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Transcriptional circuitry atlas 
of genetic diverse unstimulated 
murine and human macrophages 
define disparity in population‑wide 
innate immunity
Bharat Mishra1, Mohammad Athar2* & M. Shahid Mukhtar1,3,4* 

Macrophages are ubiquitous custodians of tissues, which play decisive role in maintaining cellular 
homeostasis through regulatory immune responses. Within tissues, macrophage exhibit extremely 
heterogeneous population with varying functions orchestrated through regulatory response, which 
can be further exacerbated in diverse genetic backgrounds. Gene regulatory networks (GRNs) offer 
comprehensive understanding of cellular regulatory behavior by unfolding the transcription factors 
(TFs) and regulated target genes. RNA‑Seq coupled with ATAC‑Seq has revolutionized the regulome 
landscape influenced by gene expression modeling. Here, we employ an integrative multi‑omics 
systems biology‑based analysis and generated GRNs derived from the unstimulated bone marrow‑
derived macrophages of five inbred genetically defined murine strains, which are reported to be 
linked with most of the population‑wide human genetic variants. Our probabilistic modeling of a 
basal hemostasis pan regulatory repertoire in diverse macrophages discovered 96 TFs targeting 6279 
genes representing 468,291 interactions across five inbred murine strains. Subsequently, we identify 
core and distinctive GRN sub‑networks in unstimulated macrophages to describe the system‑wide 
conservation and dissimilarities, respectively across five murine strains. Our study concludes that 
discrepancies in unstimulated macrophage‑specific regulatory networks not only drives the basal 
functional plasticity within genetic backgrounds, additionally aid in understanding the complexity of 
racial disparity among the human population during stress.

Macrophages are functionally diverse and conserved cells across tissues in the mammalian hematopoietic system. 
They have been implicated in versatile biological processes including tissue homeostasis, immunity, development, 
disease and tissue  repair1. The differences in anatomy, transcriptome expression and functional pathways of tis-
sue macrophage cells are critical to maintaining homeostasis in all  tissues2. Therefore, a study on macrophages 
provides a highly selective mechanism underlines homeostatic and regulatory  immunity3. However, these strate-
gies become more complex when we investigate the macrophage regulatory functions in a diverse population 
of genetic strains/variants4. The genetic regulatory circuits have a significant role in determining distinct tran-
scriptional rewiring to maintain homeostasis and immunity across genetic  diversity5. These macrophage-specific 
regulatory networks are assembled by transcription factors (TFs) specific promoters and enhancers elements 
determining their lineage or enforce tissue-limiting  properties6. The differentiation in regulatory circuits deter-
mines the plasticity in macrophage associated genetic crosstalk between metabolic pathways and regulation of 
gene  expression7. Several genetic variants within regulatory regions of the genome have also been reported for 
disease and other traits association illustrating the effect of TFs in gene  regulation8–10. These genetic variations 
and alterations of TF binding motifs are the underlying mechanism(s) for the regulation of gene expression and 
biological  function11,12. Consistent with this, several inbred murine models have been developed over the years 
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to understand the basis of genetic variations representing  phenotype5. Nevertheless, five murine models are 
shown to exemplify almost all genomic diversity associated with human genetic  variations4. These five murine 
models; C57BL/6J (C57), BALB/cJ (BALB), NOD/ShiLtJ (NOD), PWK/PhJ (PWK), and SPRET/EiJ (SPRET) 
mice represent approximately > 50 million SNPs + InDels of genes associated with a difference amongst two 
individual human  beings13,14.

With the advent of novel omics tools and platforms in the last two decades, a large number of genome-scale 
datasets have been accumulated in the biological sciences research  community15. The fundamental challenge, 
however, remains on how to handle and analyze huge and multidimensional data sets including genomes, tran-
scriptomes, proteomes, metabolomes, and regulomes. Towards this, the integrative systems biology analyses 
have been effectively applied to investigate multidimensional data sets individually and compiled collectively 
to understand the system-wide  complexity16. Systems biology has transpired as an efficient practice with the 
remarkable advancement in network integration techniques to decode the biological genetic  intricacy17. Networks 
encompass a set of systems components (nodes; genes/proteins or their products) interactions (edges) among 
themselves to generate a cellular  response18. These interactions specifically, gene co-expression and protein-DNA 
interaction, facilitate a functional rewiring to any perturbation in the cellular  processes19. Gene co-expression 
network construction and analyses have been applied to identify the significant players/modules in the biologi-
cal system through network architectural  analyses20,21. While protein-DNA interaction networks are utilized 
to establish gene functional pathway  regulation22. Typically, biological networks display scale-free topology; 
few nodes retaining heightened interactions, defined by power-law  distribution23–26. Network topology meas-
ures are physical or structural characteristics of the network, critical for deciphering the structural properties 
(centralities) to reveal novel components of biological network 17,27. Some of the highly used biological network 
centralities are degree, betweenness centrality, shortest path length, and cluster  coefficient17,24,28. Indeed, it has 
been established that high degree (hubs) and high betweenness centrality (bottlenecks) nodes of a network are 
significantly crucial players in most of the biological  processes21,29,30. Provided, plentiful biological systems exhibit 
analogous network formation and topology, centralities feature within a network may unravel the indicators of 
significant conditional  nodes17,18,31.

Protein-DNA interactions, specifically gene regulatory networks (GRNs) orchestrate the genotypic functional 
diversity by synchronizing the regulation of functional  pathways4,32–38. GRNs are collections of transcription 
factor (TF) footprints on gene’s promoter region to govern (activate/inhibit) the gene expression, reconstructed 
during specialized biological fitness. TFs motif bind to the promoter region of genes with open chromatin to 
regulated gene  expression39. Recent advances in genome-scale chromatin accessibility measurement techniques; 
the Assay for Transposase-Accessible Chromatin (ATAC)-seq has overcome the limitations of typical techniques 
(ChIP-seq and FAIRE-seq) and is a widely recognized  tool40. The chromatin accessibility measurement based 
on TF binding provides the putative TF-gene interactions, enhanced by gene expression (RNA-seq) and prior 
TF-target gene  interactions41. GRNs are bipartite graphs, provide exceptional illustrations of genetic scale-free 
network  topology23,42. Also, GRNs are directed graphs with edge polarity; TF binding to regulatory regions of a 
gene/other TF to govern gene/other TF expression, but not the other way round. Individual phenotypic plasticity 
is quantitatively driven through the underlying system-wide  GRNs36. Consequently, modeling and structural 
investigation of GRNs delivers a tremendous prospect to unravel the regulatory mechanism driven unstimu-
lated macrophage phenotypic plasticity. Multiple studies have reported the genome-wide chromatin accessible 
remodeling signatures in LPS, environmental and other induced  macrophages4,43–45. However, the basic differ-
ences amongst the basal GRNs of unstimulated bone marrow macrophages are not explored in detail of geneti-
cally diverse murine strains, which could be crucial to understand the stimulatory and plastic behavior of these 
immune cells in order to tackle external stimuli. Here, we explore GRN differences that might be associated with 
the variable response towards any macrophage associated disease signatures in global population demographics. 
We modeled five genetically diverse basal homeostasis GRNs based on unstimulated macrophage ATAC-seq 
and RNA-seq and identify conserved and distinct GRN components participate in biological functions during 
basal homeostasis (Fig. 1)4. Additionally, we generated bone marrow-derived macrophages (BMDMs) associated 
basal homeostatic gene co-expression network form transcriptome of five murine strains to discover significant 
topological and biological functional identities and players (TFs and genes) regulating basal homeostasis during 
unstimulated macrophages. Furthermore, we used integrative multi-omics methods to model the regulome atlas 
to determine the gene regulatory relationship to maintain innate immunity and basal homeostasis. As a result, our 
integrative approach helped us to unravel the conserved as well as discrete regulatory networks in five genetically 
diverse murine strains with crucial implications in maintaining immunity and basal homeostasis. Moreover, we 
also compared inflammatory and type 1 IFN response marker genes expression behavior in different human 
races and five murine strains. Taken together, our findings establish the effectiveness of a consolidative network-
centric approach in predicting physical properties of strain-specific GRNs, with significant implications in the 
interpretation of regulatory repertoire complexity driven phenotypic plasticity.

Results
Shared and distinct expression of resting macrophage to maintain basal homeostasis in genet‑
ically diverse mice strains. To investigate the gene expression behavior of unstimulated macrophages, we 
utilized five genetically defined murine strains bone marrow-derived macrophage (BMDM) transcriptomics 
expression  data4. The principal component analysis (PCA) of normalized read counts data revealed the variation 
of macrophage transcriptome amid five murine strains (C57, BALB, NOD, PWK and SPRET) (Fig. 2a, Sup-
plementary Table S1). Closely clustered groups are strains that account for approximately 40% of the observed 
variation within the first two principal components. Strikingly, the analysis illustrates that C57 and BALB tran-
scriptome are closer to each other than any other understudied mice strain transcriptome (NOD, PWK and 
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SPRET). However, the gene expression cluster pattern analysis replicated the relationships shown by PCA as 
well as revealed that most of the genes follow the same expression behavior, whereas some genes are distinct to 
certain mouse strains. To examine the gene clustering behavior, we performed k-means clustering analysis that 
demonstrates that 6000 out of 12,218 BMDM most variable genes are clustered in nine clusters and enriched in 
significant biological processes in five mice strains (adjusted P-value < 0.05) (Fig. 2b, Supplementary Table S1). 
Interestingly, the first three clusters enriched in the immune system process, regulation of cell proliferation, 
response to stress, cell activation, cell cycle, and DNA metabolic process displays most genes are expressed higher 
in C57, BALB and NOD strains than PWK and SPRET. While three distinct clusters with higher expressed genes 
in NOD, SPRET and PWK strains are enriched in response to cytokine, oxidation–reduction process, flavo-
noid metabolic process, catabolic process, autophagy, and peptide secretion (adjusted P-value < 0.05) (Fig. 2b, 
Supplementary Table S1). Consistently, bicluster cluster coefficient algorithm (BCCC)46 identified 820 highly 
co-regulated genes significantly enriched in immune systems process and display both shared and distinct gene 
expression across five mice strains (Fig. 2c, Supplementary Table S1). Particularly, the efficient node-deletion 
algorithm identified differences in NOD, PWK and SPRET strains immune gene transcriptome expression. To 
identify the significant gene expression variations amongst five murine strains at unstimulated macrophage, we 
performed differential gene expression analysis (FDR < 0.05, log2FC >|2|). Interestingly, strain pairwise com-
parison in BMDM transcriptome uncovered > 400 differential expressed genes (DEGs) between SPRET-NOD, 
PWK-NOD, SPRET-PWK, SPRET-C57, and SPRET-BALB at resting macrophage (FDR < 0.05, log2FC >|2|) 
(Fig. 2d, Supplementary Table S1). While three pairwise comparisons between NOD-BALB, NOD-C57, C57-
BALB uncovered < 300 DEGs at resting macrophage. Remarkably, we identified C57-BALB pair with least (55) 
enriched in antigen processing and presentation, humoral immune response, and SRP-dependent co-transla-
tional protein targeting to the membrane. Whereas, SPRET-NOD pair with most (602) DEGs enriched in inter-
feron signaling, neutrophil degranulation, regulation of cytokine production, leukocyte migration, response to 
type I interferon, regulation of MAPK cascade, leukocyte proliferation during unstimulated macrophage. Given 
the aforementioned inter-strain similarities and differences of gene expression are responsible for the multitude 
of the intensity of immune responses towards multiple external  stresses4,5.

TFs and immunity‑related genes are enriched in highly connected and correlated mod‑
ules. To study the correlation between TFs and immunity-related genes in different mice strains, we per-
formed co-expression network analysis by  WGCNA47. This lets us identify a BMDM associated homeostatic 
gene co-expression network containing 17 significant modules and one insignificant module (grey) with 8357 
nodes (genes) and 63,130 edges (pairs/connections) (Supplementary Fig. S1a, Fig. 3a, Supplementary Table S2). 

Figure 1.  Integrative multi-omics pipeline to model the unstimulated bone marrow-derived macrophage 
(BMDM) putative gene regulatory networks (GRNs) in five genetically defined murine strains.
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Among them, turquoise is the largest module with 1227 highly clustered genes enriched in the cellular protein 
catabolic process, organelle assembly, membrane trafficking, autophagy, positive regulation of neurogenesis, and 
neutrophil degranulation. While, grey60 is the smallest modules with 190 clustered genes enriched in regula-
tion of ion transport, adaptive immune system, regulation of lipid metabolic process, gland development, and 
organelle biogenesis and maintenance. Noticeably, grey is the insignificant module with the least clustering coef-
ficient that comprises 423 genes, which are enriched in plasma membrane raft organization, cell adhesion, and 
integrin-mediated signaling pathway. To investigate the high priority (key) genes and signatures of unstimulated 
macrophage, we implement network centrality measures (degree, betweenness, connectivity, shortest path, clus-
ter coefficient, stress, and topological coefficient) to macrophage co-expression network. Given that most of 
the real-world networks follow scale-free topology, we first investigated the scale-freeness of the co-expression 

Figure 2.  Unified and distinct gene expression patterns of unstimulated bone marrow-derived macrophage 
(BMDM) across diverse murine strains reveal significant diversified immune system response signal pathways 
to maintain basal hemostasis. (a) PCA visualization of the RNA-seq in five mice strains (C57, BALB, NOD, 
PWK, and SPRET) was labeled with distinct colors. The plot showing highly consistent RNA-seq clustered 
together for each mice strain. (b) Heatmap of 6000 most variable expressed genes out of 12,218 BMDM 
expressed genes in five mice strains based on k-means clustering along with significantly enriched biological 
processes. The clustered columns represent the expression in mice strains, whereas each row represents a 
gene (adjusted P-value < 0.05, expression colored based on TPM z-score). (c) CC Bicluster algorithm (BCCC) 
discovered 830 highly correlated genes in cluster1 and significantly enriched in immune systems biological 
process across five mice strains (colored based on TPM z-score). (d) The number of differential expressed genes 
(DEGs) maintaining basal homeostasis between different mouse strains (FDR = 0.05, FC ≥ |2|). Red represents 
up-regulated and the green represents down-regulated genes from one to another strain. C57 and BALB have 
the least number of DEGs.
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Figure 3.  Transcription factors (TFs) and immunity genes are enriched in the co-expression network of 
unstimulated macrophage. (a) BMDM associated basal homeostatic gene co-expression network (8357 nodes 
and 63,130 edges) with 17 significant modules. (b) The degree distribution of nodes in BMDM associated 
homeostatic gene co-expression network (r2 = 0.92, Mann Whitney test P < 0.0001) and random network. Only 
7.86% (657) of nodes have a high degree  (Hub50) representing the scale-free property of the co-expression 
network. (c) The relationship between connectivity and degree of nodes shows a significant positive correlation 
 (r2 = 0.82) suggesting the  Hub50 nodes and their modules are highly connected. (d) The distribution of genes and 
TFs (in percent) in represented modules with turquoise having a maximum 1205 (15.4%) genes and 22 TFs (20%, 
Hypergeometric enrichment test P < 0.05), and grey60 having minimum 186 genes (2.3%) and 4 TFs (3.63%) of all 
co-expressed genes/TFs. Also, TFs in purple and lightcyan modules are significantly enriched than genes assigned 
these modules (Hypergeometric test P < 0.01 and 0.05, respectively). (e) The average connectivity of all TFs is 
significantly higher (96.09) than the genes (93.02) in the co-expression network (Wilcoxon matched-pairs signed 
rank test P-value < 0.0001). (f) Immune-related genes form bicluster1 (Fig. 1e) are significantly enriched in  Hub50 
(Hypergeometric enrichment test, P < 1.4e−29) representing their importance in the co-expression network.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7373  | https://doi.org/10.1038/s41598-021-86742-w

www.nature.com/scientificreports/

network and randomly generated a network consisting of co-expression network nodes (Fig. 3b, Supplementary 
Table S2). Interestingly, we observed that the co-expression network follows scale-free topology based on the 
power-law distribution (r2 = 0.92) with only 7.86% (657) of nodes have a high degree  (Hub50) representing the 
scale-free property of the co-expression network.  Hub50 genes are significantly enriched in cell cycle, cytokine, 
mediated signaling pathway, interferon-alpha response, type 1 interferon response, DNA replication, defense 
response to virus, and interferon-beta response pathways (− log10(P) <  − 6). Furthermore, we calculated addi-
tional network centralities distribution and correlated with degree centrality. The relationship between con-
nectivity and degree of nodes shows a significant positive correlation (r2 = 0.82) suggesting the  Hub50 nodes 
and their modules are highly connected (Fig. 3c) while degree and betweenness centrality are not significantly 
correlated (r2 = 0.12) (Fig. S1b).

Since a few crucial nodes exhibit increased connectivity and/or central to a network, we concentrated our 
analysis on TFs enrichment in significant modules and centralities. Towards this, we explored the TFs distribu-
tion among co-expressed  modules48. We demonstrated that the turquoise module has a maximum (22) TFs fol-
lowed by purple (11), lightcyan (10), and yellow (10) than any other module (Fig. 3d, Supplementary Table S2). 
Additionally, to ascertain the centrality enrichment significance of TFs, we calculated the average centralities 
of TFs and genes in co-expression  network48. We demonstrated that average centralities; average connectivity 
(96.09), average betweenness (0.020), and average stress (57,764,373.43) of TFs are significantly higher than 
genes within co-expression network (Wilcoxon matched pairs signed rank test, P < 0.0001 for all comparisons). 
Consistent with these results, we also discovered that the average shortest path is significantly shorter for TFs 
(6.84) in the co-expression network (Supplementary Fig. S1c–h, Fig. 3e, Supplementary Table S2). Additionally, 
we report that some of the genes with high connectivity are involved in DNA replication, cell cycle, viral gene 
expression, DNA repair, cytoplasmic translation, and post-replication repair biological processes. Whereas, 
high connectivity TFs are enriched in white fat cell differentiation, adipogenesis, IL-9 signaling, nuclear recep-
tors in lipid metabolism and toxicity signaling pathways. Furthermore, we found that genes form bicluster1 are 
significantly enriched as  hub50 genes demonstrating their importance in maintaining homeostasis across five 
diverse mice strains (Hypergeometric test, P < 1.4e-29) (Fig. 3f, Supplementary Table S2). Taken together, our 
analyses describe that TFs are assigned to some of the largest modules and possess significantly high topological 
centralities in co-expression  network32,48.

Integrative systems biology identified differential chromatin accessible regions in unstimu‑
lated macrophage of diverse murine strains. To investigate the regulatory relationships between TFs 
and genes in resting macrophage of understudied mice strains, we modeled the Gene Regulatory Network (GRN) 
by unraveling the ATAC-seq dataset provided by Link et al.4. We found substantial distinctions in gene-specific 
open chromatin regions of five murine strains at resting macrophage (P < 0.05, Fig. 4a). Subsequently, the open 
chromatin regions were integrated with RNA-seq to find expressed TFs and their target genes (Fig. 4b)49. This 
lets us identify 124 expressed TFs across understudied strains in RNA-seq (TPM > 10) (Fig. 4c, Supplementary 
Table  S3). However, most of the TFs express consistently among strains, some TFs express more in certain 
murine strain. For example, Irf7, Foxp1, Pou2f2 in NOD, and Stat3, Stat6 in SPRET. Interestingly, most of C57 
and BALB strain TFs display similar expression behavior, except some TFs (Hmga2, Actf2) express more in C57 
than BALB. Afterward, to model the murine strain-specific regulatory relationships, we retrieved prior TF-target 
relationships from Pscan  database50 and integrated ATAC-seq as well as RNA-seq  datasets12,48. As a result, we 
build five understudied strains-specific resting/unstimulated macrophage GRNs with a distinct number of nodes 
and edges (Fig. 4d, Supplementary Table S3). Intriguingly, GRNs encompasses 78, 68, 71, 82, and 80 TFs along 
with 4506, 2760, 3918, 4793, and 5382 target genes in C57, BALB, NOD, PWK, and SPRET strains, respectively. 
We reported that BALB has the smallest GRN comprising 2828 nodes with 151,095 edges, while SPRET has the 
largest GRN encompassing 5462 with 355,800 edges. To identify the functional significance of TFs in GRNs, 
we categorized the TFs based on target interactions. Our analysis found that TFs with maximum interactions 
are involved in cancer, hepatitis B and C, acute myeloid leukemia, and human T-cell leukemia virus 1 infection, 
mitophagy, cytosolic DNA-sensing pathway, and parathyroid hormone activity. In contrast, TFs with minimum 
interactions are involved in viral carcinogenesis, TNF signaling, IL-17 signaling pathway, and Toll-like receptor 
signaling pathways.

Subsequently, to categorize the interaction behavior of a TF in GRNs, we focused on network analysis of 
five individual GRNs. As a result, we showed different interactions for the same TFs in all five murine strains 
(Fig. 4e, Supplementary Table S3). Some of these TFs (Bcl6, Zfp281, Rxra, Tcf3, Klf4, Egr2, Rela, and Zfp740) 
with maximum interactions are involved in growth, development, homeostasis, and  immunity51. Additionally, 
we uncovered that interactions for the same TF are higher in PWK and SPRET than C57 and lower in BALB 
and NOD suggesting the complex dynamics of unstimulated macrophage to maintaining basal homeostasis. 
For example, Stat3 TF has 3985, 2469, 3467, 4232, and 4727 target gene interactions in C57, BALB, NOD, PWK, 
and SPRET murine strains, respectively. Similarly, Stat6 TF has 3930, 2436, 3414, 4173, and 4667 target gene 
interactions in C57, BALB, NOD, PWK, and SPRET murine strains, respectively. Likewise, we also showed 
that Jun TF exhibits 2700, 1694, 2372, 2891, and 3222 target gene interactions in C57, BALB, NOD, PWK, and 
SPRET murine strains, respectively. Further, to validate our candidate GRNs, we compared cJun ChIP-Seq peaks 
in C57 and validate that our integrative approach identified more than 57% of target genes correctly (Fig. 4f). 
Collectively, these differences in the TFs expression, promoter occupancy, and interactions within GRNs, sug-
gest divergence in the unstimulated macrophage as the determinant of the organismal plasticity to maintain the 
intricacy of basal homeostasis gene regulation.
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Figure 4.  Differential chromatin accessibility and Transcription factors (TFs) interaction in unstimulated 
macrophage to maintain basal homeostasis in diverse murine strains. (a) Heatmap of accessible chromatin peak 
genes clustered by k-mean clustering and annotated with enriched biological processes in five mice strains. (b) 
Distribution of peaks in the promoter and distal region in five murine strains. (c) Heatmap of 124 Transcription 
Factors (TFs) was expressed across five strains of mice in RNA-seq (TPM > 1). The TFs are grouped according to 
their WGCNA assigned modules. The clustered columns represent the expression in mice strains, whereas each 
row represents a TF. Data is row-mean normalized and row clustered using correlation distance and average 
linkage. (d) Gene regulatory network (GRN) components of expressed TFs, expressed and chromatin accessible 
genes (TPM > 10) in C57,BALB, NOD, PWK, and SPRET murine strains. (e) Network analysis of individual 
GRNs revealed differential interactions for the same TF in all five mice strains at unstimulated macrophage 
(correlation (r2 = 0.99) and P < 0.0001 when compared to C57 strain). (f) ChIP-Seq of cJun and interactions of 
Jun in GRN of C57 murine model identified more than 57% of target genes correctly.
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Modeling of resting macrophage GRN atlas identified immune system enrichment. Given that 
five murine strains under study exhibit most of the genetic diversity associated with the human population, a rest-
ing/unstimulated macrophage GRN atlas will serve as a benchmark for overarching regulatory  repertoire35,49,52. 
To understand the overall (pan) basal homeostasis regulation in resting macrophage, we merged all five-strain 
specific GRNs interactions and identified the comprehensive edge-based interactions. The resulted pan GRN 
possesses 6375 nodes (6279 genes and 96 TFs) with 468,291 edges across five mice strains (Fig. 5a, Supplemen-
tary Table S4). Interestingly, among the discovered TFs, most of the TFs (57) are conserved among five strains 
and enriched in SMAD2/3 nuclear pathway, IL-6 signaling pathway, AP-1 transcription factor network, IL-5 
regulation of apoptosis, FRA pathway, p38 α/β MAPK downstream pathway, adipogenesis, IL-4 signaling path-
way, IL-2 signaling pathway, and transcriptional regulation of white adipocyte differentiation (Fig. 5b). Addi-
tionally, to detect the TFs expression difference among strains, we explored the RNA-seq expression analysis. As 
a result, we identified that 96 TFs expressed differentially across five strains of mice (TPM > 10) (Fig. 5c, Sup-
plementary Table S4). Furthermore, to understand the biological significance of genes and TFs, we performed 
gene and pathway ontology analysis of pan GRN. Intriguingly, the analysis revealed that immune system, protein 
metabolism, signal transduction, transcription, transport, cell cycle, response to external stimuli, GPCR signal-
ing, and RNA Metabolism are significantly enriched ontology terms (P ≤ 0.001) (Supplementary Fig. S2, Fig. 5d, 
Supplementary Table S4). These ontology terms are some of the well-studied pathways regulated by LDTF con-
trolled SDTFs of macrophage particularly in maintaining cellular homeostasis, and immune response to stimuli. 
Consequently, the BMDM macrophage influence by endogenous factors; metabolism, homeostatic regulatory 
signals, and systemic factors will ultimately determine their basal function.

Additionally, we extracted the genes/TFs involved in the pan immune system. Noticeably, we reported that 
pan immune system GRN (837 nodes with 5203 edges) comprise eight TFs (Stat3, Jun, Stat6, Rela, Irf9, Irf7, 
Irf3, and Atf1) interacting with 829 genes across five mice strains (Fig. 5e, Supplementary Table S4). Remark-
ably, we found that Stat3 and Jun participate in all five mouse strains GRNs, while Atf1 and Irf3 contribute to 
PWK and SPRET GRN, respectively. Additionally, we discovered that Stat6 is not part of BALB GRN, Rela is 
not involved in BALB and NOD GRN, Irf9 and Irf7 are not an element of C57 and SPRET GRNs, respectively. 
Nevertheless, it is well established that these TFs play a vital role in the regulation of the immune system and 
interferon  responses37,38,53–56. Furthermore, the network centrality measure of immune system GRN components 
will highlight the most connected nodes in the co-expression network. The analysis identified that  55hub50 
genes from BMDM associated gene co-expression networks are part of pan immune GRN signifying its central 
regulation. Cooperatively, the modeling of resting macrophage GRN atlas, the identification of immune system 
TFs and genes will provide an excellent resource to the scientific community to explore the genetic disparities 
to maintain basal homeostasis and immunity across different genetic variants.

Conserved immune system and signal transduction GRNs across five murine strains. The 
conceptual shared genetic regulation between five genetically diverse murine strains will describe the mutual 
GRN for every individual irrespective of the human race. To study the conserved GRN across murine genetic 
 diversity4, we assimilated all five consequential GRNs and identified the core GRN. As a result, we retrieved 2159 
nodes (57 TFs) connected through 97,165 edges, conserved across understudied murine strains (Fig. 6a, Supple-
mentary Table S5). Though 57 TFs contribute to core GRN, the number of target gene connections are different 
in the network. For example, 12 TFs (Klf4, Zfp281, Egr2, Rela, Zfp740, Mafb, Ctcf, Bhlhe40, Sp1, Zfp263, Nr2f6, 
and Zbtb7b) have more than 2000 target connections, while 45 TFs have less than 2000 target connections. To 
understand the biological significance of core GRN, we performed gene and pathway ontology by ClueGO. The 
analysis revealed some of the significantly enriched ontology terms are protein metabolism, immune system, sig-
nal transduction, membrane trafficking, RNA metabolism, cell cycle, cellular responses to external stimuli, RHO 
GTPase effectors, and transcriptional regulation by TP53 (P ≤ 0.001) (Supplementary Fig. S3, Fig. 6b, Supple-
mentary Table S5). Additionally, to investigate the core GRN genes involved in enriched pathways we extracted 
the associated and shared genes between significant ontologies. Remarkably, we report that signal transduction 
and membrane trafficking have the most common genes participating with the immune system (Fig. 6c, Sup-
plementary Table S5).

Furthermore, to identify the regulators governing the immune system, we extracted the core immune system 
GRN. Consequently, we identified six TFs (Stat3, Jun, Stat6, Rela, Irf9, and Irf3) involved in core immune GRN 
(295 nodes with 1395 edges) with Jun possess < 200 target connection than the other five TFs. (Fig. 6d, Supple-
mentary Table S5). Excitingly, these TFs play a crucial role in cell stress, immunodeficiency autoimmunity, NF-κB 
activation, interferon response, and  cancer53–55. Additionally, network analysis of core immune GRN nodes in the 
co-expression network provides a significance in all five murine strains. Interestingly, we uncovered that 10  Hub50 
genes (Stat1, Nck1, Cdc20, Ube2c, Cyb5r3, Csf2ra, Dctn2, Tubb5, Crk, and Stat2) from the BMDM-associated 
co-expression network are part of core immune GRN signifying their predominant regulation (Hypergeometric 
test, P < 0.001, Fig. 6e, Supplementary Table S5). Furthermore, to identify the overall core immune TFs regulation 
through five understudied murine strains, we calculated the total target interaction of six TFs (Stat3, Jun, Stat6, 
Rela, Irf9, and Irf3) in each GRN. The comparative interaction analysis revealed that NOD and BALB specific 
GRNs have fewer target interactions for six TFs than C57, while PWK and SPRET have more interactions for six 
TFs than C57 displaying the disparity in the influence of TFs at resting macrophages in different strains (Fig. 6f, 
Supplementary Table S5). For example, Irf3 TF has 3862, 2374, 3373, 4091, and 4592 target gene interactions in 
C57, BALB, NOD, PWK, and SPRET murine strains, respectively. Similarly, Irf9 TF has 3397, 2108, 2963, 3605, 
and 4016 target gene interactions in C57, BALB, NOD, PWK, and SPRET murine strains, respectively. While, 
Rela TF has 4531, 2795, 3943, 4821, and 5407 target gene interactions in C57, BALB, NOD, PWK, and SPRET 
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Figure 5.  The five consequential GRNs modeled pan basal regulation atlas of unstimulated macrophage in the 
murine model. (a) The pan GRN with 6375 nodes (6279 genes and 96 TFs) and 468,291 edges (interactions) 
across five mice strains. (b) Venn diagram representing the expression of unique and shared 96 TFs in five strains 
of mice. 57 TFs are expressed in all strains. (c) Heatmap of 96 Transcription Factors (TFs) present in pan GRN 
expressed across five strains of mice. The clustered columns represent TF expression, whereas each row represents 
different mice strain using correlation distance and average linkage. (Red: TPM > 10, White: TPM < 10). (d) Gene 
and pathway ontology identification of pan GRNs nodes by ClueGO. Some of the significantly enriched ontology 
terms are immune system, protein metabolism, signal transduction, transport, cell cycle, GPCR signaling, and 
RNA Metabolism (P ≤ 0.001) (Supplementary Figure S2). (e) Pan immune system GRN (5203 edges with 837 
nodes). There are eight TFs (Stat3, Jun, Stat6, Rela, Irf9, Irf7, Irf3, and Atf1) involved in pan immune GRN. The 
bigger size of the node denotes  Hub50 genes from the co-expression network analysis.
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murine strains, respectively. Collectively, this analysis provides the conserved GRN governing the basic immune 
functions and their robustness through the co-expression network in five murine strains.

Distinct TFs and GRNs of unstimulated macrophages in five murine strains to maintain basal 
homeostasis. Despite basal homeostasis and immunity being conserved across all understudied murine 
strains for unstimulated/resting macrophages, there are some differences, which exist as far as TFs-target regula-
tion is concerned. To investigate these distinct TFs-target relationships separately, we retrieved TFs and genes 
which are expressed individually in each murine strains (average TPM ≥ 10), have chromatin accessible and 
display TF-target relationships from Pscan database. Interestingly, we identified 13 TFs expressed individually in 
each murine strain (Fig. 7a, Supplementary Table S6). The pathway analysis revealed that these TFs are involved 
in DNA damage, cell cycle, mature B cell differentiation, interferon signaling, pluripotent stem cells regulation, 
differentiation of HSCs, cancer/ aldosterone synthesis, generic transcription pathway, myogenesis/ differentia-
tion of HSCs, response to stress, cellular glucose homeostasis, and cell migration (Supplementary Fig. S4a, Sup-
plementary Table S6). Furthermore, we retrieved total and unique target interactions per TF in each strain and 
predicted the functional annotation by ClueGO. Remarkably, we report two TFs (Hgma2 and Ahctf1) unique 
to C57 murine strains with C57 specific GRN (47 nodes, 72 edges) enriched in response to ionizing  radiation57 
and mRNA catabolic  processes58 (Supplementary Fig. S4b, Fig. 7b, Supplementary Table S6). Correspondingly, 
we account four TFs (Pou2f2, Sp100, Sp110, and Foxp1) unique to NOD murine strains with NOD specific GRN 
(93 nodes, 273 edges) enriched in negative regulation of muscle cell  differentiation59, interferon-beta response, 
response to the virus, dsRNA response and monocyte  chemotaxis60,61 (Supplementary Fig. S4c, Fig. 7c, Supple-
mentary Table S6). Likewise, we found four TFs (Runx1, Atf1, Zfp691, and Tcf12) unique to PWK murine strain 
with PWK specific GRN (112 nodes, 434 edges) enriched in RUNX1 regulation of HSCs  differentiation62, signal-
ing by  NTRKs63, antibiotic catabolic process, activation of GTPase, and transcription (Supplementary Fig. S4d, 
Fig. 7d, Supplementary Table S6). Consistently, we identify three TFs (Egr1, Egr3, and Foxk1) unique to SPRET 
murine strain with SPRET specific GRN (221 nodes, 637 edges) enriched in interleukin-1 beta production, 
wound healing, UCH proteinases, telomerase activity, and cell  migration64,65 (Supplementary Fig. S4e, Fig. 7e, 
Supplementary Table S6). Strikingly, we noticed that there is no TF expressed only in the BALB murine model 
because the expression pattern of TF/genes is comparable to the C57 murine model. Taken together, these obser-
vations highlight the disparities in GRNs resulting in phenotypic differences of unstimulated macrophage for 
understudied murine strains.

The human population‑based comparative analysis discovered expression inequalities in 
immunity‑related genes and TFs regulating homeostasis in unstimulated macrophages. The 
comparative transcriptomic analysis provides a better understanding of translational implication between model 
systems. Here, we try to understand the expression activity-based relationship of genes/TFs in different bio-
logical processes between human and mice systems. A recent population-based transcriptome-wide  study56 on 
different human races (Caucasian, Asian, Black, Hispanic, and other races) provides an opportunity for com-
parative analysis with five understudied murine strains (C57, BALB, NOD, PWK, and SPRET). The RNA-seq 
datasets for the human population were compared with Caucasian individuals to identify the disparities at the 
basal/unstimulated level. We aimed to compare the expression of TFs and genes involved in the inflammatory 
response, type 1 IFN response, pan basal homeostasis GRN, and immune system in different human races and 
mouse strains. It is worth mentioning that Cole et al., used Caucasian individuals as a reference, thus any gene 
positively regulated gene in other human races are possibly downregulated in Caucasian population or vice-
versa. Interestingly, we uncovered that most of the 19 inflammatory response genes reported by Cole et al., are 
expressed more in Black and Asian individuals with regard to (w.r.t.) Caucasian individuals, whereas these genes 
are expressed more in PWK and SPRET murine strains at resting/unstimulated  macrophages56 (Fig. 8a, Supple-
mentary Table S7). Correspondingly, we found that 32 type 1 IFN response genes reported by Cole et al., have 
enhanced expression in Asian and Black individuals w.r.t Caucasian individuals, comparably these genes display 
increased expression in NOD murine strain at unstimulated  macrophage56 (Fig. 8b, Supplementary Table S7). 
The existing predisease/unstimulated disparities in inflammation and interferon response highlight that some 
human races require additional interventions to counter any stress manifestation. Additionally, to test our pan 
GRN atlas for the basal genetic disparity study, we explored our pan GRN atlas TFs expression in the human 
population-based transcriptome. Consequently, we discovered that most of TFs exhibit heightened expression 
in the Black and Hispanic population w.r.t Caucasian individuals (Fig. 8c, Supplementary Table S7). Finally, we 
also tested the unstimulated/resting macrophages immunity-related genes in understudied murine strains (clus-
ters A, B, C, D, and I from Fig. 2b). As a result, we observed that most of the genes display amplified expression 
in Black and Asian individuals’ w.r.t Caucasian individuals (Fig. 8d, Supplementary Table S7). In Addition, we 
illustrate that immunity-related genes are expressed differentially in five murine strains with NOD displaying 
increased expression for a huge chunk of genes. Collectively, these observations signify the study of strain/race 
specific GRNs and extensive resources to study basal homeostasis, immunity, disease introduction, and recovery 
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Figure 6.  Immune system and signal transduction GRNs are statistically conserved across unstimulated macrophage of five diverse 
murine strains. (a) The merger of five consequential GRNs predicts the core GRN (97,165 edges with 2159 nodes) conserved across 
five strains of mice. The core GRN has 57 TFs and 2102 genes. (b) Gene and pathway ontology of core GRN nodes by ClueGO revealed 
some of the significantly enriched ontology terms; protein metabolism, immune system, signal transduction, membrane trafficking, 
RNA metabolism, cell cycle, cellular responses to external stimuli, RHO GTPase effectors, and transcriptional regulation by TP53 
(P ≤ 0.001) (Supplementary Figure S3). (c) The immune system ontology gene network is shared with other significant ontologies. 
Signal transduction and membrane trafficking have the most common genes involved with the immune system. (d) Core immune 
system GRN (1395 edges with 295 nodes). There are six TFs (Stat3, Jun, Stat6, Rela, Irf9, and Irf3) involved in core immune GRN. (e) 
Core immune genes are significantly enriched in  Hub50 (Hypergeometric enrichment test, P < 0.001) representing their importance in 
the robustness of the co-expression network. (f) The interactions of the core GRN immune system TFs in five strain-specific GRNs.
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Figure 7.  Distinct TFs and GRNs in unstimulated macrophage of diverse genetically defined murine strains to maintain 
basal homeostasis. (a) Heatmap of 13 TFs expressed individually in each strain of mice (Average TPM ≥ 10). Total and unique 
interactions (genes with average TPM ≥ 10) are mentioned correspondingly. (b) Hgma2 and Ahctf1 specific C57 GRN (47 
nodes, 72 edges). This GRN is involved in DNA damage and cell cycle. (c) Pou2f2, Sp100, Sp110, and Foxp1 specific NOD 
GRN (93 nodes, 273 edges). This GRN is involved in negative regulation of muscle cell differentiation, interferon signaling 
and mature B cell differentiation. (d) Runx1, Atf1, Zfp691, and Tcf12 specific PWK GRN (112 nodes, 434 edges). This GRN 
is involved in RUNX1 regulation of HSCs differentiation, signaling by NTRKs and transcription. (e) Egr1, Foxk1, and Egr3 
specific SPRET GRN (221 nodes, 637 edges). This GRN is involved in interleukin-1 beta production, UCH proteinases and 
cell migration. There is no TF expressed only in BALB mice. Triangles are TFs and circles are expressed chromatin accessible 
genes. The gene and pathway ontology of GRNs nodes was done by ClueGO (P < 0.05).



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7373  | https://doi.org/10.1038/s41598-021-86742-w

www.nature.com/scientificreports/

Figure 8.  Transcriptome based comparative analysis identified expression disparities between the human population 
and five murine strains. (a) Heatmap of 19 inflammatory response genes expression in the different human populations 
(Asian, Black, Hispanic, and other races with regard to (w.r.t.) Caucasian individuals, and unstimulated macrophages of five 
murine strains (C57, BALB, NOD, PWK, and SPRET). (b) Heatmap of 32 type 1 IFN response genes expression in different 
human populations and unstimulated macrophages of five murine strains. (c) Heatmap of 96 pan basal homeostasis GRN 
TFs expression in different human populations and unstimulated macrophages of five murine strains. (d) Heatmap of 730 
immune-related genes (form cluster A, B, C, d, and I of Fig. 2b) expression in different human population and unstimulated 
macrophages of five murine strains. Individual heatmap scale for human and murine samples.
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strategies across genetic variations in murine as well as human variations across different races during unstimu-
lated/resting  macrophages4,56.

Discussion
Macrophages are important immune cells ubiquitous to almost all body tissues and play significant roles in 
homeostatic regulation of tissue development, maintenance, repair and  remodeling66. Although in response to tis-
sue injury, systemic macrophage play key roles, which have extensively been investigated, the importance of resi-
dent (unstimulated) macrophage remains relatively poorly defined. It is known that tissue resident macrophage 
could be influenced by endogenous factors such as metabolism, other homeostatic regulatory signals and/or 
even factors of systemic origin that may ultimately determine their basal functions. However, in this study, we 
only focused on the factors associated with murine inter-strain differences as well as differences associated with 
various human races. These studies demonstrate gene expression changes and their networking influenced by the 
accessibility of macrophage specific binding sites in transcription-regulatory elements. The rationale behind TF-
target gene interactions modeling and characterization is to unravel the comprehensive genome-wide regulatory 
atlas of an organism irrespective of the exiting genetic variations in different  conditions30,35,37,38,49,51,52,67. Recon-
structing such interactions has revealed that diverse cellular networks are administered by universal principles, 
and directed to the unrevealing of collective and discrete genetic components and signaling pathways coupled 
with stress  introduction49,51,52,67. However, current Gene Regulatory Networks (GRNs) are scattered based on 
the study type, model organisms and genetic variants used in the  study49,52. There are gaps in the pan GRN for 
cumulative and distinct TFs/genes in representing most of the human  SNPs4. Moreover, these discrepancies in 
the regulatory repertoire are the missing link between gene and disease associations. To address these challenges 
and comprehend the mammalian, specifically murine and human complete GRNs repertoire of unstimulated/
resting macrophage, we studied the alterations in transcriptome expression and ATAC-seq for chromatin acces-
sible promoter regions across five genetically defined murine strains (C57, BALB, NOD, PWK and SPRET) 
37,52,67. The selection of these inbred mouse strains is extremely crucial based on the earlier demonstration of the 
total collection of approximately > 50 million SNPs + InDels of the global genetic variations associated with a 
difference amongst two individual human beings. In the current study, we constructed an unstimulated BMDM 
co-expression network displaying features of scale-freeness and amplified network topological centralities for 
TFs. We modeled five strain-specific GRNs to explore the conserved and distinct regulatory connections in 
understudied murine strains. The expression of GRNs affect strain-specific macrophage activities in different 
biological processes including maintaining tissue homeostasis, development, and immunity. The subset of line-
age-determining transcription factors (LDTFs) act as master regulators and compete with nucleosomes to bind 
on the DNA. LDTFs act hierarchically upstream to trigger the signal-dependent transcription factors (SDTFs) 
during macrophage activity. Furthermore, other epigenetic changes (non-coding) directly perturb the LDTFs 
binding, henceforth alter the SDTFs regulatory circuits. Despite the differences in expression of the various 
murine strains and in the human races, there is guaranteed physiological homeostasis due to distinct transcrip-
tional rewiring of LDTFs regulatory circuits. These macrophage-specific regulatory networks are assembled by 
LDTFs specific promoters and enhancers elements determining their lineage or enforce tissue-limiting proper-
ties. Additionally, the differentiation in regulatory circuits determines the plasticity in macrophage associated 
genetic crosstalk between metabolic pathways and regulation of gene expression. Identification of pan GRN atlas 
of unstimulated macrophage provided an extraordinary resource to investigate the basal homeostasis, immune 
system, and signal transduction. In-depth analyses of pan GRN revealed six TFs and some genes involved in 
immunity are conserved in all five murine strains and significantly more connected and correlated than other 
genes in co-expressed modules. Additional striking discoveries pertain to the GRN disparity between under-
studied murine strains and their strain-specific biological significance in inflammation, type 1 IFN response, 
immune, and homeostasis transcriptional signatures.

We constructed a comprehensive pan GRN atlas encompassing 6279 genes and 96 TFs (Fig. 5a), representing 
the compounded regulatory repertoire and underline mechanism to maintain basal homeostasis of unstimulated 
macrophages. The biological pathway analysis identified that the immune system and signal transduction GRNs 
are statistically enriched and conserved across understudied murine strains. Most of the nodes in the pan regula-
tory network are enriched in the immune system including eight TFs (Stat3, Jun, Stat6, Rela, Irf9, Irf7, Irf3, and 
Atf1) interacting with 829 genes across five mice strains. Additionally, six (Stat3, Jun, Stat6, Rela, Irf9, and Irf3) 
out of eight TFs are conserved in five murine strains with more connections than other genes in co-expressed 
 modules30,37. It is well established that significant regulators generally tend to have high network topological 
properties than other nodes in the  network48,68. Therefore, highly connected TFs govern a large component of 
genetic regulation responsible to maintain basal homeostasis at unstimulated macrophages. Strikingly, these TFs 
play a crucial role in the immune system and interferon  response37,54,55.

The comparative transcriptomics analyses discovered the expression correlation amongst different human 
demographics and murine strains. We explored the TFs/genes expression involved in an inflammatory response, 
immune system, and interferon response of different human  demographics56. Remarkably, the population-based 
study identified the disparities in the regulation of the aforementioned functions and compared them with the 
Caucasian human population. According to Cole et al., if a gene negatively regulated in any other human races, 
that gene is possibly upregulated in Caucasian population or vice-versa. Interestingly, 19 inflammatory response 
genes reported by Cole et al., display enhanced expression in Asian and Black human population, while they 
express more in PWK and SPRET murine strains in unstimulated  macrophage56. To name a few, FOSB, NFkB1 
and JUND genes enriched in  cancer69,70 and autoimmune  disease71 are highly expressed in the Black population 
for humans while their expression is increased in C57, NOD and SPRET murine strains, respectively. Similarly, 
32 type 1 IFN response genes display heightened expression in the Asian and Black human population, while they 
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exhibit high expression in NOD murine strain unstimulated  macrophage4,56. Likewise, well-known interferon 
signaling regulators; IRF7 and IRF8 display increased expression in Black and Asian populations, while they are 
expressed more in NOD murine  strain4,56. Additionally, most of pan GRN atlas TFs (Atf4, Cebpg, E2f2, Egr1, 
Foxo4, Foxp1, Irf3, Jund, Klf4, Klf9, Mafb, Mafk, Nr2f6, Pou2f2, Rela, Stat6, Tcf, Xbp1, Zbtb3 and Zscan1) display 
heightened expression in Black and Hispanic population as compared to Asian and other  races4,56. Functional 
pathways enriched by these TFs are a cellular response to hormone stimulus, response to radiation, chemokine 
production, B cell activation, temperature homeostasis, regulation of cytokine production, lymphocyte differen-
tiation, gland development, and response to  lipopolysaccharide72. Based on these crucial associations, we believe 
that our GRNs and their significant players can be used as an extensive resource to study homeostasis regulating 
pathways depicting, immunity, disease introduction, and recovery strategies across genetic variations in murine 
as well as human  races4–6,51. However, it remains to be demonstrated if any of these TFs or their interactome 
may serve as biomarkers for determining susceptibility to infectious and/or autoimmune diseases. It will be of 
interest to understand their epigenetic regulation and its correlation with disease susceptibility and treatment.

Our final integrative strategy identified distinct TF-target relationships and enriched biological processes 
in unstimulated/resting macrophages of five genetically defined murine strains. Remarkably, we reported C57 
murine strain has two unique TFs (Hgma2 and Ahctf1) and their unique targets are enriched in response to 
ionizing radiation and mRNA catabolic  processes57,58. Notably, Hgma2 play a significant role in stress associated 
cellular senescence and Ahctf1 in mitotic checkpoint during cell cycle  interventions73. Similarly, NOD murine 
strains unique TFs (Foxp1, Pou2f2, Sp100, and Sp110) and their unique targets are enriched in negative regula-
tion of muscle cell differentiation, interferon-beta response, and monocyte  chemotaxis59–61. Therefore, most of 
interferon response genes are up regulated by Pou2f2 and Sp100 member family nuclear proteins in NOD murine 
strain. Whereas, PWK murine strain unique TFs (Runx1, Atf1, Zfp691, and Tcf12) and their unique targets 
are enriched in RUNX1 regulation of HSCs differentiation, signaling by NTRKs, antibiotic catabolic process, 
activation of GTPase, and  transcription62,63. Strikingly, Runx1 promotes hematopoietic stem cells growth and 
inhibits their apoptosis by stimulating transcription of the Myb and Trib2  genes74,75. Correspondingly, we identi-
fied SPRET murine strain unique TFs (Egr1, Egr3, and Foxk1) and unique targets are enriched in interleukin-1 
beta production, wound healing, UCH proteinases, telomerase activity, and cell  migration65,67. Remarkably, 
interleukin-1 beta production and interleukin-1 family signaling activation in SPRET highlight more induction 
of inflammatory response during  sepsis76. Interestingly, there is no unique TF/gene expressed only in the BALB 
murine model because the expression pattern of TF/genes is similar to the C57 murine  model4. This notable 
conservation and distinctions in TFs and their target gene set to play a significant role in maintaining the immune 
system, homeostasis and other basal biological  functions66. They may also be important determinants of sus-
ceptibility to various diseases that need to be explored in further detail. Furthermore, differences in the panel 
of cytokines/chemokines in unstimulated macrophage, only NOD murine strain derived macrophage showed 
slight polarization towards M1 while PWK/SPRET strains showed tilting towards M2. However further evidence 
is needed to confirm these observations.

In conclusion, we generated BMDM basal gene co-expression network, integrated transcriptome to regulome 
for strain-specific GRNs, discovered significant topological and biological regulators and modules, and distin-
guished unifying and distinct regulatory networks in five murine strains and among human races. Henceforth, 
our integrative network science approach facilitated the unraveling of intricate and discrete regulatory atlas of 
unstimulated macrophages to maintain basal homeostasis in five genetically diverse murine strains.

Limitation of this study. We understand the limitation of this assumption that the expression levels of a 
given TF may or may not be correlated with its targets due to various layers of gene regulations from mRNA pro-
duction to the rate of protein synthesis. We would like to highlight a few studies, which employ similar method-
ology to predict TF-target  relationship20,77,78. Dam et al., discussed a comprehensive strategy to build predicted 
disease associated GRN based on gene co-expression  networks20. Similarly, other study used correlation among 
expressed genes to identify module regulated by TFs at different time  points77. We agree and understand that the 
ideal situation would be to quantify TF protein levels (proteomics) and correlate them with TF transcript  levels78. 
A more direct measure, however, is to integrate ChIP-Seq data of all TFs under similar cellular and physiological 
conditions. Such circumstances may or may not be flawless since the spatiotemporal gene expression may not 
fully overlap with protein synthesis. Needless to say, that such studies are not prevalent as of now in commonly 
used mouse strain and not explored in other mouse strains under study. Furthermore, the epigenetic modulation 
of TF binding was not explored while establishing the murine strain specific GRN. Additional study on integrat-
ing (3C/4C/Hi-C data) can reveal the GRN interactions in higher resolution.

Materials and methods
RNA‑sequencing and differentially expressed genes analysis. The primary data source of this study 
is five diverse genetically defined murine strains bone marrow-derived macrophage (BMDM) transcriptomics 
expression data generated by Link et al.4, retrieved from NCBI’s Gene Expression  Omnibus79 with the accession 
number GSE109965. The study uses five murine strains (C57, BALB, NOD, PWK, and SPRET) to explore the 
basal homeostasis with two replicates for each strain. The read count value transcripts per million (TPM) data-
set was pre-processed (< 10 was filtered out) for expression threshold in each murine strain. The filtered TPM 
values were  log2 transformed for each gene in every sample and fold change concerning each murine strains 
between each pairwise  comparison48. We performed differentially expressed genes (DEGs) analysis by  DESeq280 
as described by Link et al.4. This  log2 transformed expression profiles generated with expression parameters; > 2 
for up-regulated genes and < -2 for down-regulated genes. To understand the function of the DEGs, the gene 
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ontology (GO) enrichment was performed using  Enrichr81,  ClueGO82 and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)83 enrichment analysis was carried out using  iDEP84.

Weighted gene co‑expression network construction. The availability of high-resolution, large-scale 
transcriptome datasets enables co-expression network analysis to identify clusters of highly correlated genes that 
are potentially co-regulated to maintain Immune homeostasis within diverse genetically defined murine strains. 
Thus, co-expression networks allow identifying a set of genes, which might participate in a common biological 
process. To determine basal homeostasis associated common gene signatures, we implemented a correlation-
based R package; weighted gene co-expression network analysis (WGCNA)47 on RNA sequencing TPM count 
dataset. Specified the complexity of the multi-course dataset, exhausting a hard threshold would result in loosing 
of information and may affect the sensitivity  too85. Hence, a soft-threshold power of 18 along with a scale-free 
model fit index  r2 > 0.68 was utilized for maximum scale-free topology, preserving high mean connectivity, and 
rejecting lesser correlations for genes. The module in WGCNA is assigned by a flexible process, permits to affect 
the least number of features confined in each module by semi-programmed cutting of the dendrogram, and is 
denoted by a unique color. We created an elementary WGCNA network utilizing flashClust() and cutreeDynam-
icTree()  algorithms85, incorporating all cleaned expression  values85. The module functional analysis is done by 
 Metascape72 for FDR < 0.01 through KEGG, Reactome and GO biological processes for all modules simultane-
ously. The resulting co-expression network with 8357 nodes and 63,130 edges was visualized in  cystoscape86 and 
utilized for further network analysis.

ATAC sequencing peak calling and Gene Regulatory Network (GRN) construction. The primary 
data source of this study is a reproducible high-resolution diverse genetically defined murine strains ATAC 
seq data generated by Link et al.4, retrieved from NCBI’s Gene Expression  Omnibus79 with the accession num-
ber GSE109965. We performed strain-specific peak calling and differentially bound TF binding site analysis 
through  HOMER3 as described by Link et al.4. The GRN construction was done by integrating gene expression 
(TPM ≥ 10) from RNA-seq, open chromatin regions from ATAC-seq and TF-Target interactions of the afore-
mentioned genes/TF from Mouse Pscan  database50 (http:// 159. 149. 160. 88/ pscan/). Individual GRNs for geneti-
cally diverse murine strains were generated. PAN and core GRNs were constructed by merging all GRNs and 
finding the conserved GRN across five mice strains, respectively.

Network analyses. Network topology  measures17,28,32 such as degree, betweenness centrality, connectiv-
ity, cluster coefficient, and stress centrality were calculated using  NetworkX87. The degree of a node is the total 
number of connections in a network. The highly connected nodes in the network are identified as hubs. While 
betweenness centrality determines the frequency of a node in facilitating interactions with other nodes through 
the shortest  paths88. Both hubs and bottlenecks (high betweenness) have been exploited for significant nodes 
discovery in diverse intra- and inter-species  interactions89. Similarly, connectivity determines the resilience of 
the network through the measure needed for separating a network into multiple subnetworks. While the cluster-
ing coefficient determines the highly clustered components by distinguishing the total number of triangles in the 
network. Whereas, stress centrality determines the aggregation of shortest paths between all node pairs. Addi-
tionally, the average centralities of TFs and the rest of the network were calculated and compared.  Hub50 are the 
genes with ≥ 50 connections in the co-expression  network48. The networks were visualized in Cytoscape 3.7.286.

Statistical analyses. The number of differential expressed genes (DEGs) maintaining basal homeostasis 
between different mouse strains was calculated with FDR < 0.05. The correlation between overall connectiv-
ity and degree of co-expressed genes is significantly positive (r2 = 0.82). The Wilcoxon matched pairs signed 
rank test was used to test the significance of TFs and genes based on network centralities. The Hypergeometric 
enrichment test was used to test the significance of  Hub50 genes in the co-expression network and Bicluster1 (830 
immune genes). The Hypergeometric enrichment test was used to test the significance of  Hub50 genes in the co-
expression network and immune genes in core immune GRN genes. Gene and pathway ontology identification 
of GRNs nodes by Enrichr, and ClueGO with P ≤ 0.05 and 0.001, respectively.

Data availability
All datasets used and generated from this study are accessible through Table S files.

Materials availability
This study did not generate new unique reagents. Requests for materials and communications with the journal 
should be addressed to M.S.M. (smukhtar@uab.edu).

Received: 9 November 2020; Accepted: 12 March 2021

References
 1. Hume, D. A. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J. 

Leukoc. Biol. 92, 433–444. https:// doi. org/ 10. 1189/ jlb. 03121 66 (2012).
 2. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of 

mouse tissue macrophages. Nat. Immunol. 13, 1118–1128. https:// doi. org/ 10. 1038/ ni. 2419 (2012).
 3. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for 

macrophage and B cell identities. Mol. Cell 38, 576–589. https:// doi. org/ 10. 1016/j. molcel. 2010. 05. 004 (2010).

http://159.149.160.88/pscan/
https://doi.org/10.1189/jlb.0312166
https://doi.org/10.1038/ni.2419
https://doi.org/10.1016/j.molcel.2010.05.004


17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7373  | https://doi.org/10.1038/s41598-021-86742-w

www.nature.com/scientificreports/

 4. Link, V. M. et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription 
factor binding and function. Cell 173, 1796-1809 e1717. https:// doi. org/ 10. 1016/j. cell. 2018. 04. 018 (2018).

 5. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492. https:// doi. org/ 10. 
1038/ natur e12615 (2013).

 6. Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33. https:// doi. org/ 
10. 1038/ ni. 3306 (2016).

 7. Phan, A. T., Goldrath, A. W. & Glass, C. K. Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 
46, 714–729. https:// doi. org/ 10. 1016/j. immuni. 2017. 04. 016 (2017).

 8. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucl. Acids Res. 
45, D896–D901. https:// doi. org/ 10. 1093/ nar/ gkw11 33 (2017).

 9. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22. https:// doi. 
org/ 10. 1016/j. ajhg. 2017. 06. 005 (2017).

 10. G. T. Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in 
humans. Science 348, 648–660. https:// doi. org/ 10. 1126/ scien ce. 12621 10 (2015).

 11. Grossman, S. R. et al. Systematic dissection of genomic features determining transcription factor binding and enhancer function. 
Proc. Natl. Acad. Sci. USA 114, E1291–E1300. https:// doi. org/ 10. 1073/ pnas. 16211 50114 (2017).

 12. Deplancke, B., Alpern, D. & Gardeux, V. The genetics of transcription factor DNA binding variation. Cell 166, 538–554. https:// 
doi. org/ 10. 1016/j. cell. 2016. 07. 012 (2016).

 13. Bogue, M. A. et al. Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype data 
from laboratory mice. Nucl. Acids Res. 46, D843–D850. https:// doi. org/ 10. 1093/ nar/ gkx10 82 (2018).

 14. Lusis, A. J. et al. The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. 
J. Lipid Res. 57, 925–942. https:// doi. org/ 10. 1194/ jlr. R0669 44 (2016).

 15. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46. https:// doi. org/ 10. 1038/ nrg26 26 (2010).
 16. Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics data integration, interpretation, and its application. 

Bioinform. Biol. Insights 14, 1177932219899051. https:// doi. org/ 10. 1177/ 11779 32219 899051 (2020).
 17. Mishra, B., Kumar, N. & Mukhtar, M. S. Systems biology and machine learning in plant-pathogen interactions. Mol. Plant Microbe 

Interact. 32, 45–55. https:// doi. org/ 10. 1094/ MPMI- 08- 18- 0221- FI (2019).
 18. Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998. https:// doi. org/ 10. 1016/j. 

cell. 2011. 02. 016 (2011).
 19. Mishra, B., Sun, Y., Ahmed, H., Liu, X. & Mukhtar, M. S. Global temporal dynamic landscape of pathogen-mediated subversion 

of Arabidopsis innate immunity. Sci. Rep. 7, 7849. https:// doi. org/ 10. 1038/ s41598- 017- 08073-z (2017).
 20. van Dam, S., Vosa, U., van der Graaf, A., Franke, L. & de Magalhaes, J. P. Gene co-expression analysis for functional classification 

and gene-disease predictions. Brief Bioinform. 19, 575–592. https:// doi. org/ 10. 1093/ bib/ bbw139 (2018).
 21. Dai, H., Zhou, J. & Zhu, B. Gene co-expression network analysis identifies the hub genes associated with immune functions for 

nocturnal hemodialysis in patients with end-stage renal disease. Medicine (Baltimore) 97, e12018. https:// doi. org/ 10. 1097/ MD. 
00000 00000 012018 (2018).

 22. Garbutt, C. C., Bangalore, P. V., Kannar, P. & Mukhtar, M. S. Getting to the edge: protein dynamical networks as a new frontier in 
plant-microbe interactions. Front. Plant Sci. 5, 312. https:// doi. org/ 10. 3389/ fpls. 2014. 00312 (2014).

 23. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113. 
https:// doi. org/ 10. 1038/ nrg12 72 (2004).

 24. Barzel, B. & Barabasi, A. L. Universality in network dynamics. Nat. Phys. https:// doi. org/ 10. 1038/ nphys 2741 (2013).
 25. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804. https:// doi. org/ 10. 1126/ 

scien ce. 10750 90 (2002).
 26. del Sol, A. & O’Meara, P. Small-world network approach to identify key residues in protein–protein interaction. Proteins 58, 

672–682. https:// doi. org/ 10. 1002/ prot. 20348 (2005).
 27. Lü, L. et al. Vital nodes identification in complex networks. Phys. Rep. 650, 1–63. https:// doi. org/ 10. 1016/j. physr ep. 2016. 06. 007 

(2016).
 28. Kumar, N., Mishra, B., Mehmood, A., Athar, M. & Mukhtar, M. S. Integrative network biology framework elucidates molecular 

mechanisms of SARS-CoV-2 pathogenesis. bioRxiv, 2020.2004.2009.033910 https:// doi. org/ 10. 1101/ 2020. 04. 09. 033910 (2020).
 29. Di, Y., Chen, D., Yu, W. & Yan, L. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. 

Hereditas 156, 7. https:// doi. org/ 10. 1186/ s41065- 019- 0083-y (2019).
 30. Ouma, W. Z., Pogacar, K. & Grotewold, E. Topological and statistical analyses of gene regulatory networks reveal unifying yet 

quantitatively different emergent properties. PLoS Comput. Biol. 14, e1006098. https:// doi. org/ 10. 1371/ journ al. pcbi. 10060 98 (2018).
 31. Smakowska-Luzan, E. et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342–346. 

https:// doi. org/ 10. 1038/ natur e25184 (2018).
 32. Iacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol. 

20, 110. https:// doi. org/ 10. 1186/ s13059- 019- 1713-4 (2019).
 33. Lian, S., Li, L., Zhou, Y., Liu, Z. & Wang, L. The co-expression networks of differentially expressed RBPs with TFs and LncRNAs 

related to clinical TNM stages of cancers. PeerJ 7, e7696. https:// doi. org/ 10. 7717/ peerj. 7696 (2019).
 34. Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228-3240 

e3227. https:// doi. org/ 10. 1016/j. celrep. 2019. 05. 046 (2019).
 35. Suo, S. et al. Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep. 25, 1436-1445 e1433. https:// doi. org/ 

10. 1016/j. celrep. 2018. 10. 045 (2018).
 36. van Gestel, J. & Weissing, F. J. Regulatory mechanisms link phenotypic plasticity to evolvability. Sci. Rep. 6, 24524. https:// doi. org/ 

10. 1038/ srep2 4524 (2016).
 37. Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897-912 e820. https:// doi. org/ 10. 1016/j. cell. 2018. 

12. 036 (2019).
 38. Zhou, Q. et al. A mouse tissue transcription factor atlas. Nat. Commun. 8, 15089. https:// doi. org/ 10. 1038/ ncomm s15089 (2017).
 39. Grimes, T., Potter, S. S. & Datta, S. Integrating gene regulatory pathways into differential network analysis of gene expression data. 

Sci. Rep. 9, 5479. https:// doi. org/ 10. 1038/ s41598- 019- 41918-3 (2019).
 40. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive 

epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218. https:// 
doi. org/ 10. 1038/ nmeth. 2688 (2013).

 41. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha 
cell and beta cell signature genes. Mol. Metab. 5, 233–244. https:// doi. org/ 10. 1016/j. molmet. 2016. 01. 002 (2016).

 42. Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957. https:// doi. org/ 10. 1242/ jcs. 02714 (2005).
 43. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326. 

https:// doi. org/ 10. 1016/j. cell. 2014. 11. 018 (2014).
 44. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 

1251086. https:// doi. org/ 10. 1126/ scien ce. 12510 86 (2014).

https://doi.org/10.1016/j.cell.2018.04.018
https://doi.org/10.1038/nature12615
https://doi.org/10.1038/nature12615
https://doi.org/10.1038/ni.3306
https://doi.org/10.1038/ni.3306
https://doi.org/10.1016/j.immuni.2017.04.016
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1126/science.1262110
https://doi.org/10.1073/pnas.1621150114
https://doi.org/10.1016/j.cell.2016.07.012
https://doi.org/10.1016/j.cell.2016.07.012
https://doi.org/10.1093/nar/gkx1082
https://doi.org/10.1194/jlr.R066944
https://doi.org/10.1038/nrg2626
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1094/MPMI-08-18-0221-FI
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1038/s41598-017-08073-z
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1097/MD.0000000000012018
https://doi.org/10.1097/MD.0000000000012018
https://doi.org/10.3389/fpls.2014.00312
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/nphys2741
https://doi.org/10.1126/science.1075090
https://doi.org/10.1126/science.1075090
https://doi.org/10.1002/prot.20348
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1101/2020.04.09.033910
https://doi.org/10.1186/s41065-019-0083-y
https://doi.org/10.1371/journal.pcbi.1006098
https://doi.org/10.1038/nature25184
https://doi.org/10.1186/s13059-019-1713-4
https://doi.org/10.7717/peerj.7696
https://doi.org/10.1016/j.celrep.2019.05.046
https://doi.org/10.1016/j.celrep.2018.10.045
https://doi.org/10.1016/j.celrep.2018.10.045
https://doi.org/10.1038/srep24524
https://doi.org/10.1038/srep24524
https://doi.org/10.1016/j.cell.2018.12.036
https://doi.org/10.1016/j.cell.2018.12.036
https://doi.org/10.1038/ncomms15089
https://doi.org/10.1038/s41598-019-41918-3
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1016/j.molmet.2016.01.002
https://doi.org/10.1242/jcs.02714
https://doi.org/10.1016/j.cell.2014.11.018
https://doi.org/10.1126/science.1251086


18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7373  | https://doi.org/10.1038/s41598-021-86742-w

www.nature.com/scientificreports/

 45. Tang, M. S., Miraldi, E. R., Girgis, N. M., Bonneau, R. A. & Loke, P. Alternative activation of macrophages is accompanied by 
chromatin remodeling associated with lineage-dependent DNA shape features flanking PU.1 Motifs. J. Immunol. https:// doi. org/ 
10. 4049/ jimmu nol. 20002 58 (2020).

 46. Cheng, Y. & Church, G. M. Biclustering of expression data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 93–103 (2000).
 47. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https:// 

doi. org/ 10. 1186/ 1471- 2105-9- 559 (2008).
 48. Mishra, B., Sun, Y., Howton, T. C., Kumar, N. & Mukhtar, M. S. Dynamic modeling of transcriptional gene regulatory network 

uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst. Biol. Appl. 4, 35. https:// doi. org/ 10. 1038/ 
s41540- 018- 0071-2 (2018).

 49. Miraldi, E. R. et al. Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells. 
Genome Res. 29, 449–463. https:// doi. org/ 10. 1101/ gr. 238253. 118 (2019).

 50. Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from 
co-regulated or co-expressed genes. Nucl. Acids Res. 37, W247-252. https:// doi. org/ 10. 1093/ nar/ gkp464 (2009).

 51. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752. https:// doi. org/ 10. 
1016/j. cell. 2010. 01. 044 (2010).

 52. Goode, D. K. et al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev. Cell 36, 572–587. 
https:// doi. org/ 10. 1016/j. devcel. 2016. 01. 024 (2016).

 53. Yanai, H. et al. Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation 
in mice. Proc. Natl. Acad. Sci. USA 115, 5253–5258. https:// doi. org/ 10. 1073/ pnas. 18039 36115 (2018).

 54. Johnson, G. L. & Nakamura, K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. 
Biophys. Acta 1773, 1341–1348. https:// doi. org/ 10. 1016/j. bbamcr. 2006. 12. 009 (2007).

 55. Hillmer, E. J., Zhang, H., Li, H. S. & Watowich, S. S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 31, 1–15. https:// 
doi. org/ 10. 1016/j. cytog fr. 2016. 05. 001 (2016).

 56. Cole, S. W., Shanahan, M. J., Gaydosh, L. & Harris, K. M. Population-based RNA profiling in Add Health finds social disparities 
in inflammatory and antiviral gene regulation to emerge by young adulthood. Proc. Natl. Acad. Sci. USA 117, 4601–4608. https:// 
doi. org/ 10. 1073/ pnas. 18213 67117 (2020).

 57. Natarajan, S., Hombach-Klonisch, S., Droge, P. & Klonisch, T. HMGA2 inhibits apoptosis through interaction with ATR-CHK1 
signaling complex in human cancer cells. Neoplasia 15, 263–280. https:// doi. org/ 10. 1593/ neo. 121988 (2013).

 58. Scholz, B. A. et al. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene 
gating. Nat. Genet. 51, 1723–1731. https:// doi. org/ 10. 1038/ s41588- 019- 0535-3 (2019).

 59. Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 
1734-1749 e1722. https:// doi. org/ 10. 1016/j. cell. 2016. 11. 033 (2016).

 60. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036-1045 e1039. 
https:// doi. org/ 10. 1016/j. cell. 2020. 04. 026 (2020).

 61. Osswald, C. D. et al. Fine-tuning of FOXO3A in cHL as a survival mechanism and a hallmark of abortive plasma cell differentia-
tion. Blood 131, 1556–1567. https:// doi. org/ 10. 1182/ blood- 2017- 07- 795278 (2018).

 62. Li, Y. et al. Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. 
Blood 127, 233–242. https:// doi. org/ 10. 1182/ blood- 2015- 03- 626671 (2016).

 63. Wang, H., Xu, J., Lazarovici, P., Quirion, R. & Zheng, W. cAMP response element-binding protein (CREB): a possible signaling 
molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11, 255. https:// doi. org/ 10. 3389/ fnmol. 2018. 00255 
(2018).

 64. Barbieri, E. et al. Targeted enhancer activation by a subunit of the integrator complex. Mol. Cell 71, 103-116 e107. https:// doi. org/ 
10. 1016/j. molcel. 2018. 05. 031 (2018).

 65. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192. https:// doi. 
org/ 10. 1038/ s41556- 018- 0178-0 (2018).

 66. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455. 
https:// doi. org/ 10. 1038/ natur e12034 (2013).

 67. Horvath, A. et al. Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by 
classical and alternative polarization signals. Nucl. Acids Res. 47, 2778–2792. https:// doi. org/ 10. 1093/ nar/ gkz118 (2019).

 68. Skinkyte-Juskiene, R., Kogelman, L. J. A. & Kadarmideen, H. N. Transcription factor co-expression networks of adipose RNA-Seq 
data reveal regulatory mechanisms of obesity. Curr. Genomics 19, 289–299. https:// doi. org/ 10. 2174/ 13892 02918 66617 10050 95059 
(2018).

 69. Zhang, R. et al. EZH2 inhibitors-mediated epigenetic reactivation of FOSB inhibits triple-negative breast cancer progress. Cancer 
Cell Int. 20, 175. https:// doi. org/ 10. 1186/ s12935- 020- 01260-5 (2020).

 70. Low, J. T. et al. Loss of NFKB1 results in expression of tumor necrosis factor and activation of STAT1 to promote gastric tumori-
genesis in mice. Gastroenterology https:// doi. org/ 10. 1053/j. gastro. 2020. 06. 039 (2020).

 71. Fazia, T. et al. Investigating the causal effect of brain expression of CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10 genes on multiple 
sclerosis: a two-sample Mendelian randomization approach. Front. Bioeng. Biotechnol. 8, 397. https:// doi. org/ 10. 3389/ fbioe. 2020. 
00397 (2020).

 72. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. 
https:// doi. org/ 10. 1038/ s41467- 019- 09234-6 (2019).

 73. Rasala, B. A., Orjalo, A. V., Shen, Z., Briggs, S. & Forbes, D. J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear 
pore assembly and proper cell division. Proc. Natl. Acad. Sci. USA 103, 17801–17806. https:// doi. org/ 10. 1073/ pnas. 06084 84103 
(2006).

 74. Sanda, T. et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leu-
kemia. Cancer Cell 22, 209–221. https:// doi. org/ 10. 1016/j. ccr. 2012. 06. 007 (2012).

 75. Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding 
intergenic element. Science 346, 1373–1377. https:// doi. org/ 10. 1126/ scien ce. 12590 37 (2014).

 76. Timmermans, S. et al. Using the inbred mouse strain SPRET/EiJ to provide novel insights in inflammation and infection research. 
Mamm. Genome 29, 585–592. https:// doi. org/ 10. 1007/ s00335- 018- 9751-x (2018).

 77. Chang, Y. M. et al. Three TF Co-expression modules regulate pressure-overload cardiac hypertrophy in male mice. Sci. Rep. 7, 
7560. https:// doi. org/ 10. 1038/ s41598- 017- 07981-4 (2017).

 78. Gomez-Cano, F., Xu, Q., Shiu, S.-H., Krishnan, A. & Grotewold, E. Co-expression signatures of combinatorial gene regulation. 
bioRxiv, 2020.2005.2019.104935 https:// doi. org/ 10. 1101/ 2020. 05. 19. 104935 (2020).

 79. Barrett, T. & Edgar, R. Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)*. Methods Mol. Biol. 338, 175–190. 
https:// doi. org/ 10. 1385/1- 59745- 097-9: 175 (2006).

 80. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome 
Biol. 15, 550. https:// doi. org/ 10. 1186/ s13059- 014- 0550-8 (2014).

 81. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res. 44, W90-97. 
https:// doi. org/ 10. 1093/ nar/ gkw377 (2016).

https://doi.org/10.4049/jimmunol.2000258
https://doi.org/10.4049/jimmunol.2000258
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/s41540-018-0071-2
https://doi.org/10.1038/s41540-018-0071-2
https://doi.org/10.1101/gr.238253.118
https://doi.org/10.1093/nar/gkp464
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.1016/j.devcel.2016.01.024
https://doi.org/10.1073/pnas.1803936115
https://doi.org/10.1016/j.bbamcr.2006.12.009
https://doi.org/10.1016/j.cytogfr.2016.05.001
https://doi.org/10.1016/j.cytogfr.2016.05.001
https://doi.org/10.1073/pnas.1821367117
https://doi.org/10.1073/pnas.1821367117
https://doi.org/10.1593/neo.121988
https://doi.org/10.1038/s41588-019-0535-3
https://doi.org/10.1016/j.cell.2016.11.033
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1182/blood-2017-07-795278
https://doi.org/10.1182/blood-2015-03-626671
https://doi.org/10.3389/fnmol.2018.00255
https://doi.org/10.1016/j.molcel.2018.05.031
https://doi.org/10.1016/j.molcel.2018.05.031
https://doi.org/10.1038/s41556-018-0178-0
https://doi.org/10.1038/s41556-018-0178-0
https://doi.org/10.1038/nature12034
https://doi.org/10.1093/nar/gkz118
https://doi.org/10.2174/1389202918666171005095059
https://doi.org/10.1186/s12935-020-01260-5
https://doi.org/10.1053/j.gastro.2020.06.039
https://doi.org/10.3389/fbioe.2020.00397
https://doi.org/10.3389/fbioe.2020.00397
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1073/pnas.0608484103
https://doi.org/10.1016/j.ccr.2012.06.007
https://doi.org/10.1126/science.1259037
https://doi.org/10.1007/s00335-018-9751-x
https://doi.org/10.1038/s41598-017-07981-4
https://doi.org/10.1101/2020.05.19.104935
https://doi.org/10.1385/1-59745-097-9:175
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/nar/gkw377


19

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7373  | https://doi.org/10.1038/s41598-021-86742-w

www.nature.com/scientificreports/

 82. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. 
Bioinformatics 25, 1091–1093. https:// doi. org/ 10. 1093/ bioin forma tics/ btp101 (2009).

 83. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res 28, 27–30. https:// doi. org/ 10. 1093/ nar/ 
28.1. 27 (2000).

 84. Ge, S. X., Son, E. W. & Yao, R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq 
data. BMC Bioinform. 19, 534. https:// doi. org/ 10. 1186/ s12859- 018- 2486-6 (2018).

 85. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 
https:// doi. org/ 10. 2202/ 1544- 6115. 1128 (2005).

 86. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504. https:// doi. org/ 10. 1101/ gr. 12393 03 (2003).

 87. Hagberg, A., Swart, P. & Chult, D. S. Exploring Network Structure, Dynamics, and Function Using NetworkX (Los Alamos National 
Lab (LANL), Los Alamos, 2008).

 88. Ahmed, H. et al. Network biology discovers pathogen contact points in host protein–protein interactomes. Nat. Commun. 9, 2312. 
https:// doi. org/ 10. 1038/ s41467- 018- 04632-8 (2018).

 89. McCormack, M. E., Lopez, J. A., Crocker, T. A. & Mukhtar, M. S. Making the right connections: network biology and plant immune 
system dynamics. Curr. Plant Biol. 5, 2–12. https:// doi. org/ 10. 1016/j. cpb. 2015. 10. 002 (2016).

Acknowledgements
This work was supported by the National Science Foundation (IOS-1557796) to M.S.M., and U54 ES 030246 
from NIH/NIEHS to M. A and M.S.M. The authors thank Dr. Karolina Mukhtar for editing and critically read-
ing the manuscript.

Author contributions
M.S.M., B.M. and M.A. conceived the project. B.M. performed network-based and statistical analyses. B.M wrote 
the first draft of the manuscript. All the authors discussed the results, critically reviewed the manuscript and 
provided valuable comments/edits.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 86742-w.

Correspondence and requests for materials should be addressed to M.A. or M.S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1186/s12859-018-2486-6
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/s41467-018-04632-8
https://doi.org/10.1016/j.cpb.2015.10.002
https://doi.org/10.1038/s41598-021-86742-w
https://doi.org/10.1038/s41598-021-86742-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Transcriptional circuitry atlas of genetic diverse unstimulated murine and human macrophages define disparity in population-wide innate immunity
	Results
	Shared and distinct expression of resting macrophage to maintain basal homeostasis in genetically diverse mice strains. 
	TFs and immunity-related genes are enriched in highly connected and correlated modules. 
	Integrative systems biology identified differential chromatin accessible regions in unstimulated macrophage of diverse murine strains. 
	Modeling of resting macrophage GRN atlas identified immune system enrichment. 
	Conserved immune system and signal transduction GRNs across five murine strains. 
	Distinct TFs and GRNs of unstimulated macrophages in five murine strains to maintain basal homeostasis. 
	The human population-based comparative analysis discovered expression inequalities in immunity-related genes and TFs regulating homeostasis in unstimulated macrophages. 

	Discussion
	Limitation of this study. 

	Materials and methods
	RNA-sequencing and differentially expressed genes analysis. 
	Weighted gene co-expression network construction. 
	ATAC sequencing peak calling and Gene Regulatory Network (GRN) construction. 
	Network analyses. 
	Statistical analyses. 

	References
	Acknowledgements


