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Topological clustering of regulatory 
genes confers pathogenic tolerance 
to cassava brown streak virus 
(CBSV) in cassava
Thanakorn Jaemthaworn1, Saowalak Kalapanulak1,2* & Treenut Saithong1,2* 

Robustness, a naïve property of biological systems, enables organisms to maintain functions during 
perturbation and is crucial for improving the resilience of crops to prevailing stress conditions 
and diseases, guaranteeing food security. Most studies of robustness in crops have focused on 
genetic superiority based upon individual genes, overlooking the collaborative actions of multiple 
responsive genes and the regulatory network topology. This research aims to uncover patterns of 
gene cooperation leading to organismal robustness by studying the topology of gene co-expression 
networks (GCNs) of both CBSV virus resistant and susceptible cassava cultivars. The resulting GCNs 
show higher topological clustering of cooperative genes in the resistant cultivar, suggesting that the 
network architecture is central to attaining robustness. Despite a reduction in the number of hub 
genes in the resistant cultivar following the perturbation, essential biological functions contained in 
the network were maintained through neighboring genes that withstood the shock. The susceptible 
cultivar seemingly coped by inducing more gene actions in the network but could not maintain the 
functions required for plant growth. These findings underscore the importance of regulatory network 
architecture in ensuring phenotypic robustness and deepen our understanding of transcriptional 
regulation.

The frequency of virulent disease outbreaks as a consequence of global climate change represents a major threat 
to crop production every year. Left unaddressed, the spread of pathogens to new areas and hosts would be cata-
strophic for the global staple food supply, and there exist some layers of uncertainty regarding the predictability 
of host–pathogen interaction. Biological robustness studies are, thus, required to comprehend the underlying 
disease resistance mechanisms of crops to enable robust precision breeding and guarantee food security in the 
 future1. Cassava, a major staple crop that feeds over 800 million people  annually2 faces a huge threat from the 
cassava brown streak virus (CBSV). In South Africa, a major production and consumption area, yield losses of 
up to 60 percent have been reported in susceptible  cultivars3,4. Different degrees of success in the development of 
virus-resistant cultivars have been recorded, including by classical breeding, e.g. CBSV-resistant cassava cultivar 
Namikonga, also known as Kaleso, an interspecific backcross derivative from M. glaziovii x M. melanobasis5, 
and by molecular biotechnology approach, e.g. transgenic CBSV-CP hairpin-derived small RNA to immuniz-
ing resistance of CBSV and cassava mosaic virus (CMV)6. Pathogenic resistance is conferred by the cooperative 
action of responsive genes in the regulatory system, for which the pattern of cooperation is a naïve property 
inherited from precedents and a characteristic trait of  individuals7,8. Nonetheless, most studies during the last 
decade focused on individual gene effects and proposed tolerant phenotypes based on key resistant genes.

High-throughput genome sequencing technologies have enabled us to investigate genetic inheritance in spe-
cies and study cooperative adaptive responses of genes in regulatory networks via transcriptome analysis. The 
integration of omics data through modeling offers insights into intracellular regulatory processes beyond the 
readouts of measurable data at individual levels. The cooperation of responsive genes in the regulatory network 
is deduced from the coherent gene expression profiles and then modeled as the gene co-expression network 
(GCN)9,10. The topology of the GCN is a network characteristic that refers to the property of the regulatory 
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 system9. Robustness is theoretically deduced by examining if the network topology enables the system to tolerate 
perturbation. Two main network topological properties used to describe robustness of organismal systems are 
the scale-free  property11—a “robust yet fragile” scenario where the system tolerates random  perturbation12 but 
immediately collapses under targeted perturbation at a highly cooperative gene, or hub gene, and the small-world 
 property13—where a high degree of cooperation within groups and closed collaboration between groups make 
the system promptly responsive to stimuli.

The presence of complicated and specific network topology in regulatory systems of well-adapted organisms 
supports the hypothesis on its requirement to enhance the capacity of organismal tolerance. Macroscopic-scale 
network topology, such as scale-free and small-world properties, has been used to describe robust stress-respon-
siveness in different  organisms8, 14,15, while microscopic-scale topology studies, such as on clustered regulatory 
motifs and feed-forward/backward loop motifs, have deepened our understanding of mechanistic processes 
enhancing the performance of  systems16–20. The complexity of network topology is believed to develop with the 
organismal evolution to improve the potential of regulatory systems. Duplication of genes with identical func-
tions or the emergence of paralogous genes with similar or overlapping functions in evolved organisms provides 
flexibility for regulatory systems through the redundant functional  genes21–24.

Amuge and team explored the mechanism of CBSV resistance in cassava based on a time-series transcriptome 
 analysis25. The study identified candidate genes involved in the defense regulatory process from a set of differen-
tially expressed genes (DEGs) during infection and proposed key candidate genes for biomarker development by 
comparing the DEGs of CBSV-resistant (Namikonga) and -susceptible (Albert) cassava varieties. The candidate 
genes offered insights into the predominant regulators but provided limited information on the underlying regu-
latory mechanisms against CBSV. Here, we hypothesized that resistance could not be conferred by the action of 
individual regulators alone but requires cooperation among the responsive genes. To evaluate this hypothesis, 
we analyzed the gene co-expression networks (GCNs) of resistant (R) and susceptible (S) cultivars constructed 
under control (C) and infected (treatment, T) conditions: GCN-RC, GCN-RT, GCN-SC, and GCN-ST, which 
were postulated as models of responsive gene cooperation in the specific conditions. The findings showed that 
cluster-based topology immensely contributed to the robustness of the GCNs, implying the importance of the 
gene network pattern in the robust response of regulatory systems. The network characteristic was also found 
to be a naïve property of the resistant variety. We propose that the distribution of hubs with a high clustering 
coefficient under control conditions (referred herein to demonstrate the condition of naïve plants) plays an 
important role in the resistance against CBSV. The increase in high-degree nodes (hubs) in response to infec-
tion could not enhance the robustness of the susceptible cultivar due to naïvely poor network connectivity (low 
clustering coefficient in control conditions). The proposed scenarios were supported by in silico perturbation 
studies of the GCN-SC and GCN-RC networks, which demonstrated the advantage of the clustered topological 
structure in maintaining normal regulation during perturbation. Analysis of the responses of susceptible and 
tolerant potato varieties to Potato Virus Y (PVY) showed similar results.

Results
Microscopic-scale clustered topology of the responsive gene network contributes to robust-
ness against CBSV infection. The time-course of gene expression was investigated in resistant 
(Namikonga, denoted as R) and susceptible (Albert, denoted as S) cassava varieties infected with CBSV (treat-
ment, denoted as T) and without (control, denoted as C). The expression profiles during CBSV infection were 
monitored at the beginning, early (8 days after grafting, DAG) through late (54 DAG) infection stages, 8 data 
points in  total25. Differentially expressed genes across the time points were proposed as active genes functioning 
in response to the exposed conditions. There were 4667, 4737, 4421, and 5018 active genes identified for RC, 
RT, SC, and ST conditions, respectively (Additional Information 1B). The cooperative action of these CBSV-
responsive genes under the study conditions was inferred from the gene co-expression networks (GCNs): GCN-
RC, GCN-RT, GCN-SC and GCN-ST, and the pattern of cooperation was proposed to reflect the robustness of 
the system  property26, 27. Topological analysis was performed to characterize robustness-related properties of the 
GCNs and test the hypothesis that robustness of the resistant variety is associated with the networking pattern of 
responsive genes. Results showed the macroscopic-scale topology of all networks were similar, possessing scale-
free and small-world properties with comparable global clustering properties (Additional Information 1C). In 
contrast, when considering individual gene nodes, the distribution of the local clustering coefficient revealed 
topological differences at the microscopic-scale. It was found that GCNs of the resistant variety (GCN-RC and 
GCN-RT) contained gene nodes with higher clustering coefficients compared to the susceptible variety (GCN-
SC and GCN-ST; Fig. 1A). Figure 1B demonstrates that the high clustering coefficient gene nodes in the GCN 
of the resistant cassava varieties (GCN-RC) tended to be highly connected to others, thus possessing high node 
degree value). The difference in the network topology of both cultivars under control conditions supports our 
hypothesis and also demonstrates that the robust pattern of cooperative gene connectivity in the network is a 
naïve property of the individual varieties.

By examining alterations to the gene network topology in response to the infection, it was observed that the 
number of genes induced was larger in the susceptible variety (GCN-ST), which showed an almost 20 percent 
increase in gene nodes, compared to an increase of less than one percent for GCN-RT (Additional Information 
1C). The occurrence of massive genes induced by pathogenic infection was also observed in transcriptome stud-
ies of other plant species, for instance potato and  apple28, 29. The number of differentially expressed genes were 
higher in more susceptible varieties, probably to alert biological processes to act against the pathogen, while 
targeted defenses were likely deployed by more resistant varieties.

Analysis of network dimension by edge per node ratio (e/n) and diameter (d) showed that the topology of 
GCNs changed inversely under infected condition, reduced diameter with more connections for the susceptible 
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cassava variety (dSC = 28 and e/nSC = 30.0; dST = 24 and e/nST = 42.1) and increased diameter with less connections 
for the resistant cassava variety (dRC = 23 and e/nRC = 32.6; dRT = 26 and e/nRT = 19.7). Correspondingly, Fig. 1C 
showed an inverse change in the clustered network topology of GCNs against CBSV infection between the two 
varieties. GCN-RT shows a reduction in the degree of gene cooperation with a little change in the clustering 
topology, whereas GCN-ST shows an increase in degree of gene cooperation with a superior impact on the 
clustering topology (Fig. 1C and Additional Information 1C,D), suggesting an antagonistic regulatory response 
to CBSV infection in both varieties.

Based on the analysis, we propose that network topology is central to the robustness of biological systems. 
GCNs require not only scale-free and small-world macroscopic properties but also high clustering of individual 
constituents. The conceptual schemes of generalized regulatory networks were proposed accordingly for resistant 
(Fig. 2A, left) and susceptible (Fig. 2A, right) characteristic traits. The network topology of the resistant system 
contains abundantly clustered motifs that are well connected, while that of the susceptible system contains clus-
ters that are sparsely linked to each other. The hypothetical network structures are supposed to describe gene 
cooperative patterns of both susceptible (GCN-S) and resistant (GCN-R) varieties in response to CBSV infection. 
Although the infection disrupted the high degree nodes in GCN-R, leading to a decrease in the clustering coef-
ficient, the neighboring genes were able to cooperate and maintain essential functions. The GCN-S responded 
to the infection by promoting the interconnection of genes (edge); nonetheless, it could not achieve robust gene 
cooperation as indicated by the severe symptoms observed. These hypothetical models were tested in an in silico 
perturbation experiment, during which the loss of gene (node) interconnections, measured in terms of mean 
variance information (VI), was determined for each edge removal in a sequence until complete numbers. As 

Figure 1.  Local network properties of condition-specific GCNs; (A) Violin plots showing the distribution of the 
local clustering coefficient for all four GCNs. Asterisks (*) indicate statistically significant differences based on 
the Wilcoxon rank-sum one-sided test (p-value < 0.05). For inter-trait comparison, the median local clustering 
coefficients for the resistant trait were higher in both control and treatment conditions (GCN-RC > GCN-SC; 
GCN-RT > GCN-ST). For intra-trait comparison, the median local clustering coefficient was higher in control 
conditions across traits (GCN-RC > GCN-RT; GCN-SC > GCN-ST). (B) Scatter plot showing the distribution 
of local properties of nodes in GCNs under control conditions (GCN-RC and GCN-SC), and (C) in response 
to the viral infection (GCN-RT and GCN-ST). The resistant trait (C-left) responded to perturbation by 
dramatically decreasing the high degree nodes (hubs) and slightly decreasing the local clustering coefficient, 
while the susceptible trait (C-right) increased hubs and decreased the clustering coefficient in response to 
perturbation. The x-axis in scatter and violin plots represents the node degree, and the y-axis in scatter and 
density plots represents the local clustering coefficient. High-degree nodes or hub genes represent gene 
regulatory hubs, whereas high clustering coefficients denote highly collaborative gene association and network 
robustness.
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shown in Fig. 2B, the decomposition of the network structure can be divided into 3 phases, initial, plateau and 
breakdown. The VI rapidly increased in the initial phase as linkages between gene clusters were removed (marked 
as green in Fig. 2B). As the linkages in the network were increasingly perturbed, interconnections between genes 
within gene clusters were disrupted. At this stage, the overall VI of the network topology plateaued, since the 
dissociations of genes were buffered by the highly connected structure in clustered topology (marked as yel-
low in Fig. 2B). Finally, the VI culminated in a breakdown of the system when genes could no longer maintain 
their cooperation after almost all linkages were removed (marked as orange in Fig. 2B). The results showed that 
GCN-RC had relatively low VI throughout the perturbation and broke down later than GCN-SC, indicating 
its robustness relative to the latter; that is, its ability to better tolerate perturbation and retain cooperation of 
responsive genes. Furthermore, we performed motif discovery analysis to demonstrate that GCN-RC contains 
a higher proportion of clustered network motifs (high clustering coefficient structure) compared to GCN-SC 
(Additional Information 3A).

Clustered topology of responsive genes enables resistant varieties to maintain essential func-
tions during CBSV infection.. Analysis of network clustering was performed to determine any associa-
tions with robustness and the ability of the resistant variety to maintain essential functions and prevent regula-
tory function breakdown during perturbation. The modular GCNs, constructed (Additional Information 4A) 

Figure 2.  The hypothetical models of GCN network topology in resistant and susceptible trait and 
computational testing; (A) Schematic models of resistant (left) and susceptible (right) trait responses to 
perturbation proposed from the topological parameters investigated in each condition. Nodes represent genes 
in the network. Filled and unfilled nodes are genes under treatment and control conditions, respectively. 
Associations between genes are represented as lines; bold lines indicate associations occurring in the network, 
while dashed lines are associations that are missing from the previous network. (B) Line graph demonstrating 
changes in the gene community during perturbation, categorized into three different phases: initial (green), 
plateau (yellow) and breakdown phases (orange). The x-axis represents the magnitude of perturbation, which 
is the number of edges sequentially removed from the total number of edges. The y-axis represents the mean 
variance information (VI) of 30 repetitions. Error bars represent the standard deviation of 30 repetitions. 
Dashed lines (internal control) represent the VI calculated to reconcile the effect of the network size on the 
comparison. The higher the perturbation at the intercept of internal control line on VI is, the more robust the 
network topology.
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using the MCODE algorithm, were examined to ascertain if the modules (representing clusters) helped reduce 
the disruption functions during perturbation. Under control conditions, the modular gene network of the resist-
ant variety (RC) contained around 10 percent more number of modules (111 modules) than the susceptible 
variety (SC; 100 modules). The modules contained similar proportions of genes in the GCNs of both varieties, 
approximately 80 percent. After infection, it was observed the number and size (numbers of genes components) 
of modules remained unchanged for the resistant variety (RC: 111 modules with ~ 32 genes/module, and RT: 112 
modules with ~ 32 genes/module), whereas the susceptible variety showed a 15 percent reduction in modules, 
the size of which was also larger compared to the control (SC: 100 modules with ~ 34 genes/module, and ST: 
85 modules with ~ 49 genes/module). While maintaining the number of modules and gene components, the 
number of gene associations within each module of RT was reduced by 20 percent (module density: RC = 4.13 
and RT = 3.34). For the susceptible variety, the module size differed with an increase in the average density of the 
network (module density: SC = 3.38 and ST = 3.69). The analysis showed that the resistant variety minimized the 
perturbation effect by restructuring intra-modular linkages to keep the global network structure, in contrast to 
the non-buffering response of the susceptible variety in altering the module number. Results of the structural 
analysis suggest the clustered topology helped attenuate the effect of infection and enhanced tolerance by main-
taining normal cellular regulation.

Next, we hypothesized that modules in the modular gene networks hold specific functions that are essential 
for normal growth and development in plants during infection. For each module, enriched GO terms of constitu-
ent genes were analyzed, and module functions were inferred. Figure 3 shows unsupervised clustering of enriched 
functions in functional modules of RC, RT, SC, and ST networks (see entire results in Additional Information 
5A). The results showed that the functions of modular genes were similar across conditions, indicating their 
importance in plants. These functions were related to photosynthesis (e.g. photosynthetic light reaction/harvest-
ing; Module RC-1, Module RT-1, Module SC-3, and Module ST-3) and stress responses (e.g. responses to abiotic 
stimuli, reactive oxygen species, and chemicals; Module RC-2, Module RT-2, Module SC-2, and Module ST-5). 
As shown in Fig. 3, the resistant variety was able to retain these basic functions better than the susceptible variety.

Correspondingly to the study by Amuge et al.25, our results highlighted the primary role of heat shock proteins 
(HSPs) in CBSV resistance. Figure 3 shows that while the susceptible variety could not well maintain the function 
“response to heat and temperature” that was related to HSPs, the resistant variety fared better in comparison 
(module RC-2, RT-2 and SC-2). The HSP system is crucial for protein folding or protein modification, an impor-
tant mechanism of resistance against CBSV  infection25. Moreover, more numbers of HSP genes were found in 
GCNs of the resistance variety (Additional Information 5A (B)), corroborating Amuge et al.25, who reported 

Figure 3.  Functional analysis of modular gene networks. Heatmap demonstrating highly enriched biological 
process functions of each module (–log10Q-value more than 10; see Additional Information 5A for full analysis 
results). The columns represent modules, rows represent functions determined for the seven clades: clade1 for 
heat response, clade2 for photosynthesis, clade3 for stress response, clade4 for the chemical response, clade5 
for the light response, clade6 for RNA processing and clade7 for DNA processing, and colors represent the 
significance (–log10Q-values). Modules RC-1, RC-2, RT-2, RT-10, SC-2, ST-5, ST-22, and ST-24 were identified 
as heat response and stress response modules (both clade1 and clade3). The major heat response modules for 
each condition, namely Module_RC-2, Module_RT-2, Module_SC-2, and Module_ST-5, were determined by 
the largest module size (number of nodes in the module).
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larger numbers of differentially expressed HSP genes in a resistant variety infected with CBSV. It was also found 
that HSP genes in GCNs had explicitly high local cluster coefficients comparing to others in the network, sug-
gesting their significance for topology-based robustness of the resistant system (Additional information 5A(C)).

Further investigation of the gene expression profiles revealed a failure of modular regulatory functions in 
ST, while these were maintained in RT (Additional Information 6A). In addition, the motif discovery analysis of 
modules in RC and SC (Additional Information 7A) showed that the resistant variety could keep its regulatory 
functions through the clustered network topology. In the resistant network, we also found direct cooperation 
between the response module and pathogenic recognition module, which consisted of NBS-LRR genes reported 
by Amuge et al.25. It may imply an early response behavior of resistance after infection. This direct cooperation 
was not observed in the susceptible network under control conditions, which corresponds to a late response 
behavior as demonstrated in Additional Information 8A. These findings could explain the distinct responses of 
both varieties against CBSV.

Considering the contribution of clustered topology to biological transcriptional regulation, the transcrip-
tional regulatory networks (TRNs) of top 10 modules with high MCODE scores were reconstructed, with the 
inclusion of associations of transcription factors (TFs) and target genes (TGs) (Additional Information 9A). 
We hypothesized that the topology of TGs and TFs associations might be related to the rigorous regulation of 
TG transcription by TFs, which leads to robustness to stress stimuli. Here, the betweenness centrality of TFs in 
TRN modules was examined to determine the pattern of transcriptional regulation in the cassava varieties. The 
results showed a slight variation in the betweenness centrality of TFs in the TRN modules of the resistant variety, 
with a high node degree on average, in comparison to the sizeable variation found in the susceptible variety 
(Fig. 4A and Additional Information 9A). It is suggested that the resistant variety has more rigorous regulatory 
systems. Transcription of some TGs was regulated by multiple TFs, providing flexibility and redundancy into 
the regulatory regime, both of which are important for a robust  system30. Moreover, the tight distribution of the 
betweenness centrality may imply a closed regulation of the system from the influence of TFs in modules where 
the TF-TG association is cross-connected. In such systems, the expression of one TG is typically influenced by 
various TFs, and each TF controls the transcription of many TGs. This enables synchronized transcriptional 
regulation in plants for a prompt response to infection. As demonstrated by the analysis of TRNs modules 
with similar enriched functions (Fig. 4B), the TFs in the TRN module for the resistant variety under infection 
(Module_RT-2) were all in action under control conditions (Module_RC-2), while just a few active TFs in TRN 

Figure 4.  Betweenness centrality of TFs in TRN modules. (A) Jitter plot demonstrating the betweenness 
centrality of transcription factors (TFs) in the TRN modules. The standard deviation (SD) of the betweenness 
centrality of TFs in the resistant TRN was lower than for the susceptible TRN under control conditions. This 
suggests that other TFs in the resistant modules can alternatively be used for regulating target genes (TG) when 
the preferred TFs are perturbed, while the susceptible modules require specific TFs for regulating the TGs. (B) 
Venn diagram demonstrating TRN modules for each trait under control and infection conditions. Triangular 
nodes represent TFs, and circular nodes represent TGs. Only TF-TF associations are shown below the Venn 
diagram. Alternative TFs can be used during system perturbation to regulate genes via the complex topology of 
the resistant TRN in the naïve state. The susceptible TRN requires specific transcriptional regulation and has to 
activate new TFs to respond to infection.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7872  | https://doi.org/10.1038/s41598-021-86806-x

www.nature.com/scientificreports/

module for the susceptible variety (Module_ST-5) were in action under control conditions (Module_SC-5). 
These findings further indicate that the robust system derived by complex regulation is a naïve property of plants.

Furthermore, we tested the proposed scenarios with the well-known regulatory sub-system of heat shock 
protein-encoding genes (HSP) in response to infection. In the original study by Amuge et al.25, HSP genes were 

Figure 5.  Topological analysis of HSP gene co-expression networks. (A) Boxplot showing the distribution 
of topological parameters, betweenness centrality and node degree distribution, of HSP genes in  GCNHSP-CG. 
GCN-RC had the lowest betweenness centrality and highest node degree, indicating that HSPs are highly 
cooperative and can alternatively be used for defense purposes. (B) Boxplot showing node degree distribution 
of HSP-cooperative genes: (B-top) HSP-cooperative genes in the four conditions, (B-bottom-left) node 
degree distribution of HSP-cooperative genes in  GCNHSP-CG  (nRC = 533 genes,  nRT = 554 genes,  nSC = 873 genes, 
 nST = 1018 genes), (B-bottom-right) node degree distribution of HSP cooperative genes present in all four 
conditions of  GCNHSP-CG (n = 29 genes). Asterisks (*) indicate statistical differences based on the Wilcoxon 
rank-sum one-tailed test (p-value < 0.05). It was evident that GCN-RC > GCN-RT, GCN-SC > GCN-ST, 
GCN-RC > GCN-SC and GCN-RT > GCN-ST.
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proposed to be important in the defense against CBSV. The GCNs of HSP genes  (GCNHSP) and their cooperative 
genes  (GCNHPS-CG) were constructed for all studied conditions (Additional Information 10A). Topological analy-
sis of  GCNHSP and  GCNHSP-CG showed that the cooperative regulation of these genes was more elaborate in the 
resistant variety due to the higher clustering pattern, and the regulatory network structure remained unchanged 
under infection, suggesting a more robust defensive system. The cross connection between the clustered topol-
ogy of the gene network was also well demonstrated by the betweenness centrality and node degree of HSP and 
the HSP-cooperative genes (HSP genes and their first neighbor genes) in  GCNHSP-CG. Figure 5A exhibits similar 
trends to those observed in the TRNs shown in Fig. 4A. Cooperation of HSP genes in  GCNHSP-CG of the resistant 
variety showed a low distribution of betweenness centrality and a high degree of connection (Fig. 5A), while 
HSP-cooperative genes had a high node degree, indicating a highly cooperative manner of regulation (Fig. 5B). 
It is thus presumed that the topology of  GCNHSP-CG enhanced the tolerance of the resistant variety to CBSV 
infection through the redundant regulatory mechanisms.

Microscopic-scale clustered topology of responsive gene networks of Potato Virus Y resistant 
cultivar. A similar analysis was performed using Potato Virus Y (PVY) resistant (Premier Russet) and sus-
ceptible (Russet Burbank) potato cultivars to demonstrate that clustered topology of the GCNs is associated 
with the adaptive responses of plants to infections. The GCNs were constructed from time-series transcrip-
tome data of the two potato varieties under control and PVY conditions. The resistant potato variety showed a 
higher local clustering coefficient, implying more cooperative regulation of genes in GCN-RC than in GCN-SC 
(Fig. 6A and Additional Information 11A). Figure 6B demonstrates alterations to the GCN topology in response 
to PVY. There was no obvious difference in the responses of the resistant (GCN-RC and GCN-RT) and suscep-
tible (GCN-SC and GCN-ST) varieties in this case, probably due to the limited number of data points in the 
transcriptome data (3 time-points), when compared to of the cassava data (8 time-points). However, functional 

Figure 6.  Demonstration of the hypothetical robustness based upon the cluster topology of Potato Virus Y 
(PVY) resistant and susceptible cultivars. (A) Violin plots showing the local clustering coefficient distribution 
of resistant and susceptible potato cultivars infected with PVY. Asterisks (*) indicate statistically significant 
differences based on the Wilcoxon rank-sum one-tailed test (p-value < 0.05). The median local clustering 
coefficient of GCN-RC > GCN-RT, GCN-SC > GCN-ST, GCN-RC > GCN-SC and GCN-RT > GCN-ST. (B) 
Scatter plots showing the distribution of local properties of all nodes in the naïve networks; the x-axis in 
the scatter plot and violin plot represents the node degree, and the y-axis in the scatter plot and density plot 
represents the local clustering coefficient. (C) Heatmap showing the significance of GO enrichment (Q-value) of 
predominant genes in GCNs with high-degree nodes (degree > 500) and high clustering coefficients (c > 0.75).
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analysis of predominant genes in the GCNs, based on the high local clustering coefficient and node degree, 
showed a distinction in the enriched functions relevant to defensive regulation, i.e. the response to auxin by the 
resistant variety (Fig. 6C). This corresponds to the study by Goyer et al.29, who proposed the importance of auxin 
response in the defense mechanism against PVY in potato. Moreover, crosstalk of hormonal signals between 
auxin, salicylic acid, and ethylene is known to be important for plant pathogen  defense31. Our results showed 
that networks of the resistant potato variety for both control and infection conditions (GCN-RC and GCN-RT) 
contained signal transduction functions required for complex regulations and stress resistance, but not the sus-
ceptible variety. In addition, the potato GCNs were applied to construct condition-specific transcriptional regu-
latory networks (TRNs) to further support our hypothesis. The results showed that local clustering coefficients 
of TFs regulation  (TRNTF-TF) for RC and RT were higher than for SC and ST (Additional Information 11B–E), 
and are comparable with the GCN analysis for potato (Fig. 6) and cassava (Fig. 1).

Discussion
Gene association analysis is widely used to envision how genes work cooperatively in regulatory systems under 
prevailing  conditions9, 10. It has enabled insights into plant regulatory responses to stress, for example the 
responses of  Arabidopsis32 and  apple28 to bacterial infection and  cotton33 and  wheat34 to drought stress. Gene 
co-expression networks facilitate the holistic inference of associations based upon concurrence between gene 
expression patterns. Although the analysis may neither indicate any physical interaction, e.g. direct binding of 
regulatory genes, nor actual co-regulation, yet the resulting network often enables subsequent  identifications35. 
In a co-expression analysis of starch metabolism in Arabidopsis under diurnal conditions, Ingkasuwan et al.35 
identified indeterminate domain 5 (AtIDD5: At2g02070) and constans-like (COL: At2g21320) as TFs co-reg-
ulating starch synthase 4 (SS4) expression, which was validated by quantitative expression analysis in mutant 
lines. Also, co-regulation of the KNOX1 TF and phytohormone-related genes was proposed as active during 
cassava storage root initiation, which was then validated by exogenous treatment of phytohormone and qRT-
PCR expression  analysis36.

The topology of a gene association network, e.g. gene co-expression network, represents a characteristic of 
the system. Network topology is a theoretical concept widely used to dissect the property of regulatory systems 
and gain more insights into the phenotypes of  organisms19, 20, 37, 38. Marais and  team38 linked the regulatory roles 
of stress responsive genes in plants to the network topology. They found that drought stress responsive genes 
were highly associated with others and were often located at the center of the GCN, while cold stress responsive 
genes were less associated and located at the periphery of the network. Moreover, studies have shown that the 
metabolic network is a well-designed topology-based system. The topology of the metabolic network is believed 
to enhance metabolic robustness, as recently proven by Kawakami et al.39 in a study on the topological analysis 
of a genome-scale metabolic model of yeast in response to 26 stimuli.

In this study, network topology analysis was introduced to unravel the different canonical regulations in the 
regulatory systems of CBSV-tolerant and CBSV-susceptible cassava varieties. Gene co-expression networks were 
constructed for individual varieties to represent the cooperative network of responsive genes under control and 
infection conditions. The topology of the GCNs (GCN-RC, GCN-RT, GCN-SC and GCN-ST) was characterized 
and contrasted under control and infection conditions to determine if it contributed to the robustness of the 
system in response to the pathogen. The results indicated that the densely cooperative genes, inferred from the 
local clustering coefficient, in the GCN of the tolerant variety might have contributed to its robustness against the 
infection (Fig. 1, Additional Information 1C). The generalized network structures were proposed for distinctly 
robust systems (Fig. 2A) based on the observed topology of their GCNs (Fig. 1). The hypothetical models were 
rigorously examined by in silico perturbation (Fig. 2B) and network motif discovery (Additional Information 
3A), which corroborated the association of topological clustering with the robustness of systems.

The highly clustered gene network topology was hypothesized to act as a buffer to help attenuate function dis-
ruption during perturbation. The hypothesis was tested by functional analysis of the modular gene co-expression 
networks. The results showed that the highly clustered module structure of the resistant cassava variety helped 
retain essential cellular functions, such as photosynthesis and responses to light and stress during infection, which 
were severely disrupted in the susceptible variety (Fig. 3). The modular gene co-expression networks suggest 
a linkage between immune response against the CBSV infection, light response and photosynthetic processes 
in cassava, though they are not relevant pathways. The connection of photosynthesis and light conditions to 
biotic responses in plants, mostly through complex hormone signaling and energy molecule  supply40–42, has 
been reported in various studies. Photosynthesis generates carbon substrates and energy molecules (ATP and 
NADPH) and supplies these resources to synthesize important primary metabolites, antimicrobial compounds, 
and defense-related hormones such as abscisic acid, ethylene, jasmonic acid, and salicylic  acid42. In infected 
plants, the accumulated defense-related hormones such as  ABA43,  JA44 and  NO45 in turn influence photosynthesis. 
Induction of bacterial defense to Pseudomonas syringae in Arabidopsis was reported to be a light-dependent 
process, suggesting that plants response to diseases may vary depending on the time of infection. The study also 
showed that pathogenesis-related genes involved in defense mechanisms might be linked by the phytohormone 
salicylic  acid46.

The hypothesis that a clustered network pattern is required for a robust response was also tested with TRNs 
of the two cassava varieties during CBSV infection. Topological analysis of the networks showed that the TRN 
of the resistant variety had tight TF-TG cooperation. One target gene was regulated by multiple TFs (Fig. 4). 
Redundancy enhances flexibility, enabling the system to tolerate  perturbations30, 47–49. Such a regulatory response 
involving redundant transcriptional regulators and gene functions is typically observed in plant  species49–51 and 
allows plants to handle perturbations better. In Arabidopsis, redundant regulation of development is demon-
strated by the partially overlapping functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL 
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FACTOR1 (TCP) transcription factors in regulating leaf  senescence47, and BRASSINAZOLE-RESISTANT(BZR) 
and BES/BZR HOMOLOG (BEH) transcription factors in controlling embryonic stem  development49.

Corresponding to transcriptome analysis of Amuge and  team25, we found that genes related to infection 
recognition (LRR-proteins, chaperon and HSPs), phosphorylation and transcriptional regulation (TF genes) 
were important in response to CBSV infection. Our analysis showed that these genes were not just individually 
relevant, but also their contribution to the topology of the responsive gene network was crucial. We showed that 
LRR proteins and the chaperon/HSP-enriched module were linked in the gene cooperative network of the resist-
ant variety, while this linkage was absent in the network of the susceptible variety during infection (Additional 
Information 5A(A) and 8A). The importance of HSPs for the topology of the robust cooperative network was 
highlighted by the high local clustering coefficient compared to other responsive genes. Considering  GCNHSP and 
 GCNHSP-CG, the average clustering coefficient of the resistant variety’s networks was high and slightly declined 
under infection, unlike a drastic decrease in the susceptible variety’s (Additional Information 5A(B) and 10A). 
As supporting evidence, other studies have reported that HSP and small chaperon genes are involved in multi-
stress  resistance52–54.

The contribution of the clustered cooperative gene pattern to biological robustness was validated with the 
GCNs of potato infected with PVY, in order to assure the conclusion acquired from the analysis of the two cassava 
cultivars (one susceptible and one resistant varieties). The GCN-RC showed a higher local clustering coefficient 
than GCN-SC (Fig. 6A and Additional Information 11A), corresponding to the findings on cassava resistance 
and susceptibility to CBSV. However, changes in the topology of the GCNs after infection were not obviously 
different between the resistant (GCN-RC and GCN-RT) and susceptible (GCN-SC and GCN-ST) varieties. This 
might be due to the fewer data points (3 time-points) from the potato  experiment29, compared to 8 time-points 
from the cassava  study25. Time-series data with over 8 data points offer more precise and highly accurate gene 
association networks and topological  analysis55, 56. While the transcriptome data of potato infected with PVY 
may not be an ideal dataset for the validation, in terms of data resolution, it is one of the very rare time-course 
data on the response of crops to viral infection in the literature and one that is closely related to cassava. With 
lacking of data for further consolidation, the findings were strengthened by varying the parameters and statistical 
criteria (see Additional Information 2) and via multiple computational analyses (Fig. 2, and Additional Informa-
tion 3A). Availability of more suitable datasets, i.e. long time-course transcriptome data of cassava cultivars with 
distinct resistance to viral infection, would benefit a proof-of-concept study. Ultimately, this knowledge will help 
comparatively contrast susceptibility and resistance of cassava varieties to viral infection.

Conclusions
Cassava plant breeders are constantly in a race to develop cultivars that are resistant to a broad range of important 
and emerging plant pathogens. However, it is often the case that released cultivars perform inconsistently in 
different environments, which could be attributed to the lack of comprehensive understanding of the underly-
ing resistance mechanisms and the importance of cooperative gene regulation. In this study, we showed that the 
resistance of cassava to infection is linked to the clustered network topology of responsive genes in the regulatory 
systems. Not only the scale-free and small-world global properties are required, but also the local clustering topol-
ogy of the responsive gene network enables regulatory systems to retain vital functions and promptly respond to 
infection, as demonstrated by our findings on CBSV resistance in cassava and PVY resistance in potato. Thus, 
clustered topology of cooperative genes during viral infection is crucial for the robustness of regulatory systems 
and, ultimately, tolerance. When transcriptome analysis becomes financially affordable and readily accessible, 
the topology of gene cooperation would help relatively contrast the robustness of cassava response to infection 
and subsequently be one of the basic criteria for resistant trait selection.

Material and methods
Transcriptome data preprocessing. The GCN was constructed from the time-series transcriptome data 
of CBSV resistant (Namikonga) and susceptible (Albert) cassava cultivars under mock (control) and infection 
(treatment) conditions (Accession number: PRJNA360340)25. Each time point comprised 3 biological replicates 
studied at different times: 0 (before inoculation), 6, 24, and 48 h post-inoculation (hpi) and at 5, 8, 45, and 54 days 
post-inoculation (dpi). RNA sequencing was carried out using the Illumina Hi-Seq platform. Data for each time 
point were separately pre-processed using the transcriptome data analysis pipeline: i) filtering out of low quality 
reads (Q-score < 28) using  Trimmomatic57, ii) mapping of high-quality reads to the cassava reference genome 
(Mesculenta esculata version 6.1) retrieved from the Phytozome database, using STAR  aligner58 at a mapping rate 
of more than 75%, iii) counting of unambiguously mapped reads by  HTseq59, iv) normalization of time-series by 
the relative log expression method (RLE)60 and separation of time-series transcriptome data: resistance under 
control (RC) and treatment condition (RT), susceptible under control (SC) and treatment condition (ST), for the 
construction gene co-expression networks. Additional Information 1A shows results of the transcriptome data 
preprocessing according to the pipeline. After the quality control process, one sample (at 45 dpi) was discarded 
after the trimming process because of extraordinarily low numbers of qualified reads. Quality reads of individual 
samples were mapped to the cassava reference genome at a mapping rate of 90 percent or greater.

Gene co-expression network construction. The GCNs were constructed from the active genes and 
their co-expression. Active genes were defined based on their fluctuation, standard deviation (SD), across the 
eight time  points61. The genes with less than 3 expression time points for each condition were excluded from the 
analysis. Genes with SDs higher than the 77th–80th percentile (depending on datasets, Additional Information 
1B) were further assessed for gene–gene association based on the absolute Pearson correlation coefficient ≥ 0.95 
and p-value < 0.0556, using the Hmisc  function62 in program R 3.6.163. Finally, four gene co-expression networks 
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were constructed to cover the specific conditions: RC, RT, SC and ST. In addition, parameters for the network 
construction, such as gene selection and gene co-expression selection, were varied to ensure robust results 
(Additional Information 2A–D). All calculations were performed with the R programming language.

Network topology analysis. Network topology analysis was performed to measure properties of the reg-
ulatory systems. In graph theory, typically a network is a mathematical object that contains V vertices, E edges 
and/or A arcs. Node degree is the number of edges or linkages of each node. High-degree nodes, hub nodes, are 
important in a network since they have high relationships with others in the system. The shortest path length rep-
resents the shortest distance between any pairs of nodes, while the average path length is the average of all short-
est paths between all possible pairs of nodes. The network diameter is the longest of the shortest paths between 
all pairs of nodes in a network. Betweenness centrality quantifies the number of times a node acts as a bridge 
along the shortest path between two other nodes in a network. It ranges between 0 and 1, which respectively 
quantifies low and high probabilities of the involvement a gene in gene–gene cooperation. Therefore, nodes 
with high betweenness centrality act as a linkage between neighbor genes in the network, facilitating gene–gene 
association. Local clustering coefficient is a measure of how neighboring nodes are connected to each other. It is 
computed for each node in the network, and the average of all local clustering coefficients represents the global 
clustering coefficient of the network. This parameter ranges from 0 to 1, indicating zero to complete connection 
between neighboring gene nodes of interest, respectively. All networks in this work were topologically analyzed 
using NetworkAnalyzer. The frequency of network motifs was computed using NetworkMotifDiscovery, and 
the network was visualized in Cytoscape3.664. Wilcoxon rank-sum test was used for statistical analysis of the 
topological parameters at p-value < 0.05. The random networks with equal numbers of nodes and edges used for 
the topological analysis were generated by  Randomizer65.

Perturbation analysis. In silico perturbation was performed using the perturbR function in program  R66. 
Multiple edges were removed sequentially and stochastically. The edges were removed each time at α = 0.02 , 
where α is proportional edge removal, with α = 0 denoting no removal and α = 1 denoting complete removal 
of all edges. The network perturbation impact was assessed based on the variance information (VI), which is the 
variation of gene community information (directly and indirectly connected genes) before and after the pertur-
bation, as defined by Karrer and  team66. The variance information was calculated using: 
VI

(

C,C
′
)

= H(X|Y)+H(Y |X) , where VI
(

C,C
′
)

 is the variance information between gene community before 
(C) and after 

(

C′
)

 perturbation, H(X|Y) is the conditional entropy of X and Y  , a set of random variables (nodes 
in GCN; xi belongs to node in C and yi belongs to node in C′ ). The sequential perturbation was performed 30 
times, and the mean VI at a particular α was computed to represent the network state at a particular level of 
perturbation.

Modular gene network reconstruction. Molecular COmplex DEtection or MCODE is a tool for finding 
modular clusters in molecular networks using deterministic topological  algorithms67. The MCODE algorithm 
begins first calculates a node score based on the connection density of its neighborhood. The highest scored 
node is assigned as a seed node to initialize the search for potential components in the same module. Then, the 
algorithm calculates a module score. MCODE iteratively incorporates the possible nodes of the module and 
recalculates the module score until the score is below the set threshold. In this work, network modules were 
reconstructed using MCODE with a node score cutoff of 0.6. The modules were iteratively optimized while 
ensuring that the number of edges within the module with a top MCODE score is more than number of edges 
between modules. Genes that were not included in the modules were retained as the gene nodes (G-nodes) in the 
module networks and were linked up with the module nodes (M-nodes). Moreover, we used a robust resolution 
cutoff, MCODE threshold of 0.5–0.7, for modularization by MCODE (Additional Information 4B–D).

Functional annotation and analysis of modular gene networks. The gene ontology (GO) annota-
tions were retrieved from the PLAZA  database68. GO enrichment analysis was performed using  GOATOOL69, 
with Bonferroni correction at Q-value < 0.05. The Q-values were transformed to –log (Q-value) and zero for 
non-enriched functions. The hierarchical clustering was performed using the Weighted Pair Group Method with 
Arithmetic Mean algorithm (WPGMA) in  GENESIS70.

Transcriptional regulatory network (TRN) inference. Transcriptional regulatory networks were 
inferred from transcription factors (TFs) and their first neighbors in each GCN module. The cassava TFs were 
annotated from PlantTFDB version  471 and PlantPAN version  272.

HSP system construction. Heat shock proteins were retrieved from the Pfam protein domain  annotations73 
available in the PLAZA  database68. They comprised the small HSP family (Pfam id = PF00011), HSP60 family 
(Pfam id = PF00118), HSP70 family (Pfam id = PF00012), HSP90 family (Pfam id = PF00183), and HSP100 fam-
ily (Pfam id = PF02861, PF10431 and PF0004). The HSPs and their first-neighbor genes were used to reconstruct 
the subnetwork of HSPs and their cooperative genes  (GCNHSP-CG).

Gene co-expression networks of potato under control and PVY infection conditions. Transcrip-
tome data of potato leaves were retrieved from Goyer et al. (Accession numbers: SRP058212 and SRP058230)29. 
Leaf samples of Premier Russet and Russet Burbank potato cultivars, which are respectively resistant and sus-
ceptible to PVY, were collected from control and PVY-infected crops at times 0 (before inoculation), 4 and 10 h 
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post-inoculation (hpi). The transcriptome data were preprocessed by the standard pipeline (see Material and 
Methods:Transcriptome data preprocessing) and used for constructing the GCNs. Four GCNs were constructed 
to represent the resistant and susceptible potato under control and treatment conditions, based on the gene 
fluctuations (SD of gene expression across the 3 time-points, more than  80th percentile of all expressed genes), 
and their cooperation was inferred by |PCC| with a confidence interval of ≥ 0.95 and p-value < 0.05. Predominant 
genes in the GCNs, denoted by high degree nodes (≥ 500) and high clustering coefficients (c ≥ 0.75), were func-
tionally analyzed using  Phytozome74 and  GOATOOLS69.
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