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A practical method to screen 
and identify functioning 
biomarkers in nasopharyngeal 
carcinoma
Chengyou Liu1,7*, Peijie Guo2,7, Leilei Zhou3, Yuhe Wang1, Shuchang Tian1, Yong Ding4, 
Jing Wu4, Junlin Zhu5* & Yu Wang6* 

Nasopharyngeal carcinoma (NPC) is a rare malignancy, with the unique geographical and ethnically 
characteristics of distribution. Gene chip and bioinformatics have been employed to reveal 
regulatory mechanisms in current functional genomics. However, a practical solution addressing the 
unresolved aspects of microarray data processing and analysis have been long pursuit. This study 
developed a new method to improve the accuracy of identifying key biomarkers, namely Unit Gamma 
Measurement (UGM), accounting for multiple hypotheses test statistics distribution, which could 
reduce the dependency problem. Three mRNA expression profile of NPC were selected to feed UGM. 
Differentially expressed genes (DEGs) were identified with UGM and hub genes were derived from 
them to explore their association with NPC using functional enrichment and pathway analysis. 47 
potential DEGs were identified by UGM from the 3 selected datasets, and affluent in cysteine-type 
endopeptidase inhibitor activity, cilium movement, extracellular exosome etc. also participate in 
ECM-receptor interaction, chemical carcinogenesis, TNF signaling pathway, small cell lung cancer 
and mismatch repair pathway. Down-regulation of CAPS and WFDC2 can prolongation of the overall 
survival periods in the patients. ARMC4, SERPINB3, MUC4 etc. have a close relationship with NPC. The 
UGM is a practical method to identify NPC-associated genes and biomarkers.

Nasopharyngeal carcinoma (NPC) is one kind of cancer that occurs in the nasopharynx, and is located behind 
nose and above the back of throat. Although it is not common among population, NPC has high incidence in 
some regions and ethnicities, especially in southern China, North Africa, and Southeast Asia1. In Guangdong 
Province, NPC accounts for 18% of all cancer in the population2. In 2018, approximately 73,000 deaths and 
129,000 new cases were claimed by this disease globally. Signs and symptoms related to the primary tumor 
include trismus, pain, otitis media, and nasal regurgitation due to paresis (lost or impaired movement) of the soft 
palate, hearing loss and cranial nerve palsy (paralysis). The growth of disease loci may lead to nasal obstruction 
or bleeding and a "nasal twang". Metastatic spread may result in bone pain or organ dysfunction.

Apart from the established risk factors such as viral, dietary and genetic factors, smoking, alcohol intake, and 
consumption of certain pickled foods also increase the risk of NPC, which accounts for the higher incidence 
in males and geographical distinctive distribution of NPC3. NPC can be treated by surgery, chemotherapy, or 
radiotherapy4. There are different forms of radiation therapy, including 3D conformal radiation therapy, intensity-
modulated radiation therapy, particle beam therapy and brachytherapy, which are commonly used in the treat-
ments of cancers of the head and neck. Moreover, the expression of EBV latent proteins within undifferentiated 
nasopharyngeal carcinoma can be potentially exploited for immune-based therapies5,6.
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Radiation therapy is a conventional method to stop cancer cells from growing or kill them altogether with 
high energy X-rays. As early as the early 1990s, the radical radiotherapy (RT) for treatment of NPC used two-
dimensional RT, which was developed into three-dimensional conformal RT. With the development of technol-
ogy, intensity-modulated radiotherapy (IMRT) is adopted in radiotherapy for NPC. Considering that IMRT can 
guarantee high local and regional control at increased toxicity rates, IMRT is gradually becoming the standard 
radiotherapy method for NPC. A retrospective study of IMRT for the treatment of NPC by Lai et al., compared 
with 2D-RT, the local tumor control rate of patients with NPC treated by IMRT was significantly improved, espe-
cially for the cases with stage T1 cancer (5-year local no recurrence survival rate was 100% vs 94.4%, P = 0.016)7. 
In the 1960s and 1970s, new combinations of chemotherapeutic agents using a variety of different mechanisms 
of action began to be proposed in clinical practice. Almost all RT, combined with chemotherapy, have achieved 
gratifying results, 2–5 years local control more than 90%. Chemotherapy, though widely used, the improvement 
of the remote control is not satisfactory. 2 years of distant metastasis rate is between 10–15%, 4 years distant 
metastasis rate is as high as 32%8

Although radiotherapy, or chemotherapy treatments have some effect on early-stage nasopharyngeal car-
cinoma, the outcome of patients with advanced NPC diagnosis is still far from expectation, with the median 
survival of only 12 months9,10. Therefore, a deeper understanding of the key biomarkers and molecular mecha-
nisms of NPC progress could potentially lend insights to the therapeutic development of NPC. Accumulating 
researchers have identified many genetic and epigenetic aberrations in NPC, such as the mutation of ARID1A, 
TP53, PIN3CA, and others11–13. Intensity-modulated radiation therapy, simultaneous radiotherapy and chemo-
therapy are used in standard of care. However, the overall survival rate of NPC patients remains to be improved. 
Therefore, exploring the molecular mechanism of its dynamic development is of great importance to reduce 
the recurrence and metastasis rate. Gene chip technology and bioinformatics have achieved significant success 
in identifying tumor-associated genes and the underlying etiological mechanism. However, the microarray is 
characterized by large volume, high noise levels, small sample size and multiple data dimension14. Currently, 
there is no solution for microarray data processing and analysis that could resolve those aspects. Researches have 
shown that the control of type I error is critical to screen differentially expressed genes from expression profile 
data15,16. In this study, our ingenious UGM provides practical solution to some of the most common problems 
in microarray data analysis, especially the multiple validation of differential expressions, which warrants further 
validation for the application in the screening and identification of key biomarkers for NPC.

Methods
New method for screening differentially expressed genes.  For the comparison of single gene dif-
ference, P value less than 0.05 is usually considered as statistical significance. However, there is still 5% of prob-
ability that this hypothesis is wrong. When 10,000 genes in two (group) samples are tested using the same test 
method, 500 (10,000*0.05 = 500) genes could be misestimated. After the 1950s, with the development of gene 
chip technology and large amount of data generated thereof, multiple hypothesis testing becomes widely used 
and increasing efforts have been made to address its problem. Table 1 illustrates the results of multiple hypothesis 
testing.

FDR (False Discovery Rate) can be calculated from Table 1, which represents the percentage of test results 
that reject the true null hypothesis in the sample. In 1995, Benjamin developed the FDR error control method17. 
FDR control method corrects the type I error in multiple hypothesis testing. FDR is a relatively conservative 
comparison method, and has greater power than FWER. FDR is outlined as follows

The evaluation of m0 is the most critical step in FDR program. The exactitude of m0 is key for the screening 
of DEGs, FDR control processes and testing capabilities. Our Unit Gamma Measurement (UGM) is a modified 
FDR control process with improved estimation of m0.

Figure 1 shows that P value is a very regular nature in the ideal state. If the number of genes is m, and the 
ratio of the number of non-differentiated genes is π0 , the number of non-differentiated genes is m0 = m ∗ π0 . 
Assuming that there is a value γ , which all differentil expression of gene test P values are distributed in (0, γ ) . In 
this case, the genes distributed in (γ , 1) should be all non-differentially expressed genes. Within this region, the 
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Table 1.   Results of multiple hypothesis testing. m is the number of hypothesis tests, and the number of genes 
in gene chip data. m0 is the true and m1 is the false null hypothesis, where m1 = m-m0. After testing the m 
(null) hypothesis, it is declared that R is significant, and W (W = m-R) is non-significant null hypothesis. U, 
T, V, and S represent the summation of the judgment of samples in multiple comparisons. According to the 
judgment rules, m (null) hypotheses were divided into four parts, which are U, V, T and S, where U and S were 
the correct tests. V and T represented the number of type I and II error tests in m(null) hypotheses.

Declared non-significant Declared significant Total

True null hypotheses U V m0

Non-true null hypotheses T S m1(m-m0)

Total W(m-R) R M
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number of non-differentially expressed genes in unit gamma length is min
1≤i≤m

{i : P∗i ≥ γ } ∗
γ

1−γ
 . Therefore, the 

number of genes distributed in (0, γ ) should theoretically be the sum of all the differentially expressed genes and 
min
1≤i≤m

{i : P∗i ≥ γ } ∗
γ

1−γ
 , i.e., the number of genes in (0, γ ) is m−m0 + min

1≤i≤m
{i : P∗i ≥ γ } ∗

γ
1−γ

 . The number 
of non-differentially expressed genes in the multi-gammas is calculated to avoid the effect of random error.

The key of this algorithm is to evaluate m0 . Letting H01,H02,H03, . . . , andH0m to be null hypothesis (genes). 
Correspondingly, the P-values of independent hypothesis tests are P1, P2, P3, . . . , andPm . The level of significance 
is α . UGM process is presented as follows:

Letting H01,H02,H03, . . . , andH0m to be the tested null hypotheses. Using single test method to test each event 
and getting P values P1, P2, P3, . . . , andPm , and sorting p values P∗1 , P

∗
2 , P

∗
3 , . . . , andP

∗
m.

Selecting the appropriate cutoff gamma to qualitatively divide the P value. Gamma should be greater than 
the level of significance. Gamma can be appropriately increased when there are lots of genes. Calculating the 
number of genes distributed in (0, γ ), (γ , 2γ ), . . . , and(n ∗ γ , (n+ 1) ∗ γ ).(n+ 2) ∗ γ is greater than 1. We define 
Pre_γ and Lat_γ (k) as follows:

Estimate m−m0 . Estimation is calculated as follows:

τi is weight coefficient, which formula is as follows:

(2)






Preγ = max
1≤i≤m

{i : P∗i ≤ γ }

Latγ (k) = max
1≤i≤m

�
i : P∗i ≤ k ∗ γ

�
k = 1, 2, 3, . . . , n

(3)m−m0 = m̂1 = Pre_γ −

n∑

i=1

τi ∗ Lat_γ (i)
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Figure 1.   Relationship between P(i) and its frequency. (a) Sample 1 is randomly generated by N (μ1, σ1^2). (b) 
Sample 2 is randomly generated by N (μ2, σ2 ^ 2),µ1 = µ2 , and σ1 = σ2 . (c) Sample 3 is randomly generated 
by N (μ3, σ3 ^ 2). (d) Sample 4 is randomly generated by N (μ4, σ4 ^ 2),µ3  = µ4 , and σ3 = σ4 . (e) Frequency 
distribution of P(i) in hypothesis testing using samples 1 and 2. At this time, H0 is true, and the calculated P 
value is evenly distributed between 0 and 1. (f) Frequency distribution of P (i) hypothesis testing of sample 3 and 
4. H0 is false, and most of the calculated P value is distributed between 0 and 0.05. (g) P (i) vs i when samples 
1 and 2 are used for hypothesis testing. The P-value accumulation curve is close to a straight line, which passes 
through two points (0, 0) and (0, m). (h) P(i) vs i when samples 3 and 4 are used for hypothesis testing. When 
the P value is small, the cumulative P value quickly reaches m. (i) P (i) vs i sample 1 and 2, sample 3 and 4 are 
paired for hypothesis testing, respectively. When the P value is very small, the accumulation of the P value rises 
quickly. When the P value is greater than some value (for example, 0.05), the accumulation curve of the P value 
approaches a straight line. The picture was drawn using R programming language (https://​www.r-​proje​ct.​org/, 
v4.0.0).

https://www.r-project.org/
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Getting m̂0

AdjustingP∗i  by P∗i = min
i≤k≤m

{min{ m̂0
k ∗ P∗k, 1}}.

Affymetrix microarray data.  Three datasets were selected in the NCBI\GEO (Gene Expression Omnibus) 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) to identify DEGs in NPC with UGM. Three NPC datasets, namely 
GES64634, GSE12452 and GSE34573, were chosen from GEO datasets (Table  2). The GSE64634, GSE12452 
and GSE34573 datasets were based on the GPL570 platforms ([HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array, with 22,283 probes/genes). Among them, the GSE64634 dataset included 12 nasopharyn-
geal carcinomas tissue and 4 normal healthy nasopharyngeal tissue specimens. The GSE12452 dataset included 
31 nasopharyngeal carcinomas and ten normal healthy nasopharyngeal tissue specimens. The GSE34573 dataset 
included 16 nasopharyngeal carcinomas and four normal healthy nasopharyngeal tissue specimens.

GEO data treating and DEGs screening.  The raw data of the three datasets downloaded from GEO 
datasets were processed by the UGM method to identify genes that are differentially expressed between NPC 
tissues and normal nasal tissues. In this process, we used the online tool GEO2R (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/​geo2r) to calculate the two-sample t-test, and chose the calculated p value as the basis of UGM method, 
which was conducted using the R programming language (https://​www.r-​proje​ct.​org/, v4.0.0). Criteria for DEGs 
screening were the adjustment of P value by UGM method less than 0.05 and |log FC (fold change)|≥ 2.0. Fur-
ther, we used online tool Venny (http://​bioin​fogp.​cnb.​csic.​es/​tools/​venny/​index.​html, v2.1.0) to identify DEGs.

Gene function enrichment and annotation.  The Screened DEGs were analyzed by the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) online software (https://​david.​ncifc​rf.​gov, v6.8). 
This article used the Gene Ontology database (http://​geneo​ntolo​gy.​org/) to annotate biological functions of 
DEGs.

Hub gene disease association and process‑focused annotation.  In this process we used NetWor-
kAnalyst online software (https://​www.​netwo​rkana​lyst.​ca/, 3.0) to construct a disease network of DEGs. In Net-
WorkAnalyst, we set the number of subnetwork nodes to be more than 3 (nodes count ≥ 3), and counted the 
number of adjacent nodes in the interaction network and screened out key node genes that are connected with 
NPC disease. What’s more, combining KEGG signal pathway and GO enrichment analysis results, we used 
QuickGO (https://​www.​ebi.​ac.​uk/​Quick​GO/) to conduct an ancestor chart analysis of DEGs21.

Consent for publication.  All authors approved the manuscript and gave their consent for publication.

Result
Identification of DEGs with UGM.  After the standardization of the microarray and identification DEGs 
by the UGM and |log FC (fold change)|> 2.0, a total of 328 DEGs in GSE12452 were identified, including 266 
down-regulated genes and 62 up-regulated genes (Fig. 2a); GSE64634 has 149 DEGs, consisting of 145 down-
regulated genes and 4 up-regulated genes (Fig. 2b); GSE34573 has 2698 DEGs, comprising1664 down-regulated 
genes and 1634 up-regulated genes (Fig. 2c). These 3 data sets have 47 DEGs overlapped and were sequenced 
according to the average log2FC value and analyzed by Rank analysis. The expression of DEGs was presented as 
heat map in Fig. 3.

Functional enrichment and pathway analysis of the DEGs.  To analyze the biological classifica-
tion of DEGs, functional and pathway enrichment analyses were performed using DAVID. GO analysis results 
showed that the cell component (CC) in those DEGs over represented are cilium, vesicle, microtubule and extra-
cellular exosome. The enriched biological processes (BP) are cilium movement and cell projection organization. 
At molecular function (MF) level, cysteine-type endopeptidase inhibitor activity was enriched (Table  3 and 
Fig. 4a). KEGG pathway analysis demonstrated that these DEGs were enriched in ECM-receptor interaction, cell 

(4)τi =
1

Lat_γ (i) ∗
∑n

j=1
1

Lat_γ (i)

(5)m̂0 = m− m̂1

Table 2.   Basic information of three NPC datasets.

References Accession ID Platform Number of genes
Number of normal nasopharyngeal 
tissue samples Number of NPC tissue samples

Bo et al.18 GSE64634 GPL570 12,625 4 12

Hsu et al.19 GSE12452 GPL570 12,625 10 31

Hu et al.20 GSE34573 GPL570 12,625 4 16

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.r-project.org/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://david.ncifcrf.gov
http://geneontology.org/
https://www.networkanalyst.ca/
https://www.ebi.ac.uk/QuickGO/
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adhesion molecules (CAMs), chemical carcinogenesis, TNF signaling pathway, small cell lung cancer, mismatch 
repair, phagosome, etc. (Fig. 4b).

Hub gene disease association and process‑focused annotation on 47 DEGs analysis.  The 
online analysis software NetWorkAnalyst3.0 was employed to generate a network composed of gene hubs associ-
ated with diseases using the 47 overlapping DEGs. The significant genes from previous analysis were mapped to 
the corresponding molecular DisGeNET database. The procedures typically produced several sub-networks that 
were shown in Fig. 5a,b. The diseases strongly associated with 47 DEGs were mainly Kartagener syndrome, para-
nasal sinus diseases, rhinitis, sinusitis, recurrent otitis media, nasal inflammation, and respiratory insufficiency 
due to defective ciliary clearance, recurrent respiratory infections, primary ciliary dyskinesia (23), autosomal 
recessive predisposition, and recurrent sinus disease. QuickGO ancestor chart provides functional ontologies for 
GO: 0004869 ‘cysteine-type endopeptidase inhibitor activity’ and GO:0005929 ‘cilium’ (Fig. 5c,d).

Analysis of the correlation between key genes and NPC.  We download the gene expression infor-
mation and clinical information of the data related to NPC from the TCGA database (https://​portal.​gdc.​cancer.​
gov/). A total of 564 cases (44 normal cases and 520 NPC patients) were selected. We used the TCGA database 
to verify the bioinformatics findings of the 47 differentially expressed genes screened, and found that, among 
the 47 screened genes, the significant up-regulation or down-regulation of EGFR, CHL1, TRIM13, CDH26, 
WFDC2, MUC4, ALDH3A1, CLIC6, TPPP3, TMC5 and SERPINB3 in head and neck squamous cell carcinoma 
were compared with normal samples (Fig. 6). In addition, consistent with the expression of CAPS and WFDC2 
in nasopharyngeal carcinoma, Kaplan Meier’s survival analysis exhibited the remarkable prolongation of the 
overall survival periods in the patients with low CAPS and WFDC2 (Fig. 7).

Discussion
Microarray technology could provide abundant information on gene expression under certain circumstances 
from the hybridization signal22,23. The ease of data acquisition, high through-put, large data volume, and small 
sample size have made it a widely applied tool in biological inquisition. However, the high levels noise and mul-
tiple data dimensions leave the current data processing an outstanding problem.

Recently, gene chips were mainly used in biological researches to differentiate subtypes of diseases and pre-
dict the prognosis of patients. Unsupervised algorithms, such as cluster analysis methods, are most commonly 
applied for microarray analysis to identify sub-class of diseases. Supervised algorithms such as discriminant 
analysis methods, artificial neural network models and other methods, were usually used to differentiate the 
degrees of disease prognosis24,25. However, the application of the analysis is preceded by the reduction of the 
data dimensions and false positives when selecting DEGs among different comparing groups. The purpose of 
this paper is to provide UGM, a practical solution to the most common practical problems in microarray data 
analysis, especially the multiple validation of differential expressions, which could assist in the screening and 
identification of key biomarkers for NPC.

Figure 2.   The volcano plots of DEGs in GSE12452 (a), GSE64634 (b) and GSE34573 (c) microarrays. The genes 
marked in red are upregulated genes, green marked are downregulated genes, and the gray represents non-
differential expression genes at the cutoff P value < 0.05 and |log FC|> 2.0. The picture was drawn using online 
tool Venny (http://​bioin​fogp.​cnb.​csic.​es/​tools/​venny/​index.​html, v2.1.0).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Figure 3.   Heat maps and venn diagram of most significant DEGs. (a) Venn diagram of DEGs from intersection 
in 3 GSE datasets. There are 69 intersecting DEGs between GSE12452 and GSE64634, 71 DEGs between 
GSE64634 and GSE34573, and 194 DEGs between GSE12452 and GSE34573, and 47 DEGs are presented in all 
GSE datasets. (b) Heat map of 47 DEGs in GSE12452, (c) GSE64634 and (c) GSE34573 datasets. The red marked 
block indicates the high-level of gene expression and the blue indicated low-level expression. The picture was 
drawn using R programming language (https://​www.r-​proje​ct.​org/, v4.0.0).

Table 3.   GO function enhancement analysis of DEGs in NPC samples. CC cell component, BP biological 
processes, MF molecular function.

Category GO ID Description Count in gene set P.Value

CC GO:0005929 Cilium 6  < 0.05

CC GO:0031982 Vesicle 5  < 0.05

CC GO:0005874 Microtubule 4  < 0.05

CC GO:0070062 Extracellular exosome 11  < 0.05

BP GO:0003341 Cilium movement 2  < 0.05

MF GO:0004869 Cysteine-type endopeptidase inhibitor activity 2  < 0.05

BP GO:0030030 Cell projection organization 2  < 0.05

https://www.r-project.org/
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For the past decades, data analysis methods for gene expression profiles have attracted extensive interests in 
the community of biological and medical statistics. The key to screen DEGs from gene expression profile data 
is to reduce type I error and ensure a high screening efficiency. A variety of methods have been proposed to 
address these problems. It is well-recognized that the expected percentage of the null hypothesis that is wrongly 
rejected is a meaningful indicator in multiple comparisons, but not the probability of error detection. Based on 
this assumption, Benjamin and Hochberg developed the FDR control program, which was a groundbreaking 
achievement. It has been widely used in processing large-scale data following the seminal paper by Benjamin 
and Hochberg in 1995. Subsequent improvements and extensions of Benjamin and Hochberg method have been 
proposed26–32. In recent years, the subject interests have been focused on the evaluation of m0, which is critical 
for the screening of DGEs, FDR control and gauging testing capabilities. However, we found that the estimation 
method proposed in this process is compromised. Although the average estimated values are very close to the 
true value over the course of iterations, it is still far from the standard deviation. This introduces large amount 
of random errors, thus rendering inaccurate results. Therefore, we proposed UGM, a new FDR control process 
based on m0 estimation. In the present study, the identification of critically and differentially expressed genes 
(DEGs) in NPC with UGM and subsequent functional analysis of DEGs demonstrated the effectiveness of this 
tool in inquiring the molecular mechanism of NPC development. Three mRNA expression profiling of NPC in 
GEO dataset were selected as input of UGM. A total of 47 DEGs were screened for further analysis of biological 
functions. Among these DEGs, the Armadillo Repeat Containing 4 (ARMC4) was significantly up-regulated in 
NPC tissues. This result is consistent with the results reported by Hjeij R33. ARMC4 may inhibit the prolifera-
tion and division of NPC cells by participating in the Cilium pathway, Coiled coil pathway and repeat: ARM 
6 pathway, etc. Many diseases are strongly associated with ARMC4, such as Kartagener syndrome, paranasal 
sinus diseases, rhinitis, sinusitis, recurrent otitis media, nasal inflammation, and respiratory insufficiency due to 
defective ciliary clearance, recurrent respiratory infections, primary ciliary dyskinesia(23), autosomal recessive 
predisposition, and recurrent sinus disease, all of which have direct or indirect relations to NPC. The Serpin Fam-
ily B Member 3 (SERPINB3) and Mucin 4, cell Surface Associated were also significantly up-regulated in NPC 
tissues, and they may inhibit the normal expression of NPC cells by participating in polymorphism pathway and 
sequence variation pathway34,35. Diseases, including prostatic neoplasms, squamous cell carcinoma, esophageal 
neoplasms, mouth neoplasms, precancerous conditions and squamous cell carcinoma of esophagus had a strong 
connection with SERPINB3 and UMC4.

Figure 4.   GO and KEGG pathway enhancement analysis DEGs in NPS and normal tissue. (a) GO function 
enhancement analysis DEGs in NPS and normal tissue. Log2FC, log2 (fold change). GO Terms, GO functional 
notes. (b) KEGG pathway enhancement analysis of DEGs between NPC and normal tissue. Log10 (Benjamin), 
log10 (the value of Benjamin adjustment to P value). Gene counts enriched in the pathway are presented 
proportional to the size of bubble. Enriched KEGG pathway includes amoebiasis, drug metabolism—
cytochrome P450, ECM-receptor interaction, metabolism of xenobiotics by cytochrome P450, phenylalanine 
metabolism, cell adhesion molecules, tyrosine metabolism, chemical carcinogenesis, TNF signaling pathway, 
phagosome, arginine biosynthesis, focal adhesion, retinol metabolism, adherens junction, small cell lung cancer, 
leukocyte transendothelial migration, histidine metabolism, huntington disease, huntington disease, mismatch 
repair, arginine and proline metabolism, herpes simplex virus 1 infection and platelet activation. All of them 
can be obtained from https://​www.​kegg.​jp/​kegg/​pathw​ay.​html. The picture was drawn using R programming 
language (https://​www.r-​proje​ct.​org/, v4.0.0).

https://www.kegg.jp/kegg/pathway.html
https://www.r-project.org/
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Further, we conducted functional enrichment and pathway analysis of the screened DEGs. The DEGs func-
tions were mainly enriched in biological processes such as extracellular exosome, tripartite motif-containing 
protein 13, sequence variant, polymorphism, cysteine-type endopeptidase inhibitor activity, cytoskeletal regula-
tion and vesicle trafficking signaling pathway etc.36–39. These overrepresented biological processes were cell cycle, 
biological immunity, signaling, DNA repair, cytoplasmic transport, cell proliferation, migration and invasion. 
Noteworthily, 11 DEGs (11/47) were enriched in extracellular exosome, a channel for cells to excrete wastes. 
Currently, studies on exosomal material composition and transportation, signal transmission between cells and 
distribution in body fluids have uncovered various functions of exosomes. They are involved in all aspects of 
body’s immune response, antigen presentation, cell migration, cell differentiation, tumor invasion, etc.31. Moreo-
ver, tumor-derived exosomes mediate the exchange of genetic information between tumor cells and basal cells, 
thus leading to the formation of new blood vessels, which facilitates tumor growth and invasion.

In addition, there were 3 (CHL1, TSPAN1 and CCDC19) out of 47 DEGs screened by UGM method were 
proven by many scholars to be used as molecular markers for NPC40–44. CHL1 is a neural recognition protein 
that may be involved in signal transduction pathways. Recently, several cell adhesion molecules, including L1, 
were shown to be involved in cancer growth and metastasis40. 3p26 has been reported to harbor a candidate gene 
for prostate cancer susceptibility in Finnish prostate cancer families; however, no mutations were detected in 
the coding part of CHL140,41. Nevertheless, these reports suggest that plays a pivotal role in cancer development. 
Furthermore, functional study showed that ectopic expression of CHL1 in NPC cells dramatically inhibited 
their clonogenicity and migration as compared with parental NPC cells without CHL1 expression. Shilong 
Xiong found that real-time quantitative reverse transcription-PCR and in situ hybridization (ISH) techniques 
confirmed that TSPAN-1 and DPP10 genes had only 40.72% and 40.70% positive expression in NPC, but had 
high positive expression in chronic inflammation of nasopharyngeal mucosa41. The data suggested that TSPAN-1 
might be the putative molecular markers of NPC. Zhen Liu found that CCDC19 was specifically expressed in 
the nasopharynx epithelium and its reduced expression is an unfavorable factor promoting NPC progression 
and poor prognosis43,44. CCDC19 was identified as a potential tumor suppressor in NPC pathogenesis due to its 
decreased expression in NPC patients and its inhibitory function in NPC cells. In addition, among the 47 dif-
ferentially expressed genes we screened, significant up-regulation or down-regulation of 11 genes (EGFR, CHL1, 

Figure 5.   Hubs of DEGs with strong association with diseases and the process-focused annotation. The largest 
(a) and second largest (b) sub-networks. The red circle area represents the most significantly disease-associated 
genes (hub genes), and the blue square area represents genes related to the hub genes. QuickGO term (GO: 
0,004,869 ‘cysteine-type endopeptidase inhibitor activity’(c) and GO: 0,005,929 ‘cilium’ (d)) ancestor chart. 
Currently, eight relationship types are described in Huntley45. Briefly, ‘is a’ presents a subclass of its parent, ‘part 
of ’ stands for part of the parent term, ‘regulates’ is a process that modulates its parent process, and ‘positively 
regulates’ and ‘negatively regulates’ enhance and decrease the modulation of a parent process term, respectively. 
The fig (a,b) were drawn using online tool NetWorkAnalyst online software (https://​www.​netwo​rkana​lyst.​ca/, 
3.0), and fig (c,d) were drawn using online tool Venny QuickGO (https://​www.​ebi.​ac.​uk/​Quick​GO/).

https://www.networkanalyst.ca/
https://www.ebi.ac.uk/QuickGO/
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TRIM13, et al.) expression were observed in the TCGA database. Kaplan Meier’s survival analysis exhibited the 
remarkable prolongation of the overall survival periods in the patients with low CAPS and WFDC2, which means 
that CHL1, CAPS and WFDC2, etc., might be the putative molecular markers of NPC.

In this article, we proposed a method for screening differentially expressed genes based on gene chip data, 
but we were also aware of its limitations that need to be further studied. Firstly, the UGM needs to be practiced 
and promoted. The UGM method can be used in NPC data to screen differentially expressed genes. However, 
it is necessary to further explore the application of this method to other tumor gene chip data, such as breast 
cancer, pancreatic cancer, prostate cancer, esophageal cancer, et al. The goal of UGM method research is to dis-
cover new and unknown hub genes (proto-oncogene or tumor suppressor gene) and determine the pathway in 
the cell, which requires more in-depth analysis and can withstand medical clinical practice tests. In addition, it 
is necessary to further study the medical mechanism of hub genes in tumor diseases. The algorithm proposed 

Figure 6.   The significant up-regulation or down-regulation in head and neck squamous cell carcinoma were 
compared with normal samples. Expression of (a) ECFR, (b) CHL1, (c) TRIM13, (d) CDH26, (e) WFDC2, (f) 
MUC4, (g) ALDH3A1, (h) CLIC6, (i) TPPP3, (j) TMC5 and (k) SERPINB3 in TCGA samples. The picture was 
drawn using R programming language (https://​www.r-​proje​ct.​org/, v4.0.0).

Figure 7.   Kaplan Meier’s survival analysis. Effect of (a) CAPS and (b) WFDC2 expression level on head and 
neck squamous cell carcinoma patient survival. Down-regulation of CAPS and WFDC2 can prolongation of the 
overall survival periods in the patients. The picture was drawn using R programming language (https://​www.r-​
proje​ct.​org/, v4.0.0).

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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in this paper was based on geometric characteristics of multivariable statistical analysis. At the same time, the 
effectiveness of the algorithm also needs gene chip (microarray) data. The practice of tumor research shows that 
gene expression bears some relations to the tumor occurrence, evolution and metastasis. There are many kinds 
of cancer sample data. Taking the heterogeneity of gene expression into account, for multi-sample gene chips, 
we also need to explore the UGM method to screen the differentially expressed genes in normal group samples 
and different stages cancer group samples.

In summary, the key step in the FDR process is to estimate the number of non-differentially expressed 
genes. However, we found that the estimation method proposed in this process is not accurate enough. So we 
designed a new method to estimate the number of non-differentially expressed genes on the basis of previous 
researches. Three nasopharyngeal carcinoma chip dataset housed in public database were used to screen dif-
ferentially expressed genes, with UGM as a verification of the accurate and robust UGM. Further, ARMC4, 
SERPINB3 and UMC4 were identified as the most significant DEGs, which implicate strong association with 
NPC in functional enrichment and pathway analysis. Due to limited experiment validation, our study warrants 
further investigations using clinical samples to verify the association of DEGs with nasopharyngeal carcinoma 
and reveal the underlying mechanisms.

Data availability
The gene chip data are available at https://​www.​ncbi.​nlm.​nih.​gov/. The gene-disease association analysis is avail-
able at https://​david.​ncifc​rf.​gov, http://​www.​ncbi.​nlm.nih.gov/geo/geo2r, http://​bioin​fogp.​cnb.​csic.​es/​tools/​venny/​
index.​html, https://​www.​netwo​rkana​lyst.​ca/, and https://​www.​ebi.​ac.​uk/​Quick​GO/. All data and materials are 
fully available without restriction.
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