triangular data represent the correlation coefficients in 
controls.

Correlation Coef Pre-pregnancy BMI White cell count Platelet count ALT Albumin Creatinine Direct bilirubin

Pre-pregnancy BMI 1.000 0.120 0.162 0.081 − 0.021 0.044 − 0.070

White cell count 0.146 1.000 0.290 0.065 − 0.073 0.009 − 0.076

Platelet count 0.195 0.276 1.000 0.033 0.054 − 0.038 − 0.049

ALT 0.104 0.073 0.062 1.000 0.027 0.005 0.005

Albumin 0.017 − 0.075 0.092 0.075 1.000 0.109 0.154

Creatinine 0.046 0.000 − 0.029 0.015 0.133 1.000 0.001

Direct bilirubin − 0.056 − 0.084 − 0.050 0.015 0.147 0.014 1.000

Table 4.  Calibration and discrimination statistics for the addition of eight significant pre- and early-
pregnancy factors identified to the basic model. Variables in the basic model included age, alcohol drinking, 
cigarette smoking, education, age at menarche, maternal family histories of diabetes mellitus and hypertension, 
as well as the presence of hemopathy, epilepsy, hyperthyroidism, cardiovascular diseases, liver diseases, 
kidney diseases, and lung diseases. Variables in the full model additionally included pre-pregnancy body mass 
index, pre-pregnancy intake of folic acid, hypertension, while cell count, platelet count, alanine transaminase, 
albumin, direct bilirubin, and creatinine.

Statistics Basic model Full model

Calibration

Akaike information criterion (AIC) 215,380 212,349

Bayesian information criteria (BIC) 215,501 212,586

Likelihood ratio (LR) test p < 0.001

Discrimination

Net reclassification improvement (NRI) p < 0.001

Integrated discrimination improvement (IDI) p < 0.001

Area under receiver operating characteristic curve (AUROC) p < 0.001
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Establishment of a risk prediction model. In view of the nonlinear relationship between continuous 
significant factors and the decent prediction performance, a risk prediction model was hence established by 
using the nomogram technique by modeling age and the eight identified factors of significance, including pre-
pregnancy BMI, pre-pregnancy intake of folic acid, white cell count, platelet count, alanine transaminase, albu-
min, direct bilirubin, and creatinine, as illustrated in Fig. 2.

This nomogram model had a good prediction accuracy, with the C-index of being 87%, indicating 87% cor-
rect model identification of the high-risk women who will experience GDM across all possible pairs of pregnant 
women. The calibration curve for this nomogram model is presented in Supplementary Figure 1. In addition, 
positive predictive value and negative predictive value for differentiating the presence and absence of GDM were 
estimated to be 72.91% and 93.69%, respectively.

Figure 1.  Decision curve analysis of eight pre- and early-pregnancy significant independent factors in 
predicting gestational diabetes mellitus later. GDM gestational diabetes mellitus. The orange solid line 
corresponds to the basic model that includes age, alcohol drinking, cigarette smoking, education, age at 
menarche, maternal family histories of diabetes mellitus and hypertension, as well as the presence of hemopathy, 
epilepsy, hyperthyroidism, cardiovascular diseases, liver diseases, kidney diseases, and lung diseases. The green 
solid line corresponds to the full model that includes both factors in the basic model and the eight newly-
identified unrelated significant factors, including pre-pregnancy body mass index, pre-pregnancy intake of 
folic acid, white cell count, platelet count, alanine transaminase, albumin, direct bilirubin, and creatinine. Over 
threshold probabilities of 0.2, the net benefit gained by adding the eight significant factors was greater than that 
in the basic model.

Figure 2.  Establishment of a risk prediction nomogram based on pre- and early-pregnancy significant 
independent factors for gestational diabetes mellitus later. BMI body mass index, ALT alanine transaminase, Cr 
creatinine, GDM gestational diabetes mellitus. This nomogram can be used to manually obtain predicted values 
from a regression model that was fitted with the pre- and early-pregnancy significant independent factors. 
In detail, there is a reference line at the top for reading scoring points (range 0–100) from all factors in the 
regression model, which were summed together to calculate the total points, and then the predicted values can 
be read at the bottom.
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Discussion
The aim of this study was to examine the association of promising pre-pregnancy demographic parameters and 
early-pregnancy laboratory biomarkers with the later risk of GDM, and further to establish a prediction model. 
The key findings of our analysis were the identification of eight independent pre-/early-pregnancy predictors in 
significant association with the later risk of GDM, and importantly incorporation of these significant predictors 
in a nomogram model had over 85% accuracy in early detecting pregnant women who will progress to GDM 
at the third trimester.

A growing number of epidemiological parameters and laboratory biomarkers have been evaluated in predic-
tion of GDM in the medical literature. For instance, Guo and colleagues retrospectively analyzed 3956 Chinese 
women who underwent their first antenatal visits, and found that age, pre-pregnancy obesity, first-trimester, 
fasting plasma glucose, and a family history of diabetes mellitus were significant predictors of later  GDM16. In 
addition, many laboratory biomarkers in circulation such as fibroblast growth  factors25, fatty  acids26, and  ferritin27 
have been listed as promising drivers of GDM. Currently, one of the greatest challenges facing global obstetri-
cians is the identification of proper early-pregnancy laboratory biomarkers and the establishment of a prediction 
model incorporating some well-established factors for GDM, yet for a few established risk factors such as age and 
obesity, the results of most studies are not often reproducible for other parameters or biomarkers. The reasons 
for the repeated failure are not fully understood, and may be attributable to inter-population heterogeneity in 
genetic backgrounds, study designs, phenotype definitions, analytical methodologies, unaccounted environmen-
tal exposures or lifestyle  presences28–30. In addition to determining the key reasons for inconsistent replications, 
given the distinct genetic heterogeneity and epidemiologic characteristics, it is highly suggested to construct a 
database of potential determinants of GDM in each racial or ethnic population.

To derive a relatively reliable estimate, we resorted to a big database from ten “AAA” hospitals in Xiamen, 
involving 258,466 gestational women between 2008 and 2018, and thereof data from 187,432 gestational women 
with pre-pregnancy diabetes mellitus were finally analyzed. To control for confounders, we adopted a graded 
adjustment method, and only factors that were consistently associated with the significant risk of GDM were 
identified. After removing factors with strong evidence of correlation, we identified eight significant factors 
independently associated with GDM, and six of them are laboratory biomarkers. Consistent with the results of 
most previous  studies16,31–34, we here confirmed the contribution of pre-pregnancy obesity to the increased risk 
of having GDM, as well as the beneficial impact of pre-pregnancy intake of folic acid. Although the six laboratory 
biomarkers of significance identified in this study are routinely measured in clinical practice, their association 
with GDM is the subject of debate due to conflicting data or is rarely reported. Taking albumin as an example, 
Piuri and colleagues observed a significantly higher level of albumin in women with GDM than the general 
 population35, whereas there was no material difference in albumin in the study by Gungor and  colleague36. 
By contrast, we found that albumin level was significantly lower in women with GDM than women without 
GDM. A real finding can fail to replicate due to numerous reasons, including divergent genetic backgrounds 
and insufficient statistical power. Nevertheless, it is widely recognized that the risk attributable to a single index 
or biomarker is small, considering that GDM is a multifactorial disease to which inherited, environmental, and 
lifestyle factors contribute independently or  interactively37,38, and such a small effect may also be exacerbated by 
the presence of other factors. For practical reasons, to construct a multivariable prediction model with decent 
prediction performance for GDM is imperative.

To shed some light on this issue, in an attempt to test prediction accuracy and justify gained benefits of eight 
significant factors identified in this study, we employed multiple statistics from both calibration and discrimi-
nation  aspects39 and visual tools in decision curve analysis. On the basis of decent prediction performance, we 
regressed age and eight significant factors in a nomogram model, and found that this model had an 87% predic-
tion accuracy. The importance of this nomogram prediction model lies in the facilitation of clinical appraisal of 
future developing GDM during the third trimester of pregnancy. For further practical application, we agree the 
results of the present population in Xiamen will require further validation in an independent Chinese population 
and additional follow-up for confirmation of this nomogram risk prediction model presented here.

Our study findings have important public health implications. In clinical practice, the diagnosis of GDM is 
made during the 24th to 28th weeks of pregnancy. If we can predict the later occurrence of GDM by using pre-
pregnancy or early-pregnancy markers, the time window of adverse gestational consequences can be dramatically 
improved by immediate intervention on the high-risk pregnant women. It is worth noting that the nomogram 
prediction model we established can tease out 87% of women who will progress to GDM later.

Limitations. There are some limitations to the present analysis. First, all gestational women were exclu-
sively enrolled from ten “AAA” hospitals in Xiamen, China, and the extrapolation of our findings to the other 
regions or racial groups is limited. Second, other important factors such as the previous histories of GDM and 
 macrosomia40, as well as sleep  quality41 and ambient air pollution  exposure42, which have been reported to be 
strong predictors for future GDM, were not available for us. Third, all laboratory biomarkers were measured only 
once, and it is of great interest to monitor their dynamic changes in susceptibility to the later development GDM. 
Fourth, most demographic data in this cohort, especially pre-pregnancy intake of folic acid, were self-reported 
and error-prone, and so the possibility of measurement error and residual confounding remains.

Conclusions. Taken together, though a big data analysis, we have identified eight independent pre-/early-
pregnancy predictors in significant association with the later risk of GDM, and importantly a nomogram mod-
eling these predictors has over 85% accuracy in early detecting pregnant women who will progress to GDM at 
the third trimester. For practical reasons, we hope the current investigation will not remain just an endpoint 



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7335  | https://doi.org/10.1038/s41598-021-86818-7

www.nature.com/scientificreports/

instead of a start to establish background data to further explore potential risk profiling of GDM, as well as to 
decipher underlying molecular mechanisms.

Ethical approval. The conduct of this study was in accordance with the ethical standards of the Institutional 
Review Board of each participating hospital and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards.

Informed consent. Informed consent was obtained from all study participants.

Data availability
Data are available upon reasonable request.
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