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Detection of loci exhibiting 
pleiotropic effects on body weight 
and egg number in female broilers
Eirini Tarsani 1*, Andreas Kranis2,3, Gerasimos Maniatis2, Ariadne L. Hager‑Theodorides1 & 
Antonios Kominakis1 

The objective of the present study was to discover the genetic variants, functional candidate genes, 
biological processes and molecular functions underlying the negative genetic correlation observed 
between body weight (BW) and egg number (EN) traits in female broilers. To this end, first a bivariate 
genome‑wide association and second stepwise conditional‑joint analyses were performed using 2586 
female broilers and 240 k autosomal SNPs. The aforementioned analyses resulted in a total number 
of 49 independent cross‑phenotype (CP) significant SNPs with 35 independent markers showing 
antagonistic action i.e., positive effects on one trait and negative effects on the other trait. A number 
of 33 independent CP SNPs were located within 26 and 14 protein coding and long non‑coding RNA 
genes, respectively. Furthermore, 26 independent markers were situated within 44 reported QTLs, 
most of them related to growth traits. Investigation of the functional role of protein coding genes 
via pathway and gene ontology analyses highlighted four candidates (CPEB3, ACVR1, MAST2 and 
CACNA1H) as most plausible pleiotropic genes for the traits under study. Three candidates (CPEB3, 
MAST2 and CACNA1H) were associated with antagonistic pleiotropy, while ACVR1 with synergistic 
pleiotropic action. Current results provide a novel insight into the biological mechanism of the genetic 
trade‑off between growth and reproduction, in broilers.

Reproductive traits in livestock species often show an antagonistic relationship with growth traits that is mani-
fested as negative genetic correlation between single members of trait complexes. In chicken, a typical example is 
the negative genetic correlation  (rg) estimated between body weight (BW) and egg number (EN) with  rg estimates 
in the range from − 0.05 to − 0.551–3. In general, the most important source for genetic correlations is usually 
 pleiotropy4, however, genetic correlations may also arise from linkage disequilibrium (LD) among distinct  loci5.

One possible way of identifying plausible pleiotropic genetic loci is to perform multivariate or univariate 
GWAS of traits under interest. The resulting marker trait(s) associations are termed cross-phenotype (CP) 
 associations6. While multivariate  approaches7 allow for direct identification of CP associations, in the context 
of univariate analyses, detection of CP associations relies on aggregating results of single traits analyses via 
meta-analysis  techniques8.

When searching for pleiotropic loci via GWAS, it is important to bear in mind that CP associations are 
based on statistical evidence regardless of the underlying  cause9 and are not necessarily indicative of pleiotropic 
genetic variants.

On the contrary, pleiotropy occurs when a genetic locus truly affects more than one trait, simultaneously. 
When beneficial effects of a genetic factor on one trait are accompanied by negative effects on the other trait, 
antagonistic pleiotropy (AP)  exists10,11. In contrast to AP, synergistic  pleiotropy12,13 (SP) occurs when a genetic 
variant simultaneously either increases or decreases performance in two different traits.

Based on the mechanisms of action, pleiotropy can be distinguished in: biological (or horizontal), mediated 
(or vertical) and spurious  pleiotropy6,14. Specifically, in biological pleiotropy, a genetic variant or a gene affects 
multiple phenotypes since causal variants for different phenotypes can be colocalized in the same gene. In medi-
ated pleiotropy, there is a causal relationship between two phenotypes so as a variant exerts an effect on one 
phenotype through the another one while spurious pleiotropy refers to a falsely association between marker and 
phenotypes due to bias, misclassification or linkage disequilibrium (LD). To overcome the challenge of spuri-
ous pleiotropy in the latter case, approaches such as LD pruning and conditional and joint analysis (cojo) can 
be applied to alleviate the high SNP interdependency arising from LD and to select the LD independent SNPs.
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In chicken, CP associations have already been reported by GWAS for various traits such as daily feed intake 
and  efficiency15 and for egg weights at different  ages16,17. Nevertheless, no GWAS has, so far, been reported with 
the aim to discover genetic variants associated with body weight (BW) and egg number (EN) in chickens.

Driven from the scarcity of relevant reports, we have elaborated the present study with the aim to identify 
genetic variants and genes simultaneously affecting BW and EN in chickens. To this end, first we conducted a 
bivariate GWAS to identify SNP signals associated with both traits. As LD could generate spurious pleiotropic 
associations (see  reviews6,14) we then applied conditional and joint analysis (cojo) of the SNP signals obtained 
from bivariate analysis to identify LD-independent CP SNPs. Finally, we investigated the functional role of the 
candidate genes underlying the independent CP SNPs in attempts to propose the most relevant pleiotropic genes 
implicated in the genetic control of traits under study.

Results
Comparison of genome‑wide significant SNPs found by bivariate analysis, BW univariate 
analysis and EN univariate analysis. Estimations of the genomic inflation factors (univariate analyses: 
λBW = 0.86, λΕΝ = 0.95, bivariate analysis: λ = 0.85) were less than 1 indicating the absence of population structure 
or artifacts in the present data. Furthermore, the genomic genetic correlation  (rg) between the two traits was 
estimated as high as − 0.183 ± 0.15 (results not shown). Figure 1 shows the profiles of the SNP p values (expressed 
as −  log10 values) across the three GWAS. Specifically, a total number of 667 genome-wide significant SNPs (FDR 
p value < 0.10) were detected by BW univariate analysis and these SNPs were dispersed across the 28 autosomes 
(Figs. 2, 3). For EN univariate analysis, a total number of 10 SNPs across five autosomes (2, 3, 12, 26 and 28) were 
found to reach genome-wide significance (FDR p value < 0.10) (Figs. 2, 3). The bivariate analysis resulted in 630 
genome-wide significant (FDR p value < 0.10) CP SNPs across the 28 autosomes (Figs. 2, 3).

Comparison of SNP signals across the three association analyses resulted in one common significant marker 
(rs313298834) on GGA12 (Figs. 2, 3). In addition, a total number of 475 SNPs were common between the BW 
univariate analysis and the bivariate analysis and all significant SNPs (n = 10) for EN were also detected by 
bivariate analysis (Fig. 3).

LD‑independent significant SNPs. Cojo-GCTA analyses resulted in a total number of 49 independ-
ent CP SNPs while 21 and 5 independent significant SNPs were detected for BW and EN, respectively (Fig. 3, 
Supplementary Table S1). As observed in Fig. 3, no independent SNP was common between the three analyses. 
Nevertheless, markers were common between the BW univariate analysis and the bivariate analysis (Fig. 3).

Table 1 presents a detailed description of the 49 independent CP associations across the 25 autosomes (1–15, 
17–21 and 23–28). The maximum number (n = 9) of independent markers were located on GGA1 while marker 
rs315329074 (GGA27) presented the lowest p value (6.13E-32) after ‘cojo’ analysis. Table 1 along with Supple-
mentary Fig. S1 also shows the estimated marker effect sizes (β) on the two traits obtained from bivariate analysis. 
In accordance with antagonistic pleiotropic action i.e. positive effects on one trait and negative effects on the 
other trait, the estimated effect sizes for the majority (35 out of 49) of the CP associations displayed opposing 
signs (Supplementary Fig. S1).

Note that the estimated genomic  rg (− 0.183) is a weighted average of effect sizes of markers exhibiting antago-
nistic, synergistic and non pleiotropic action and only in the extreme case of  rg = − 1 all the implicated markers 
would exhibit opposing effects on both traits.

Effect prediction of the independent CP significant SNPs and identification of positional can‑
didate genes and published QTLs. A total number of 40 positional candidate genes (of which 24 were 
annotated genes) were identified as lying within 33 independent SNPs while 16 SNPs were intergenic variants 

Figure 1.  Circular Manhattan plots showing the −  log10(p values) of SNPs across the 28 autosomal 
chromosomes for body weight (BW) (a), egg number (EN) (b) and both traits (c), respectively. Red dots in 
Manhattan plots denote the genome-wide significant SNPs. Plots were constructed using the CMplot package 
(https:// github. com/ YinLi Lin/R- CMplot) in R (http:// www.r- proje ct. org/).

https://github.com/YinLiLin/R-CMplot
http://www.r-project.org/
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(Supplementary Table S2). Specifically, 33 SNPs were located within 26 protein coding genes and 14 long non-
coding (lnc) RNA genes (Supplementary Table S2). Of these SNPs, one was a missense variant of gene ZC3H18, 
one a synonymous variant of gene EXTL1 and 23 were intron variants of annotated genes (CELF2, PTPRZ1, 
PTPRB, EIF1AX, NOL4, TMEM206, SLAIN2, SORCS2, FMN1, MARK3, CPEB3, EBF3, ACVR1, AMY2A, 
MAST2, TBL1XR1, CHSY1, CACNA1H, NPHP4, VPS11, PLXNA2 and CACNB1).

Figure 2.  Graphic depiction showing the positions of the genome-wide significant SNPs (denoted as points) 
and their p values from univariate and bivariate analyses aligned along each autosome. Black labels with number 
denote the chromosomes. Each SNP position is linked to at least one colored circle representing the associated 
trait (s) (i.e. body weight (BW): red circle, egg number (EN): blue circle and both traits: cyan circle). The 
common SNP between the three analyses (2 univariate and 1 bivariate analyses) is presented with purple color. 
Plot was constructed using the shinyChromosome (https:// yimin gyu. shiny apps. io/ shiny Chrom osome59).

Figure 3.  Venn diagrams showing the number of common significant SNPs between analyses. The left Venn 
diagram presents the number of common significant SNPs between bivariate association analysis (both traits: 
green color) and univariate association analyses (body weight (BW): blue color and egg number (EN): yellow 
color) while the right Venn diagram presents the number of common significant SNPs after conditional and 
joint (cojo) analyses. Some common SNPs (with their rsids) are also given with red color. Venn diagrams were 
constructed by VENNY 2.160.

https://yimingyu.shinyapps.io/shinyChromosome
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Figure 4 provides a view for the independent CP significant SNPs (n = 49) and the corresponding positional 

Table 1.  Independent cross-phenotype (CP) significant SNPs for body weight and egg number in broilers.n 
The marker effect sizes (βBW, βEN) of CP-SNPs on the two traits are also provided. a Positions are based on 
GRCg6a assembly. b COJO stands for conditional and joint analysis.

SNP ID GGA Position (bp)a βBW βEN P value from bivariate analysis FDR p value P value from  COJOb

rs315275636

1

6206137 5.655 − 1.212 7.91E−12 2.70E−08 1.17E−12

rs317275973 23082139 − 4.514 2.223 1.82E−14 1.62E−10 1.29E−17

rs312392044 35990963 5.732 − 0.566 1.41E−13 8.96E−10 2.71E−14

rs316780156 87938572 3.453 − 0.367 8.75E−06 0.005942 2.93E−07

rs315007062 100596308 3.556 0.737 3.22E−09 4.86E−06 1.74E−09

rs315995534 110869322 2.073 − 2.200 8.56E−07 0.000739 2.13E−06

rs317073055 121235094 5.485 − 0.913 4.67E−13 2.39E−09 7.06E−14

rs317590244 136269771 4.125 − 0.769 2.57E−11 7.88E−08 3.78E−12

rs316472061 185926511 5.680 − 0.613 1.10E−13 7.39E−10 1.95E−14

rs14135719

2

8489508 5.556 − 0.980 2.87E−11 8.57E−08 4.41E−12

rs13543487 27103453 3.484 0.347 1.92E−13 1.16E−09 5.89E−14

rs317979230 59469333 4.052 0.222 1.19E−14 1.12E−10 3.06E−15

rs315191969 75552665 2.426 − 0.309 2.04E−08 2.49E−05 8.15E−08

rs15140482 107231066 4.770 − 1.392 2.23E−11 7.01E−08 3.28E−12

rs15156742 133305723 4.581 0.160 1.42E−15 1.96E−11 3.03E−16

rs313125064

3

21986853 3.289 − 2.777 2.93E−07 0.000271 2.13E−13

rs317668107 33354124 − 3.193 0.089 1.45E−11 4.81E−08 2.22E−17

rs314958778 52121842 3.481 1.330 1.58E−08 2.01E−05 2.04E−08

rs313973628

4

8970286 − 3.035 0.604 1.48E−10 3.46E−07 1.88E−08

rs313178030 26530662 5.752 − 1.122 2.27E−13 1.34E−09 3.38E−14

rs317953448 43384266 4.267 − 0.882 7.08E−12 2.46E−08 1.02E−12

rs15608447 66459916 − 2.582 − 1.263 9.09E−09 1.24E−05 3.66E−10

rs313208295 80292623 5.069 − 1.164 4.60E−11 1.31E−07 6.62E−12

rs312798022

5

8828819 5.396 − 0.853 3.11E−12 1.26E−08 4.08E−13

rs313257959 30658287 5.614 − 0.332 7.37E−14 5.11E−10 1.39E−14

rs314038572 50471323 4.876 − 0.842 5.00E−10 9.73E−07 7.49E−11

rs314529054
6

21832302 2.039 − 0.633 1.78E−07 0.000172 3.12E−07

rs314712068 35135780 3.939 − 0.485 2.74E−10 5.93E−07 2.44E−10

rs313879964 7 36286374 6.084 0.215 4.11E−22 2.42E−17 2.15E−22

rs314425715
8

770143 4.218 − 2.068 1.21E−08 1.59E−05 3.17E−09

rs317902708 21684030 4.932 − 0.771 1.30E−10 3.15E−07 3.88E−10

rs317315660 9 17942760 − 3.302 1.039 9.72E−07 0.000818 4.68E−12

rs14952656 10 17996013 5.234 − 0.789 1.62E−10 3.67E−07 1.08E−29

rs316546378
11

5124955 2.849 0.314 2.87E−05 0.016969 4.87E−07

rs318098582 18407493 5.686 − 0.633 2.66E−21 1.05E−16 5.21E−22

rs318048363 12 6154483 5.078 − 0.824 1.09E−10 2.75E−07 1.63E−11

rs318032338 13 16259361 − 2.251 − 1.391 7.64E−09 1.07E−05 6.22E−07

rs317631529 14 5738298 − 3.141 0.735 1.86E−14 1.62E−10 1.16E−11

rs314778226 15 4845973 − 4.360 0.131 3.27E−14 2.57E−10 4.93E−15

rs317370260 17 1629390 2.168 0.418 0.000148 0.061232 2.89E−08

rs313997974 18 6177837 5.012 − 1.160 9.66E−10 1.74E−06 5.29E−13

rs313536194 19 9937564 5.266 − 1.273 1.66E−10 3.73E−07 4.10E−15

rs317414603 20 6729013 4.271 − 0.693 4.47E−23 3.51E−18 7.37E−24

rs314420361 21 698421 5.308 0.203 1.31E−15 1.96E−11 3.75E−16

rs317101069 23 3379059 2.747 1.986 2.23E−15 2.77E−11 4.59E−09

rs14291881 24 150829 3.875 − 1.075 2.59E−19 7.63E−15 4.07E−20

rs316343530 26 2854350 − 2.915 − 1.896 2.24E−06 0.001699 7.48E−13

rs315329074 27 6920352 − 4.810 1.438 4.23E−25 9.97E−20 6.13E−32

rs314496246 28 3661043 4.730 0.156 1.42E−15 1.96E−11 1.98E−11
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candidate gene(s) and published QTL(s). With regard to QTLs, 26 independent SNPs lied within 44 previously 
reported QTLs (Supplementary Table S2). As seen in Fig. 4, the majority of QTLs were related to body weight 
(hatch, at 21 or 36 days) or body parts weight (e.g. femur weight, proventriculus weight, breast muscle weight, 
ileum weight, wattles and comb weight), followed by QTLs related to Qualitative Traits (e.g. feathered feet, 
feather colour extended black and feather crested head) and finally QTLs related to feed, dry matter intake or 
feed conversion. Notably, one of the independent SNPs i.e. rs314529054 was located within a region of GGA6 
where an ovary weight QTL and a body weight QTL are reported. Marker rs314529054 also lied within gene 
CPEB3 (Supplementary Table S2). Finally, rs317370260 lied within a region of GGA17 where a QTL related to 
egg production rate is reported. No positional gene was present in the area with only a lncRNA lying in proxim-
ity (distanced 5322 bp) to the marker.

Bioinformatics analyses. All annotated chicken genes were recognized by GeneCodis 4.0. MEA revealed 
15 genes participating in significantly enriched concurrent GO BP and/or pathway annotations (Supplementary 
Table S3). Furthermore, the LAGO tool recognized all but two (NOL4 and ZC3H18) candidate genes and high-
lighted a total number of 120 enriched GO BPs (Supplementary Table S4).

Figure 4.  Radial network showing the independent cross-phenotype significant SNPs (with rsids) and the 
corresponding positional candidate genes and/or published QTLs in the searched regions. Note that QTLs were 
grouped according to their trait relevance. Figure was constructed using data.tree and networkD3 R packages.
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Several candidate genes displayed growth functional relevance (e.g. GO:0032502: developmental process: 
participating genes ACVR1, CACNA1H, CHSY1, CPEB3, EBF3, EXTL1, FMN1, MAST2, NPHP4, PLXNA2, 
PTPRB, PTPRZ1, TBL1XR1ACVR1, PLXNA2, ACVR1, CACNA1H, CHSY1, CPEB3, EBF3, EXTL1, FMN1, 
NPHP4, PLXNA2, PTPRB, PTPRZ1, TBL1XR1). Nevertheless, only CPEB3, ACVR1, CACNA1H and MAST2 were 
found to participate in reproduction related processes. Specifically, CPEB3 was associated with three concurrent 
annotations related to reproduction (oocyte meiosis, regulation of translation and progesterone-mediated oocyte 
maturation, FDR p value = 0.01) (Supplementary Table S3). Jointly, the rest three genes (ACVR1, CACNA1H 
and MAST2) were associated with sexual reproduction (GO:0019953) while ACVR1 and MAST2 were further 
associated with cellular process involved in reproduction in multicellular organism (GO:0022412) (Supplementary 
Table S4; Fig. 5).

Figure 5.  Radial network displaying the ACVR1, MAST2 and CACNA1H genes and their respective biological 
processes. Red color denotes the developmental process while reproduction is marked with green color. Figure 
was constructed using data.tree and networkD3 R packages.
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Of the four above genes, ACVR1 displayed the highest number of significant concurrent annotations (n = 55 
GO BPs) and was also member of two pathways: positive regulation of BMP signaling (GO:0030513) and TGF-beta 
signaling pathway (gga04350). Based on functional relevance derived from ontological and functional analyses, 
the four above genes (ACVR1, CPEB3, MAST2 and CACNA1H) were nominated as most plausible pleiotropic 
candidate genes for BW and EN. The four above mentioned genes lied within respective numbers of SNPs 
i.e. CPEB3 (rs314529054, (GGA6), pcojo = 3.12E−07), ACVR1 (rs313879964 (GGA7), pcojo = 2.15E−22), MAST2 
(rs317902708 (GGA8), pcojo = 3.88E−10) and CACNA1H (rs317631529, (GGA14), pcojo = 1.16E−11) (Table 1). 
Estimated effect sizes (β) obtained from bivariate analysis for the respective markers are indicative of antagonistic 
pleiotropic action for the three genes i.e. CPEB3 (βBW = 2.04, βEN = − 0.63), MAST2 (βBW = 4.93, βEN, =  − 0.77) and 
CACNA1H (βBW = − 3.14, βEN = 0.74) and synergistic action for ACVR1 (βBW = 6.08, βEN = 0.26, Table 1). Of the 
three genes exhibiting antagonistic action, CPEB3 and MAST2 affected positively and negatively BW and EN, 
respectively, while a reverse trend was observed for CACNA1H.

With regard to molecular function, the four candidate genes showed GO slim terms of binding (GO:0005488) 
and protein binding (GO:0005515), ACVR1 and MAST2 of kinase activity (GO:0016301), catalytic activity 
(GO:0003824) and transferase activity (GO:0016740), CACNA1H of ion transmembrane transporter activity 
(GO:0015075), channel activity (GO:0015267) and transporter activity (GO:0005215) and finally CPEB3 of 
nucleic acid binding (GO:0003676) and translation regulator activity (GO:0045182) (results not shown).

Discussion
In the present study, marker trait(s) association analyses along with in silico exploration of the biological role(s) 
of the implicated genes were jointly applied to refine our understanding of the genetic trade-off between BW and 
EN, in broilers. The genetic antagonism between the two traits was confirmed at the genome-wide level, as the 
estimate of the genomic genetic correlation between BW and EN was as high as − 0.18 herein, in concordance 
with previous  findings1–3. As this genome-wide estimate only describes the cumulative CP effects of all implicated 
causal loci, in this study we further attempted to identify genetic variants with strong statistical associations for 
both traits, quantify their patterns of pleiotropic effects and explore the involved biological processes and/or 
pathways.

Marker trait(s) association analysis verified previous results, by revealing one common SNP (rs313298834) 
on GGA12 that has been associated with EN in female  broilers18 and five more markers (rs317668107 on GGA3, 
rs15608447 on GGA4, rs318098582 on GGA11, rs317414603 on GGA20 and rs315329074 on GGA27) associated 
with  BW19 in broilers. We also noted a higher number of SNP signals passing the genome-wide FDR significance 
threshold (set up to 0.10 here) for BW when compared to EN. As the yield of GWAS critically depend on the 
underlying effect-size distribution of the implicated  variants20, this is not a surprising finding and it may be attrib-
uted to the lower heritability estimate for EN (0.17) when contrasted to the respective estimate (0.30) for BW.

Bivariate analysis identified a vast number of genome-wide significant CP SNPs. To ensure that CP associa-
tions did not arise from LD between markers (spurious  pleiotropy6), a critical step in the present study was to 
identify only LD-independent SNPs via stepwise cojo analysis, as in other  GWAS21,22. After overcoming the LD 
challenge, our results disclosed several genetic variants simultaneously affecting BW and EN with some of them 
pointing to most promising pleiotropic genes, as we discuss below.

The first SNP that served as a proxy to a plausible pleiotropic gene was rs314529054 (GGA6). The marker 
is located within two reported QTLs related to ovary and body weight and lies within CPEB3 (cytoplasmic 
polyadenylation element binding protein 3) gene. Ontological and functional analysis suggested that the gene in 
question may be considered as a true pleiotropic gene, however, literature evidence on its functional relevance 
to the traits examined here is shortcoming. In mice, CPEB has been reported to control polyadenylation and 
translation during the dictyate stage of oocyte development and this regulation has also a profound influence 
on  folliculogenesis23.

In contrast to the previous marker, rs313879964 (GGA7) pointed at a gene with a highly likely pleiotropic 
function. This specific marker lied within ACVR1 (serine/threonine-protein kinase receptor or activin receptor type 
I or activin a receptor, type 1, also known as ALK2) gene. This gene participates in several growth and reproduc-
tion related GO BPs and has well documented involvement in biological phenomena such as those examined here. 
As MEA showed, ACVR1 encodes for a bone morphogenetic protein (BMP) type I receptor of the transforming 
growth factor-beta (TGF-β) superfamily which plays a key role in cell growth while regulates several reproduc-
tive processes (such as follicular development and ovulation)24. In addition, ACVR1 regulates reproduction via 
the BMP and anti-Müllerian hormone (AMH)  signaling25. In chickens, AMH is required for the urogenital 
development and germ cell  migration26, is presented in early development of follicles and is expressed in small 
 follicles27. So far, the chicken ACVR1 gene has been suggested as a positional candidate gene for body  weight28, 
has a regulatory role during skeletal development in osteogenesis and  chondrogenesis29 and is expressed within 
the chicken granulosa and thecal layers during ovarian follicle  development30.

Two more markers, rs317902708 (GGA8) and rs317631529 (GGA14) pointed at two most promising pleio-
tropic genes i.e., MAST2 and CACNA1H, respectively. Specifically, MAST2 (microtubule associated serine/threo-
nine kinase 2) has been previously detected by RNA-seq in visceral fat of broiler and layer females at the onset of 
sexual  maturation31. Furthermore, human MAST2 gene has been reported to be involved in PI3K-AKT signaling 
 pathway32 that regulates various cellular processes, such as proliferation, growth, apoptosis and cytoskeletal 
 rearrangement33. On the other hand, CACNA1H (calcium voltage-gated channel subunit alpha1 H, also known 
as Cav3.2) encodes for Cav3.2 channel that is a member of the voltage-gated calcium channel family. This gene 
participates in the T-type  Ca2+ channels which contribute to signal transduction pathways regulating protein 
synthesis, development, proliferation and cell  differentiation34 that are mainly expressed during embryonic 
 development34. Particularly, these channels are involved in the early stages of muscle differentiation in  humans35 
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and  mice36. Female Cav3.2-/- null mutant mice presented decreased body  weight37 and reduced litter  size38. 
Moreover, Cav3.2 may have a role in reproduction since it facilitates the influx of  Ca2+ in mouse oocytes and 
eggs to maintain  Ca2+ homeostasis during oocyte maturation and post  fertilization38. The murine Cacna1h gene 
is also upregulated in the proestrus of the Gonadotropin-releasing hormone (GnRH)  neurons39. GnRH deter-
mines the pattern of secretion of follicle stimulating hormone (FSH) and luteinising hormone (LH) that regulate 
the endocrine function and gamete maturation of  gonads40. So far, the chicken CACNA1H gene has only been 
associated with egg  quality41 and body  weight42.

Based on the approach followed herein, three candidates (CPEB3, MAST2 and CACNA1H) were identified 
as ‘trade-off ’ genes i.e. exhibiting antagonistic pleiotropy, while ACVR1 displayed synergistic pleiotropic action.

We hypothesize that the above four genes are indicative of horizontal pleiotropy although we acknowledge 
the scepticism of Jordan et al.43 who hypothesized that the pervasive horizontal pleiotropy observed in polygenic 
traits is, on some level, a logical consequence of widespread polygenicity. Present results seem to fairly support 
such a hypothesis as hundreds of markers with little individual effects on the traits could be detected in the 
present study, especially for BW.

Another interesting finding obtained herein was the presence of independent CP SNPs within long non-
coding genes (lncRNAs: RNA transcripts greater than 200 bp in length). In nucleus, lncRNAs have been reported 
to function in-cis and in-trans whereby in-cis acting lncRNAs influence the expression of nearby  genes44. Fur-
thermore, lncRNAs can encode short  peptides44,45 and function as molecular decoy for proteins or sponges for 
other transcripts (such as miRNAs)44. They can also regulate numerous functions such as epigenetic modifica-
tion, transcription and post-transcription while playing a key role in tissue development, muscle contraction/
relaxation44 and  myogenesis45. In chickens, lncRNAs have been reported to regulate muscle development, lipid 
metabolism, egg production and disease  resistance46.

To conclude, present results provide a novel insight in the genetic mechanism underlying antagonistic inter-
play between growth and reproduction in broilers. Further follow-up studies (e.g. fine mapping and gene expres-
sion studies) are warranted to experimentally verify present findings.

Methods
Data and quality control. Genotypic and phenotypic records were provided by Aviagen. The available data 
consisted of 2992 female broilers from a grand-grandparent (GGP) commercial line with phenotypic records on 
body weight (BW) at 35 days of age (average = 1822.7 g, SD = 143.6 g) and number of eggs (EN) per hen col-
lected from 28 to 50 weeks of age (average = 132.4 eggs, SD = 29.8 eggs). Animals were genotyped using the 600 k 
Affymetrix HD SNP  array47 resulting in a total number of 544,927 autosomal SNPs. Quality control (QC) was 
performed first at a sample and second at a marker level. At a sample level, 406 animals were excluded due to 
call rate < 0.99 and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range: 0.013). At the marker 
level, 305,660 SNPs autosomal SNPs were excluded due to: call rate < 0.95, minor allele frequency (MAF) < 0.05 
and LD pruning  (r2 > 0.99 within windows of 1 Mb inter-marker distances). Finally, a total of 2586 samples and 
239,267 autosomal SNPs were retained for further analyses. All QC criteria were applied using the SNP & Vari-
ation Suite software (http:// www. golde nhelix. com).

Univariate and bivariate association analyses. First, we performed univariate analyses to detect sig-
nificant SNP associations for individual traits. The following univariate linear mixed model was applied:

where y is a n × 1 vector of phenotypic values of BW or EN for n = 2586 animals, W is a n × 53 matrix of covariates 
of fixed effects including hatch (36 classes) and mating group (17 classes), α is a c × 1 vector of the corresponding 
coefficients, x is a n × 1 vector of marker genotypes (coded as 0, 1, and 2 according to the number of copies of 
the minor allele), β is the effect size of marker on BW or EN, u is a vector of random polygenic effects and e is a 
vector of random residuals. The random effects were assumed to be normally distributed with zero means and 
the following covariance structure:

where σ 2
u and σ 2

e  are the polygenic and error variance components, I is the nxn identity matrix, and G is the n x 
n genomic relationship matrix. Univariate analyses were performed using the factored spectrally transformed 
linear mixed model (FaST-LMM48) software (C++ Version 2.07) that was available at github (https:// fastl mm. 
github. io/). Apart from SNP p values, FaST-LMM automatically computed the SNP q values using the false-
discovery rate  (FDR49) correction method.

A bivariate linear mixed model was then applied to identify significant CP SNP associations with both traits. 
Specifically, the following bivariate linear mixed model was used:

with U ~  MNnx2(0, G, Vg) and

where Y is a n × 2 matrix of 2 phenotypes for n = 2586 animals, W is a n × 53 matrix of covariates (fixed effects) 
including hatch (36 classes) and mating group (17 classes); A is a c × 53 matrix of the corresponding coefficients 

y = Wα + xβ + u+ e

Var

[

u

e

]

=

[

Gσ 2
u 0

0 Iσ 2
e

]

Y = WA+ xβT
+ U + E

E ∼ MNnx2(0, Inxn,Ve)

http://www.goldenhelix.com
https://fastlmm.github.io/
https://fastlmm.github.io/
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including the intercept; x is a n-vector of marker genotypes (coded as 0, 1, and 2 according to the number of 
copies of the minor allele), β is 2-vector of marker effect sizes for the 2 phenotypes; U is a n × 2 matrix of random 
effects and E is a n × 2 matrix of random residuals. Furthermore, G is the n x n genomic relationship matrix 
(estimated as centered genomic  matrix7,50), Vg is a 2 × 2 symmetric matrix of genetic (co)variance, I is a n × n 
identity matrix, Ve is a 2 × 2 symmetric positive definite matrix of residual variance component and  MNn×2(0, 
V1, V2) denotes the n × 2 matrix normal distribution with mean 0, row covariance matrix V1 (n × n) and column 
covariance matrix V2 (2 × 2).

Association of each SNP with both traits was assessed by testing the null hypothesis that the marker effect 
sizes for both phenotypes are zero i.e.  H0: β = 0, where β is a vector of the two marker effects, against the general 
alternative hypothesis  H1: β ≠ 0. The Wald test statistic was used to infer the significant CP SNP associations. 
The genetic correlation  (rg) was also estimated between the two traits. Bivariate analysis was performed using 
the  GEMMA51 software (version 0.98.1).

For each association analysis, the estimation of the genomic inflation factor (λ) was used to assess potential 
systematic bias due to population structure or the analytical  approach52. If the λ value was greater than 1, it pro-
vided evidence for some systematic  bias52. If the λ value was less than or equal to 1, no adjustment was  needed53. 
λ was estimated using the SNP & Variation Suite software (http:// www. golde nhelix. com).

Multiple‑testing correction. For univariate association analyses, FaST-LMM corrected SNP p values for 
multiple comparisons, so there was no need for an additional correction, however, for bivariate analysis the 
 FDR49 correction method was applied using R (http:// www.r- proje ct. org/). For all analyses, SNPs with FDR p 
values lower than 0.10 were considered as genome-wide significant.

Selection of LD‑independent SNPs. Results obtained from univariate and bivariate analyses were fur-
ther subject to stepwise conditional and joint (cojo) analysis using the ‘cojo-slct’ option and the GCTA 54 tool to 
select the independent SNPs. The cojo-GCTA analysis corrects β and p values of neighboring SNPs (in a slid-
ing window of 10 Mb) based on the LD between the SNPs. This ensures that the SNP with the lowest p value 
is selected first for conditioning the effect on neighboring loci based on the LD between the neighboring SNPs 
and the selected SNP. Following LD-based correction of effect, all SNPs that remained significant under a p 
value threshold (4.2e−06) are run through the same process in a stepwise manner. A p value threshold as high 
as 4.2e−06 (i.e. 1/total number of analyzed SNPs) was used here to declare the independent significant SNPs. In 
short, cojo analysis identifies: (1) the number of independent SNP signals in a region and (2) association signals 
due to the joint effect of several SNPs. To identify the independent CP associations, we used as input in the cojo-
GCTA analysis the summary-level statistics obtained by the bivariate analysis. Specifically, the b estimates along 
with their standard errors were used to estimate t values for the SNPs and t values were finally converted to p 
values using R code (http:// www.r- proje ct. org/).

Effect prediction of the independent CP significant SNPs and detection of positional candi‑
date genes and published QTLs. To predict the consequences of the independent CP significant SNPs 
on genes, transcripts, protein sequence and regulatory regions, the Variant Effect Predictor (VEP, https:// www. 
ensem bl. org/ Tools/ VEP55) tool was employed with the latest release (Ensembl release 102, accessed: 18 Decem-
ber 2020).

Physical positions of SNPs were also obtained by the VEP tool using the GRCg6a assembly (https:// www. 
ensem bl. org/ Gallus_ gallus/ Info/ Annot ation, GenBank Assembly ID: GCA_000002315.5, accessed: 18 December 
2020). The VEP tool was also used to search for positional candidate genes and for published QTLs including 
the independent CP significant SNPs. Note that both Ensembl and NCBI RefSeq transcript databases were used. 
With regard to published QTLs, VEP retrieves information via connections with Animal QTL database (Animal 
QTLdb) and Online Mendelian Inheritance in Animals (OMIA) database for Gallus gallus.

Bioinformatics analyses. We conducted ontological and functional analysis of the positional candidate 
genes in efforts to elucidate their functional role and relevance to the traits under study. First, modular enrich-
ment analysis (MEA) using GeneCodis 4.0 (https:// genec odis. genyo. es/56,57) was carried out. MEA removes the 
redundant terms and produces genes and annotations grouped in modules (or metagroups) which are function-
ally coherent and are ranked by their significance and  relevance57. For MEA, we selected the species of Gallus 
gallus for the input genes and searched for Gene Ontology (GO) biological processes (BPs) as well as KEGG 
pathway significantly enriched concurrent annotations. Here, concurrent annotations with FDR p value lower 
than 0.05 were considered as significantly enriched.

Second, the LAGO tool (https:// go. princ eton. edu/ cgi- bin/ LAGO58) was used to infer the GO BP terms of the 
candidate genes. Since there were unknown genes during exploration of chicken GO annotations, the human 
GO annotations were used here. Computation of p values was based on the hypergeometric distribution and a 
p value cut-off equal to 0.10 was set as denoting significantly enriched terms. Candidate genes associated with 
enriched GO BP and pathways relevant to growth and reproduction processes were considered as functionally 
relevant to the traits under study and were thus nominated as candidate pleiotropic genes. Finally, the GO term 
Mapper (https:// go. princ eton. edu/ cgi- bin/ GOTer mMapp er) was employed to infer the GO slim molecular func-
tion terms of the pleiotropic candidate genes using human genes as input.

Ethical approval. All animals included in this study were not subjected to any invasive procedures.

http://www.goldenhelix.com
http://www.r-project.org/
http://www.r-project.org/
https://www.ensembl.org/Tools/VEP
https://www.ensembl.org/Tools/VEP
https://www.ensembl.org/Gallus_gallus/Info/Annotation
https://www.ensembl.org/Gallus_gallus/Info/Annotation
https://genecodis.genyo.es/
https://go.princeton.edu/cgi-bin/LAGO
https://go.princeton.edu/cgi-bin/GOTermMapper
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Data availability
The data that support the findings of this study are available from Aviagen but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of Aviagen.
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