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An insight into the estimation 
of frost thermal conductivity 
on parallel surface channels using 
kernel based GPR strategy
Xuejun Zhou1, Fangyuan Zhou1* & Maryam Naseri2* 

In heat exchange applications, frost formation on the cold surface causes a decrease in the rate of 
heat transfer and growth in the pressure drop. Thus, the study on the frost thermal conductivity has 
a significant and vital place for the engineers and researchers dealing with the heat exchangers. In 
the literature, there is a lack of accurate and applicable methods for determination of frost thermal 
conductivity. Additionally, the high cost and difficulties of experimental works clarify the importance 
of computational and mathematical methods. The errors in the determination of frost thermal 
conductivity on parallel surface channels can cause inaccuracy in estimations of frost density and 
thickness. The main aim of present work is suggesting Gaussian Process Regression (GPR) models 
based on four different kernel functions for the estimation of frost thermal conductivity in terms of 
time, air velocity, relative humidity, air temperature, wall temperature, and frost porosity. To achieve 
this purpose, a total number of 57 frost thermal conductivity values has been collected. Comparing 
the suggested GPR models and other available computational methods express the quality of the 
developed models. The best predictive tool has been selected as a GPR model, including Matern kernel 
function with  R2 values of 0.997 and 0.994 in training and testing phases, respectively. In addition, the 
effectiveness of discussing variables on frost thermal conductivity has been investigated by sensitivity 
analysis and showed that air temperature is the most effective parameter. The present work gives 
engineers an insight into frost thermal conductivity and the effective parameters in its determination.
The significant advantage of present work is the accurate prediction of thermal conductivity by a brief 
knownledge in artificial intelligence.

As the surface temperature is lower than air dew point temperature and the water freezing temperature, moist 
air creates frost on a cold surface. Frost creation rate grows by increasing the air stream humidity and the tem-
perature difference between air and the cold  surface1. The frost deposition can be extensively happened on the 
surfaces of the air-source heat pump and heat exchangers in refrigeration systems, which have consequences 
such as increasing the pressure drop and decreasing in the heat transfer rate. Therefore, the formation of frost 
increase consumption of power in the refrigeration system and hear  exchanger2.

The calculation of frost thermal conductivity, frost density, and frost thickness can be known as a challenging 
issue because this layer is porous media with intensive variation in  porosity3. Although some advancements in 
experimental assessment of the frost layer characteristics are achieved, the laboratory investigations are time-
consuming, costly, and also need more advanced equipment. Moreover, the development of a computational 
method can complement the measurement data for a better understanding of the impact of various variables on 
frost growth and thermal  conductivity4–7.

In many heat exchangers, utilization of low-temperature parallel plates is common. Therefore, the investiga-
tion of frost on parallel plates is necessary. Additionally, it is worthy of mentioning that the frosting process on 
a float plate and on a parallel plate heat exchangers are different from each one. The more explanations for these 
differences can be found  in8.

One of the important parameters in the formation rate of frost is the thermal conductivity of frost. Investiga-
tions in the available literature show that thermal conductivity of frost is a function of time duration, air relative 
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humidity, wall surface temperature, air temperature, air velocity, and frost porosity. Despite difficulties, different 
empirical, semi-empirical, and theoretical approaches have been proposed to construct a suitable estimative tool 
for frost thermal conductivity determination. Generally, there are different hardships in experimental investi-
gations for obtaining properties in different  sciences9–12. Therefore, mathematical and computational methods 
have become highlighted. Yonko proposed a model for the prediction of conductivity in terms of frost  density13. 
Brian et al. also suggested another model for conductivity as a function of wall temperature and frost density. 
Additionally, they proposed an empirical model to determine conductivity for frost densities less than 250 kg/
m314. Sanders expressed that thermal conductivity is highly a function of frost density and developed a relation-
ship for determination of thermal conductivity with frost density less than 500 kg/m315. Ostin et al. upgraded 
the Yonko model to determine conductivity for the frost density ranges of 50–680 kg/m316. Lee et al. developed 
a model for the thermal conductivity by considering frost density as the most effective  parameter17. Sturn et al. 
used two relationships which have limitations in some ranges of operating conditions for the prediction of frost 
thermal  conductivity18. Kim proposed a relationship to determine frost thermal conductivity in terms of airflow 
velocity, air relative humidity, time, and frost  density19. Negrelli took into the frost structure on the determina-
tion of the thermal conductivity over flat surfaces. Then, in the other study, wall temperature and frost porosity 
were considered in the calculation of the thermal  conductivity20,21.

Among the different methods exist in the literature. Negrelli et al.20,21, Kim et al.19, Sturm et al.18, Lee et al.17, 
Ostin and  Andersson16,  Sanders15, Brian et al.14, and Yonko et al.13 models are the most popular ones in the 
calculation of frost thermal conductivity. Most of these investigations have been carried on frost on the flat 
plates in a limited range of temperature, and there is a limited number of discussing studies focuses on parallel 
surface channels.

As mentioned, the growth of frost on the surfaces in the heat exchanger induces a reduction in the thermal 
conductivity and an increase in the pressure drop. Therefore, the prediction of frost thermal conductivity has a 
vital importance among engineers dealing with heat exchangers. In the current study, the frost thermal conductiv-
ity on parallel surface channels has been determined by Gaussian Process Regression (GPR) methods containing 
four different forms of kernel functions in terms of time, air velocity, relative humidity, air temperature, wall 
temperature, and frost porosity. Furthermore, the comparison with real thermal conductivity for different avail-
able approaches in literature has been made to evaluate the accuracy of proposed GPR models. In addition, the 
sensitivity analysis for impacts of the influential variables on frost thermal conductivity has been done.

Previous models
Y–S model. Yonko and Sepsy proposed a model which was upgraded by other  researchers13. This method 
was constructed by utilization of primary experimental data. In the aforementioned method, the thermal con-
ductivity is obtained in terms of frost density for density (ρf ) lower than 575 kg/m3. The Y–S model is formulated 
as follows:

B–R–S model. Brian proposed a correlation for thermal conductivity in terms of the wall temperature and 
frost  density14. The proposed model is applicable for density lower than 250 kg/m3. This model is described as 
follows:

S model. Sanders expressed that the most important parameters for determination of the frost thermal con-
ductivity is the frost density and suggested the below  correlation15:

O–A model. A model was proposed by Ostin and Andersson for a density range of 50–680  kg/m3 as 
 following16:

L–L–K model. Lee et al. developed a correlation which is a function of  density17:

S–H–K–M model. Sturm et  al. developed below correlations for determination of the frost thermal 
 conductivity18:

(1)kf = 2.422× 10−2 + 7.214× 10−4ρf + 1.1797× 10−6ρ2
f

(2)kf = 2.401× 10−5T1.272
w + 3.921× 10−8ρf T

1.74
w

(3)kf = 1.202× 10−3ρ0.963
f

(4)kf = −8.71× 10−3 + 4.39× 10−4ρf + 1.05× 10−6ρ2
f

(5)kf = 0.132+ 3.13× 10−4ρf + 1.610−7ρ2
f

(6)

{
kf = 0.138− 1.01× 10−3ρf + 3.233× 10−6ρ2

f for 156 < ρf < 600 kg/m3

kf = 2.3× 10−2 + 2.34× 10−4ρf for ρf < 156 kg/m3
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K–J–L model. Kim et al. suggested a relationship for determination of frost thermal conductivity in terms of 
time, airflow velocity, air relative humidity, and frost density as  following19:

N–H model. A new model was developed by Negrelli and Hermes for determination of the frost thermal 
conductivity, which covers three different ranges of  temperature20. This relationship is formulated as follows:

In which a1 and a2 stand for a coefficient which are determined by fitting on data.

N–J–H model. Negrelli et al. proposed a formulation for the thermal conductivity of frost on parallel chan-
nels by assuming the impacts of frost porosity and wall  temperature21. The thermal conductivity of the serial and 
parallel array are determined as below:

In which, ε represents the porosity determined from:

where, ρi and ρa stand for densities of ice and air, respectively. Nield et al. suggested a geometric average mean 
shown by  kg for the most porous  media22:

Negrelli adapted above equation for frosted media by considering  kf =  kg as follows:

where, a and b are optimum fitted parameter on experimental data.

Methodology
Data collection. Investigation on the available experimental works on frost topic illustrates that while there 
are some works on frost thermal conductivity in the literature, the studies concentrating on the parallel surface 
channels are limited. Therefore, two comprehensive works for parallel surfaces are only available. In this study, a 
total number of 57 actual frost thermal conductivity values in terms of time (t), air velocity  (ua), relative humid-
ity (Φa), air temperature  (Ta), wall temperature  (Tw), and frost porosity (ε) has been  collected16,21. The statistical 
analysis on the collected databank has been reported in Table 1. In addition, dataset can be found in Table S1 of 
“Supplementary file S1”.

Gaussian process regression. This approach which is known as a non-parametric approach can model 
and simulate different arbitrary complex systems. The advantage of this approach, including flexibility of algo-
rithm in the description of the uncertainty causes attraction of researchers in prediction topics to this  algorithm23. 
GPR model has potential to capture the uncertainty. For instance, in the regression process, this method gives a 
distribution of predicted values instead of only one predicted value. Additionally, employing this method gives 
users, ability to add specifications and knowledge about the shapes of models by using various forms of kernel 

(7)kf =
8.5× 10−3ρ0.7

f t0.01(1000∅a)0.3

1.66− 0.205ua + 4.5× 10−2u2a

(8)kf = a1k1

(
ka

ki

)a2ε

(9)
1

ks
=

ε

ka
+

1− ε

ki

(10)kp = kaε + ki(1− ε)

(11)ε =
ρi − ρf

ρi − ρa

(12)kg = kεak
1−ε
i

(13)log
kf

ki
= log a+ b · ε log

ka

ki

Table 1.  The details of experimental frost thermal conductivity.

Parameter Maximum Minimum Standard deviation Mean

t (min) 230 30 64.56 122.61

ε 0.94 0.65 0.07 0.85

Tw (°C) − 7 − 23 5.86 − 15

Ta (°C) 15 − 3.5 5.58 6.06

Φa 80 70 3.28 77.19

ua (m/s) 2.2 1.2 0.28 1.31
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function. In this algorithm, time series are modeled by employing a mean function of m(x) and covariance func-
tion of (CovF) k(x, x′) as described below:

In the above description, input and output of the training set are shown by x and y respectively. The latent 
variable of the algorithm is described by f(x). In most of the applications, it is common to choose the mean func-
tion of discussing equation to zero. The similarity between input variables is described by CovF which is a vital 
parameter in this algorithm because for the data points which have the similar value of x are more probable to 
obtain a same value of output. The present work utilizes various types of kernel function, which are described 
in the following:

• Exponential

• Squared exponential:

  In the above equation, θ1 and θ2 represent hyper-parameters which should be optimized. The Euclidean 
distance of x′ and x is shown by d.

• Matern

  In this equation, Kv stands for modified Bessel function, and ν is a positive parameter.
• Rational quadratic

In which, ∝ is a positive parameter of covariance.
To train this algorithm, the hyper-parameters of kernel function can be estimated based on minimization of 

the negative log marginalized likelihood (NLML):

This optimization process leads to the calculation of unknown θ. The minimization process of prediction of 
a parameter can be expressed as below:

To optimize the NLML, the off-the-shelf optimization methods have been employed because of being a convex 
function. After that, the prediction distribution of the testing phase is shown as follows:

where, cov
(
f∗
)
 and f∗ are the estimation uncertainty and estimation results, respectively. When m(x) = 0, the 

mean of GPR prediction distribution is a linear function of y for training phase in Eq. (10). Therefore, the mean 
of GPR prediction distribution is determined as below:

In the above equation,  WGPR stands for the weighting  matrix24,25. A scheme of the GPR model is shown in 
Fig. 1. This model has been performed in Matlab software.

(14)y = f (x) ∼ N
(
m(x), k

(
x, x′

))

(15)k
(
x, x′

)
= θ21 exp

(
−

r

θ2

)

(16)r =
√

(x, x′)T (x − x′)

(17)k(x, x′) = θ21 exp

(
−

d2

2θ22

)

(18)k
(
x, x′

)
=

1

Ŵ(ν)2ν−1

(√
2νr

l

)ν

Kν

(√
2νr

l

)

(19)k
(
x, x′

)
= θ21

(
1+

r2

2 ∝ θ22

)

(20)NLML = −log
(
p
(
y|x, θ

))
= −

1

2
log

∣∣K + σ 2
n I
∣∣−

1

2
yT

(
K + σ 2

n I
)−1

y −
n

2
log(2π)

(21)θ̂ = argmin
θ

− log(p
(
y|x, θ

)
)

(22)f∗|x, y, x∗ ∼ N(f∗, cov
(
f∗
)
)

(23)f∗ = m(x∗)+ K(x, x∗)
(
K(x, x)+ σ 2

n I
)−1

(y −m(x))

(24)cov
(
f∗
)
= K(x∗, x∗)− K(x∗, x)

(
K(x, x)+ σ 2

n I
)−1

K(x, x∗)

(25)f∗ = K(x, x∗)
(
K(x, x)+ σ 2

n I
)−1

y = WGPRy
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Evaluation of the accuracy of the collected databank. A suspected data or outlier is known as a data 
point that has different behavior in comparison with other data points. The suspected data dominantly refers to 
the existing errors in the experimental method. The existence of suspected data in databank concludes to incor-
rect estimations for suggested models. Therefore, the identification of suspected data can improve the integrity 
and efficiency of suggested models. Leverage method proposes a solution to improve the quality of databank. 
This algorithm can search for suspected or outlier data point by defining the Hat matrix as follows:

In this equation, U points to a matrix of i*j dimensional. The number of model parameter and training points 
are shown by i and j. The outlier testing process includes a parameter, namely, critical leverage limit, which is used 
to identify the suspected data from the remainder of the data. The mentioned limit is determined as  follows26–28:

In order to assess the accuracy of frost thermal conductivity databank, the William’s plot concept has been 
used. As can be seen in Fig. 2, the standardized residuals are depicted versus hat values. In this illustration, the 
reliable zone for the utilized dataset is defined by the bounded area between standardized residuals of − 3 to 3 
and critical leverage limit. The William plot for the thermal conductivity databank shows that the extracted data 
points are mostly reliable. The number of suspected data are 2, 0, 1, and 1 for Exponential, Squared Exponential, 
Rational quadratic, and Matern GPR models, respectively. Therefore, the dataset is suitable for training and 
testing models.

(26)H = U(UTU)
−1

UT

(27)H∗ = 3(j + 1)/i

Figure 1.  Flowchart for GPR model.
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Results and discussion
Sensitivity analysis. Identification of the effect of input variables on the thermal conductivity of frost has 
vital importance for researchers and engineers for proposing a precision model. To achieve this end, a sensitivity 
analysis for the frost thermal conductivity has been performed. The relevancy factor for each input variable is 
determined as  below29,30:

In this equation, Yi and Xk,i  are the output and input. Y  and Xk  stand for means of outputs and inputs.
Figure 3 illustrates the impact of each parameter on the frost thermal conductivity. In the discussing method, 

as the absolute value of r of an input variable is higher, its effectiveness on thermal conductivity is higher and 
vice versa. In addition, the positive value shows that the discussing input variable has a straight relationship with 
the frost thermal conductivity. The results of sensitivity analysis express that air temperature with a positive r 
value of 0.76 is the most effective variable for the frost thermal conductivity determination, which has a straight 
relationship with the frost thermal conductivity. As can be seen in this figure, wall temperature with an r value 
of − 0.08 is the least effective parameter in the variation of the thermal conductivity. In addition. The negative 
sign of relevancy for this variable explains that as the wall temperature increases, the frost thermal conductivity 
decreases. On the other hand, the other input variables, including frost porosity, time, relative humidity, and air 
velocity, have increasing relationships with the discussing target value.

Modeling results. In this section, a numerous number of attempts has been carried out to investigate the 
performance of proposed models for prediction of the frost thermal conductivity. There are two main ways 
to assess the performance of the proposed models. These ways are using matching parameters and graphical 
comparisons. The matching parameters have been used to determine a match between predicted and actual 
frost thermal conductivity are Mean relative error (MRE), Root mean square error (RMSE), Standard deviations 
(STD), Mean squared error (MSE), and R-squared  (R2).

(28)r =
∑n

i=1(Xk,i − Xk)(Yi − Y)√∑n
i=1 (Xk,i − Xk)

2 ∑n
i=1 (Yi − Y)

2

Figure 2.  Detection of outliers for GPR models including (a) exponential, (b) squared exponential, (c) rational 
quadratic, (d) matern.
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The mathematical parameters have been determined and reported in Table 2 for training, testing and overall 
dataset. As shown in this table, GPR models with Matern, Exponential, Squared Exponential, and Rational 
Quadratic kernel functions have  R2 values of 0997, 0.995, 0.990 and 0.987, respectively. Additionally, the low 
values of different error parameters such as MRE, RMSE, MSE, and STD in the training phase for the suggested 
GPR models express that they have been trained in acceptable accuracy. Generally, the accuracy of the training 
phase of the model has vital importance, but the performance of the model in prediction of unseen frost thermal 
conductivity point is not ignorable.

Therefore, the present models have been evaluated for the testing phase. As can be seen, the most accurate 
model in prediction of the unseen dataset of frost thermal conductivity is GPR model containing Matern kernel 
function in which,  R2, MRE, MSE, RMSE, and STD are 0.994, 2.38225, 0.00001, 0.0037, and 0.00282, respec-
tively. In addition, the Taylor plot has been depicted for discussing models in Fig. 4. In this illustration, the 
performances of models have been assessed based on  R2, RMSE, and standard deviation values. According to 
this depiction, all the models have correlation coefficients of higher than 0.9, RMSE values of lower than 0.2, 
and standard deviations of lower than 0.6 which express the high quality of suggested models in prediction of 
the frost thermal conductivity.

On the other hand, the simultaneous comparisons of estimated and experimental frost thermal conductivity 
values for these models are shown in Fig. 5. Comparing GPR models and experimental thermal conductivity 
shows the excellent agreement between different GPR models and actual thermal conductivities.

The predicted thermal conductivity covers experimental thermal conductivity for all suggested models accu-
rately. Therefore, the GPR models show reliable performance in the prediction of thermal conductivity. Next, the 

Figure 3.  The sensitivity analysis for frost thermal conductivity.

Table 2.  The statistical parameters of developed GPRs.

R2 MRE (%) MSE RMSE STD

GPR (rational quadratic)

Train 0.987 4.08134 0.00005 0.00707 0.00471

Test 0.983 4.67914 0.00004 0.00636 0.00439

Total 0.986 4.22817 0.00005 0.00636 0.00460

GPR (exponential)

Train 0.995 2.82505 0.00002 0.00444 0.00334

Test 0.990 3.82609 0.00003 0.00554 0.00436

Total 0.993 3.07092 0.00002 0.00554 0.00359

GPR (squared exponential)

Train 0.990 3.71123 0.00004 0.00618 0.00475

Test 0.985 3.95804 0.00004 0.00603 0.00419

Total 0.989 3.77185 0.00004 0.00603 0.00458

GPR (matern)

Train 0.997 1.83752 0.00001 0.00335 0.00257

Test 0.994 2.38225 0.00001 0.00370 0.00282

Total 0.996 1.97131 0.00001 0.00370 0.00261
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Figure 4.  Taylor plot for GPR models.

Figure 5.  Comparison of model outputs and experimental values for (a) exponential, (b) squared exponential, 
(c) rational quadratic, (d) matern.
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cross plots for different suggested models are illustrated in Fig. 6. These plots for four types of GPR model show 
that all predicted frost thermal conductivity are located to their actual values so that the fitting lines on them 
have a similar equation to the bisector line of the first quarter approximately. The bisector line is a measurement 
for the accuracy of suggested models. As the points locate closer to the bisector line, the accuracy of suggested 
model is higher. After that, the relative deviations between estimated frost thermal conductivity and actual value 
are calculated and shown in Fig. 7 for all proposed models. The absolute deviation points for different kernel 
functions of Exponential, Squared exponential, and Rational quadratic are lower than 20% whereas for Matern 
kernel function they are lower than 10%.

According to the discussions, suggested GPR models have enough abilities in the prediction of frost thermal 
conductivity. After that, it is worthy to ensure that the proposed GPRs have enough accuracy in estimation of the 
frost thermal conductivity. Therefore, the available correlations in the literature have been employed to compare 
with the suggested models. Table 3 shows the statistical parameters, including MRE, MSE, and RMSE of all 
available correlations. In this table, among nine studied correlations, N–J–H model has the best prediction with 
MRE = 11.80, MSE = 5.04e − 04, and RMSE = 0.02 obtained in comparison with actual frost thermal conductivity 
dataset. These results express that all developed GPR models for prediction of thermal conductivity have better 
performance the previous published correlations.

Conclusion
In the present work, GPR models including four types of kernel function have been implemented for deter-
mination of frost thermal conductivity in terms of time, air velocity, relative humidity, air temperature, wall 
temperature, and frost porosity. Evaluating the proposed models by the collected thermal conductivity databank 
have concluded to the high degree of match between forecasted and actual frost thermal conductivity values. 
According to the mathematical and visual comparisons, the GPR models have excellent ability in the determina-
tion of thermal conductivity. On the other hand, the available correlations in the literature have been employed 
to compare with proposed models. The GPR models have better performance over the utilized databank than 
employed correlations. It is worthy to mention that a larger experimental databank can improve the accuracy 
of proposed models during the training phase. Therefore, it is suggested in future works more comprehensive 
experimental databank should be collected. In addition, the sensitivity analysis on the aforementioned parameters 
expresses that all input parameters except wall temperature have a straight relationship with the frost thermal 
conductivity. On the other hand, air temperature is known as the most effective variable. Due to these discussions, 
the current study can be helpful research for engineers dealing with a refrigeration system and heat exchanger. 

Figure 6.  Cross plots for (a) exponential, (b) squared exponential, (c) rational quadratic, (d) matern.
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The present work gives engineers an accurate way to predict the behavior of heat exchanger and refrigeration 
systems by little knowledge in artificial intelligence methods.

Received: 2 November 2020; Accepted: 17 March 2021
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