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Protein interaction potential 
landscapes for yeast replicative 
aging
Hao‑Bo Guo1,2,5*, Mehran Ghafari1, Weiwei Dang4 & Hong Qin1,2,3* 

We proposed a novel interaction potential landscape approach to map the systems‑level profile 
changes of gene networks during replicative aging in Saccharomyces cerevisiae. This approach enabled 
us to apply quasi‑potentials, the negative logarithm of the probabilities, to calibrate the elevation 
of the interaction landscapes with young cells as a reference state. Our approach detected opposite 
landscape changes based on protein abundances from transcript levels, especially for intra‑essential 
gene interactions. We showed that essential proteins play different roles from hub proteins on the 
age‑dependent interaction potential landscapes. We verified that hub proteins tend to avoid other hub 
proteins, but essential proteins prefer to interact with other essential proteins. Overall, we showed 
that the interaction potential landscape is promising for inferring network profile change during aging 
and that the essential hub proteins may play an important role in the uncoupling between protein and 
transcript levels during replicative aging.

Studies of replicative lifespan (RLS) in budding yeast, Saccharomyces cerevisiae, provided mechanistic insights 
on cellular  aging1, and contributed to the understanding of aging in other organisms including  humans2–5. Dele-
tions of single genes, such as FOB16, and suppression or overexpression of genes, such as SIR27,8, could change 
the yeast RLS. Other factors that affect lifespan, such as caloric restriction (CR), were also found dependent on 
the  genotypes9. A recent report found overexpression of both SIR2 and HAP4 genes leads to a cell state with 
considerably long  RLS10.

Gene network is critical to understand the pleiotropic nature of  aging11–13. It was shown that cellular aging 
can be viewed as an emergent phenomenon of a gene interaction network with stochastic loss of interactions to 
essential  proteins14. A recent study showed that the uncoupling between protein and transcript levels is strongly 
connected to yeast  aging15. The time-series transcriptome and proteome data of this work also involved extensive 
numbers of essential proteins and  genes15.

The pleiotropic nature of yeast aging is also reflected at the transcriptome and proteome levels. Transcriptional 
fidelity is associated with aging and longevity in  yeast11,12. The translational efficiencies of different proteins vary 
up to hundreds of folds in yeast, however, protein and mRNA levels were highly  correlated13. Increased noises 
in both transcriptome and proteome during aging could be part of the cascading events leading to replicative 
aging and eventual cell death.

The protein interaction network (PIN) offers a backbone for cellular functions. Proteins with similar functions 
tend to interact with each other and form functional  modules14. The PIN is often modeled as a graph composed 
of proteins as vertices and interactions as  edges16–18. The protein–protein interactions (PPIs) are important factors 
in the genotype-to-phenotype  relationships19. It was proposed that aging preferentially attacks key regulatory 
nodes important for the stability of the  PIN20. Age-specific PIN was found to suggest key players in  aging21.

The PPI must bear a weight (strength) depending on both biophysical properties and spatial/temporal dis-
tributions of the proteins. In the crowded environment of the cell a PPI is also the subject of competitions and/
or inferences by other molecules including the solvents. This situation complicates the PPI detections and, in 
many cases, only the “binary” PINs—i.e., “1” for interaction and “0” for no interaction—can be estimated, such 
as those reported in the  BioGRID22. Nevertheless, we propose in this work that a “quasi-potential” approach 
could be utilized to weight the PPIs using the age-dependent transcriptome and proteome dataset of the yeast S. 
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cerevisiae15 and corresponding  PIN22. We constructed the Protein Interaction Potential landscapes (PIPLs) based 
on the age-dependent potentials. We observed opposite landscape changes from protein levels and those based 
on transcript levels. The results also suggest that interactions to essential hub proteins may play an important 
role in the uncoupling of proteome and transcriptome during aging.

Result
We hypothesize that the uncoupling of proteome and transcriptome in replicative aging may lead to protein–pro-
tein interaction profile changes, which motivated us to construct age-dependent PIPLs using the age-dependent 
proteome and transcriptome data along the yeast replicative  aging15.

Interaction potential landscape on lifespans suggest roles of essential genes for uncoupling of 
protein and transcript levels during aging. To gauge changes in the interaction profiles during replica-
tive aging, we constructed the age-dependent PIPLs on the dimension of RLS. We used RLS ratios between the 
RLS of single-gene deletion mutants and those of the wild type cells cultivated under the same YPD (2% glucose) 
conditions, which is referred to as the normalized RLS in present work. The normalized RLS of essential proteins 
(genes) is 0, as the cell will not be viable after the deletion of a single essential gene. The probabilistic nature of the 
landscape enabled us to apply quasi-potentials to quantify the elevations of the landscape. We choose the young 
cells collected at the age of 7.8 h as the ground state (Fig. 1), a term borrowed from the embryonic stem cell 
 studies23. Note that the quasi-potential used for the landscapes was calculated as the negative logarithm of the 
interaction probability based on the law of mass action (“Methods and materials”). Therefore, as compared with 
the ground state, the ridges on the landscape indicate that the interacting pairs need to acquire “high potential”, 
whereas basins represent that the interacting pairs possess “low potential” for interactions to occur.

To estimate the changing elevations on landscapes during aging, we used two approaches: One based on 
the proteome (Fig. 1a) and one based on the transcriptome (Fig. 1b). We observed some strikingly opposite 
trends in the two landscapes for intra-essential interactions, especially at old ages. On the PIPL estimated from 
proteome, we found that intra-essential interactions form basins in old ages, corresponding to lower interaction 
potentials (higher probabilities) than the ground state young cells. On the PIPL estimated from transcriptome, 
we found that intra-essential interactions form peaks (higher interaction potentials or lower probabilities) in 
old ages. The PIPLs at selected age had been plotted, and we also visualized this opposite trend in corresponding 
two-dimensional contour maps (Fig. 1).

Interaction potential landscape examined by node degrees and normalized RLS. To better 
understand the role of essential genes during aging, we examined the interaction potential landscapes by node 
degrees (Fig. 2a), because it was suggested that essential genes were often highly connected hubs in the protein 
 networks24. Elevations of the landscape were estimated again with both protein and transcript levels.

Based on protein abundances, in the old cells at 72.3 h, the hub-versus-hub protein interactions also fell 
into a basin (ΔU = –31) with the quasi-potential weaker than the essential-versus-essential protein interactions 
(ΔU = –83) shown in Fig. 1. The relative quasi-potentials for younger cells were even positive for younger cells 
from 10.7 to 22 h (ΔU = 0.5 to 1.8). The extents of the quasi-potentials at other regions were also smaller than 
those in the PIPL based on normalized RLSs in Fig. 1. For the PIPL based on transcript levels, the interactions 
with hub proteins, both from other hub and non-hub proteins, generally rose to ridges of the landscape.

We further examined the PIPL on both the node degrees and normalized RLSs (Fig. 2b). The interactions 
between the hub and essential proteins of the old cells at 72.3 h fell into a deep basin with low relative quasi-
potential (ΔU = –94). However, those at younger ages from 10.7 to 26.8 h were located in ridges. Moreover, the 
hub-versus-essential interactions in the PIPL at 22.0 h were on a relatively high ridge of ΔU = 60. This analysis 
indicated that the hub proteins and essential proteins, though they are statistically correlated, may play different 
roles in aging.

PIPL on dimensions of RLS versus protein turnover. The inversed trends between using the protein 
abundances and transcript levels may be associated with the protein aggregation during the aging  process25,26. It 
may also be owing to the fact that many proteins in yeast have long half-lives27. A significant amount of proteins 
underwent non-exponential degradations in the cells and that the protein degradation rate seemed to be age-
dependent28. The protein turnover rates were correlated protein functions and  activities29, and the long-lived 
proteins may accumulate to high abundances in old cells even though their expression levels had been declined. 
Here, two independent protein turnover data sets, the CellSys2017  set29 and the CellRep2014  set27 had been used 
to construct the age-dependent PIPLs on the dimensions of normalized RLSs versus protein turnover rates (half-
lives). Considerable differences can be found between the results of both sets (Fig. 3). However, they both inter-
preted that the short-turnover proteins, which may exhibit higher activities than the long-turnover  proteins29, 
had larger fluctuations on the PIPLs of aging cells, especially in interactions with essential proteins. Note that 
 log10-scales had been applied for the turnover rates, consistent with their  distributions27.

Using the above landscapes, we noted that aging has a higher impact on the transcripts (mRNA) levels than 
to the protein abundances, with respect to the protein–protein interactions. For example, whereas based on the 
transcript levels for both turnover sets, the interactions with essential genes from all gene groups with different 
turnovers were in high potential, low probability states, in the protein abundance-based landscapes the interac-
tions between certain groups of genes and the essential genes were dropped to low potential, high probability 
basins. Moreover, using the CellSys2017 set the low-turnover proteins also showed dropped quasi-potentials or 
increased interaction probabilities with the essential genes.
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Figure 1.  Opposite trends of intra-essential protein interactions during replicative aging as shown by the age-
dependent PIPLs on the dimension of normalized RLSs. (a) Elevations estimated by proteome on landscapes 
(left) and corresponding contours (right). (b) Elevations estimated by transcriptome on landscapes (left) and 
corresponding contours (right). The relative quasi potentials (ΔU) were calculated using the youngest cells 
at 7.8 h as the reference ground state. The horizontal axes of the landscapes are the RLSs of the single-gene 
mutants normalized by the WT measurement at the same conditions (normalized RLSs). The essential genes 
have normalized RLSs of 0. The landscape based on protein abundance shows that the essential-vs-essential 
interaction region gradually fell into a low-potential basin. However, in the landscape based on gene expression 
levels the essential-vs-essential interaction region gradually rose to a high-potential ridge. The landscapes 
at different ages have been vertically shifted for a better visualization. The color bar shows the relative quasi 
potentials in the contour maps. A relative color scheme (blue for low and red for high) is applied in landscapes.
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Figure 2.  Dissimilarity between the essential and hub proteins from the PIPLs on dimensions of node degrees 
and normalized RLSs. (a) PIPLs on node degrees versus node degrees, and (b) PIPLs on node degrees versus 
normalized RLSs. The top panels show the PIPLs from protein abundances, and the bottom panels show the 
PIPLs from transcript levels. The contour maps of the aging cells at young (10.7 h) and old (72.3 h) are shown 
for comparisons. The landscapes at different ages have been vertically shifted for better visualization. The color 
bar shows the relative quasi-potentials in the contour maps. A relative color scheme (blue for low and red for 
high) is applied in landscapes.
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Based on the transcript levels (bottom panels), the landscapes using both turnover sets showed elevated 
quasi-potentials, especially at old age (Fig. 3). However, based on protein abundances (top panels), fluctuations 
of both elevations and declines in the quasi-potentials had been found, consistent with the uncoupling trend 
between protein and mRNA  levels15. Overall, in all the landscapes we observed large fluctuations attributed to 
the essential genes (normalized RLS of 0) and their interactions with the low-turnover proteins. The interactions 
between essential genes and high-turnover proteins are relatively stable during aging, according to the protein-
abundance-based PIPLs, but not in the gene-expression-based PIPLs.

A protein interaction potential landscape based on network permutations. To further under-
stand why lower relative quasi-potential (or higher probability) have been found in the essential-versus-essential 
interactions based on the proteomics, despite the transcript level trend predicted the opposite direction, we con-
structed another proteome-wide, global landscape model which calculates the probabilities of that the empirical 
PIN having more interactions than the random null models. As for the age-dependent landscape models, quasi-
potentials were calculated as the negative logarithm of the probabilities to infer basins and hills on this land-
scape. Similar method had been previously applied to a smaller yeast PIN and observed that the high-degree, 
hub proteins tend to avoid interactions with the other hub proteins, which was suggested to contribute to the 
stability of the  PIN30. This approach had been recently applied to estimate the association strengths between dif-
ferent categories of proteins using a human  PIN17. Figure 4 shows the global landscape in the variable spaces of 
node degrees and RLS ratios (i.e., normalized RLS) of single-gene deletion mutations.

The network permutation-based landscape on the node-degree space showed that the hub proteins (high-
degree proteins in the PIN) tend to avoid interactions with other hub proteins yet favor the interactions with 
non-hub proteins (Fig. 4a), in agreement with previous reports from a smaller yeast  PIN30. Originally observed 
in yeast PIN, it had been proposed that the hub-proteins in the PIN tend to be essential proteins and vice  versa24. 
This centrality-lethality rule hypothesis had been confirmed in the PINs of other  organisms31 as well as the 
genetic interaction network (GIN) of  yeast32. On the global landscape on the RLS space, however, the global 
landscape indicated that the essential proteins strongly favor the interactions with other essential proteins but 
tend to avoid the interactions with non-essential proteins (Fig. 4b). The probability of the interactions between 
essential proteins and hub proteins were moderate (Fig. 4c). Therefore, the essential proteins and hub proteins 
should not be treated equally in these landscapes. The above observation might be in conflict with the well-known 
centrality-lethality  rule24,31,33.

It is worth noting that the essential genes did have higher degrees (average of 63.3) than non-essential genes 
(average of 32.7). Based on the landscape on the node degree-RLS space (Fig. 4c), we also observed that the 
interaction densities between hub proteins and essential proteins are significantly stronger than those between 
the hub proteins and nonessential proteins, also as shown in Figure S1 in the supplementary materials. However, 
despite a higher degree in the PIN, a hub protein is not necessarily essential. For example, the most-connected 
hub protein DHH1 (YDL160C) has 3,605 interactions in the PIN but is nonessential and the ΔDHH1 mutant 
has a normalized RLS of 0.825 compared to the wild type.

Essential hub genes have increased protein abundances in aging cells. The yeast genome has 
5,191 verified, 725 uncharacterized, and 688 dubious ORFs (as of 9/17/2020) on the Saccharomyces Genome 
 Database34. These ORFs encode ca. 1000 essential genes, with any one of which deleted the cell will not be 
 viable35–38. We compared the abundances of 4 categories of proteins (genes) including essential hub, essential 
non-hub, nonessential hub, and nonessential non-hub proteins. The protein or transcript abundances were refer-
enced to the ground state, the young cells with the age of 7.8 h, consistent with the PIPLs shown above. We used 
the node degree k ≥ 100 as a cutoff (which covered the top 5.8% high connectivity proteins) to classify the hub 
and non-hub proteins (Fig. 5a). The yeast life cycle length of 100 min was used to estimate the  RLS39.

Consistent with the evaluation of the relative-quasi potentials (Methods and Materials), the node degrees were 
weighted to the protein or transcript abundance values in Fig. 5b,c. We observed that, at old age, the abundances 
of essential hub proteins increased considerably in the aging cells; however, the abundances of the essential 
non-hub proteins decreased (Fig. 5b). The opposite trends of the average essential protein abundances versus 
essential transcript abundances (Fig. 1) can be explained by the differences in the PIPL related to the essential 
proteins or transcripts. The differences between the average hub proteins and hub transcripts (Fig. 2) can also 
be explained here. We also listed the numbers of proteins (Fig. 5b) or transcripts (Fig. 5c) that were included 
in both the PIN the aging proteomics and transcriptomics data set. These trends of protein and/or transcript 
abundances may partly explain the basins and ridges observed in the protein interaction potential landscapes. 
Note that the absolute ages of the cells had been approximated to RLSs using an average division time of 100 min. 
This conversion may not be accurate, for example, the actual division time may increase during  aging40, and the 
long estimated RLS in Fig. 5 (> 40) made it possible that some aging cells may have stopped division and stayed 
in the post-diauxic, quiescent  phase2.

The decline of the PPI dissociation constant may alter the landscapes. All PIPLs shown above 
were constructed using constant protein–protein interaction dissociation constants (K), i.e., the decay rate (d) 
is 0 for all PPIs. However, in reality, K might be affected or altered by many factors, such as post-translational 
modifications, protein aggregations, pH, ionic strengths, and other cofactors. It is difficult to measure the varia-
tions of K for each of the protein–protein interactions. We used an exponential decay model aiming to estimate 
the potential topological changes of the landscapes attributed to the variations of the dissociation constants, K.

As shown in Fig. 6, in old yeast cells, the intra-essential interactions arose to a ridge (instead of falling to a 
basin) when K declines with a decay rate of  10–3—at this rate, Kt becomes half of K0 after 300 cell divisions. We 
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Figure 3.  Interactions between essential proteins and short-lived proteins are noisy on the age-dependent 
PIPLs on dimensions of normalized RLSs and protein turnover rates. The protein turnover data were taken 
from (a) the CellSys2017 set and (b) the CellRep2014 set, respectively. The landscapes from both sets showed 
significant differences between the protein abundance-based (top panels) and transcript level-based (bottom 
panels) PIPLs. The contour maps of the landscapes of the aging cells at young (10.7 h) and old (72.3 h) are 
shown for comparisons. The landscapes at different ages have been vertically shifted for a better visualization. 
The color bar shows the relative quasi potentials in the contour maps. A relative color scheme (blue for low and 
red for high) is applied in landscapes.

◂

noticed that the dissociation constant strongly affects the essential-essential interactions, partly contributed by 
their dense interactions. For example, in the proteome-based PIPL, the number of essential-essential interactions 
(n in Eq. 8) is 3465, ~ 10 times of that between essential proteins and any of the other 20 protein sets based on 
the quantiles of the normalized RLS.

The protein interaction potential landscapes on space of other parameters can also be constructed using our 
approach. As an example, the morphology parameters from the SCMD2  database36 had been used in the PIPL 
as shown in Figure S2 of the supplementary materials.

Discussion
The roles of gene/protein networks in aging have been discussed  extensively11,12,14,41–44, and the role of weakest 
links in aging was  recognized41–43. A recent mathematical model suggested the role of essential genes in  aging14. 
Loss of proteostasis is also a hallmark of  aging45. The present work on the protein interaction potential landscape 
during aging suggest that essential hub genes and their interactions may be a critical factor of proteostasis and/
or aging. Our results here pose an interesting hypothesis that essential hub genes might be one of the weakest 
links during aging, a question that could be addressed by future experimental studies.

Figure 4.  The proteome-wide protein interaction potential landscapes reveal differences between the hub 
and essential proteins. (a) The protein interaction landscape on space of the node degrees showed that the hub 
proteins avoid interactions with other hub proteins (p = 0). (b) The essential proteins favor interactions with 
other essential proteins (p = 1). (c) A moderate ratio of hub-essential interactions (p = 0.382) was observed. The 
hub-hub, essential-essential, and hub-essential interaction regions are highlighted by orange arrows on the 
landscapes and contour maps. The probabilities p indicates the ratio of null network models that showed fewer 
interactions than the empirical PIN: p = 1 (such as the essential-essential interactions) indicates the PIN has 
more interactions than all null models and p = 0 (such as the hub-hub interactions) indicates the PIN has fewer 
interactions than all null models, respectively. The quasi potential is calculated as U = − logp, the base of the 
logarithm function is chosen such that U is in range of [0,1]. 22,188 null network models have been used in this 
work and the p = 0 (i.e., p < 1/22,188) ratios were converted to p = 1/22,189 for estimation of the quasi potential, 
U. Top panels show the landscapes and the bottom panels show the 2D contour maps. The color bar for both the 
landscapes and contours are shown at right.
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The protein interaction potential landscapes of the budding yeast in the present work used the proteomic and 
transcriptomic data of aging cells mathematically unmixed from bulk cell culture with young daughter cells and 
dead  cells15. We understand that potential biases may persist in the data set and hence in our interpretations. 
However, using these landscapes we showed that the aging dynamics could be visualized to identify potential 
aging factors, such as the variations caused by the essential hub proteins. Future studies using single-cell protein 
and/or transcript abundance data along aging could be combined with our approach to understanding the aging 
landscape. Moreover, the probability-based interaction landscapes can also be applied using other networks—
such as the genetic interaction networks—in the understanding of the genotype–phenotype  relationships32,46.

Methods and materials
Protein–protein interaction network. The empirical protein–protein interaction network (PIN) of S. 
cerevisiae was obtained from a recent version BioGRID v3.5.177, downloaded on Oct. 1,  201922. Only the physi-
cal interactions related to proteins (excluding the self-interactions) were selected from this PIN, comprising 
110,290 interactions among 5784 proteins.

Network permutation‑based association study (NetPAS). The PIN used in the present work is 
regarded as a simple graph, i.e., an undirected graph with no self-loops or multi-interactions. We recently pro-
posed the network permutation-based association study (NetPAS) approach to evaluate the interaction strength 
between different protein (gene) sets by comparing the original PIN and its random null  models17. 22,188 null 
network models were built in a way such that all vertices were randomly reshuffled, yet the node degrees pre-
served as the original PIN. These network models were also termed the MS02 null  models17,30,47.

Replicative lifespan data. The replicative lifespans (RLSs) of 4698 single-gene deletion strains of S. cerevi-
siae under the YPD (2% glucose) culture had been  reported1.

Proteomics and transcriptomics data during aging. One set of proteomics and transcriptomics data 
of S. cerevisiae came from a recent report, which comprises the abundances of 1494 proteins and expression 
levels of 4904 genes collected at 12 different ages ranging from 7.8 to 72.3  h15. We used the young cells at 7.8 h as 
the reference (ground state) to evaluate the PIPLs of the older cells at the other 11 ages. The two data sets cover 
different genes (proteins), as shown in Figure S3 in the SM for a comparison.

Protein turnover time. Two sets of in vivo protein turnover time or half-lives have been used. The Cell-
Sys2017  set29 comprised of 3160 proteins with 1341 in the aging proteomics and 2526 in the aging transcriptom-
ics data sets. The CellRep2014  set27 included 3715 proteins with 1331 in the aging proteomics and 2988 in the 
aging transcriptomics data sets.

Morphologies of single‑gene deletion mutants. We also generated the PIPLs on dimensions of mor-
phological parameters and the RLS of the yeast single-gene deletion mutations. See in the supplementary mate-
rials. The morphology data were taken from the SCMD2 (Saccharomyces cerevisiae morphological database 
2)36. Specifically, two morphologies related to a recent morphological landscape of yeast replicative aging had 
been analyzed in the protein interaction  landscapes10,48, including the cell size ratio (C118_C) and bud axis ratio 
(C114_C) at the late stages. Although the definition of the axis ratio in SCMD2 was different than that used in 
the morphological landscape, it could provide a rough identification of the roundness of the cell shapes.

Essential genes of S. cerevisiae. The essential gene set of S. cerevisiae were taken from the  SCMD236 that 
comprises 1112 genes, 1033 of which have interactions recorded in the PIN.

Selection of gene groups. We used quantiles to catalog the gene groups in the PIPLs. The yeast PIN 
covered 3939 genes with the RLS records of the single-gene deletion mutations. The normalized RLS refers to 
the RLS ratios between the mutant and the control wide type strain and had been adopted in the landscapes. 
Among the genes covered by the PIN, 926 non-essential and 403 essential genes had the age-dependent protein 
abundance records, and 2991 non-essential and 882 essential genes had the age-dependent transcript records, 
respectively. In both the age-dependent protein abundance and transcript level sets, the non-essential genes 
were evenly classified into 20 groups based on the quantiles of the normalized RLSs, and the essential genes were 
classified into one group with the normalized RLS of 0. For the protein node degrees, half-lives, and morphol-
ogy data sets, all genes were classified into 20 evenly distributed quantiles based on the respective measures. The 
same classification approach for the RLS groups was applied to the global protein interaction landscape, and all 
genes included in the PIN and with normalized RLS data had been used.

Quasi‑potentials of age‑dependent protein interaction potential landscape. Aging is a dynamic 
process reflected in the variations of both protein abundances and transcript levels along the aging process. It 
had been suggested that a configuration of the cell state could be formalized as a vector

where N is the total number of genes and  xi is the expression level of the i-th  gene49—we suggest  xi could also be 
the protein abundance of the i-th protein. The vector St continuously changes during the aging process.

(1)St = [x1, x2, . . . , xN]t,
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The interaction between a pair of proteins x and y can be written as

we can approximately apply the law of mass action to this process in which the concentration [xy] is

where K is the dissociation constant and  [x]t and  [y]t is the concentration of free x and y at time t. K may variate 
along aging, e.g., via an exponential model

here, d is the decay rate, and t is time (age), and Kt and K0 are the dissociation constants at age t and 0, respectively. 
The decay rate may be affected by posttranslational modifications, pH and ionic strength variations during aging, 
and other factors. The dissociation constant K remains unchanged during aging if d is 0; K exponentially decays 
or increases if d > 0 or d < 0, respectively. Under this condition and by using the young cell (ground state) at time 
0 as the reference state or ground state, we could get:

(2)x + y
K
→ xy

(3)
[

xy
]

t
= K[x]t

[

y
]

t
= pt

(4)Kt = K010
−dt

Figure 5.  Essential hub proteins (or genes) may account for the opposite trends on the aging landscapes 
from proteomes and transcriptomes. All proteins (genes) were put in four categories including essential hub 
(red), nonessential hub (blue), essential non-hub (yellow), and nonessential non-hub proteins or genes. (a). 
Distribution of the node degrees in the yeast PIN. A snapshot of the PIN was shown at the left. The hub proteins 
(red bars) were selected as the node degree k ≥ 100, which were the top 5.8% high-connectivity proteins of the 
PIN. (b). Relative mean protein abundances. (c). Relative mean transcript abundances. Average values relative 
to the young cells at 7.8 h had been used. The cell ages were approximated to RLS using the dividing time of 
100 min. The shade of each curve was calculated as the standard deviation from all proteins (genes) of the ratios 
of aging cells to the ground state, multiplied by the mean differences. The number of proteins (genes) used in the 
curves of each category had been listed.
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Note that Eq. (5) does not contain K0, which was canceled by comparing with the ground state. Therefore, 
using a reference state at time 0 (i.e., the ground state), the interactions between different protein pairs could be 
treated equally, if the variation rates of the dissociation constants are the same.

Besides the above approximation, we used a quasi-potential, the negative logarithm of the probabilities, to 
describe the barriers that the cells must overcome for the transition from one attractor state to the  other49,50. The 
quasi-potential49 can be calculated from the probabilities using

Again, because all potentials here are relative to the ground state, the relative quasi potential  Ut using  U0 as 
a reference can be calculated as

Equation (7) provides a convenient way to estimate the relative quasi potentials at time t, compared to the 
young cell ground state.

In this work, the relative quasi potential of interactions between two categories of proteins (or genes) is evalu-
ated. The probability is not additive as we cannot sum up the probabilities of different interactions. However, the 
logarithm function and hence the quasi potential U is additive. Therefore, it is straightforward to calculate the 
relative quasi potential of interactions between two sets of genes X and Y based on Eq. (7). For instance, assum-
ing that there are n interactions between X and Y recorded as  (xi,  yi), i = 1, 2, …, n, the relative quasi-potential 
from all interactions between X and Y would be

The base of the logarithm function (Eqs. 6–8) is 10 in present work. It should be noted that in present work all 
quasi-potentials of every single interaction were relative to the ground state and could therefore bear any real val-
ues. The unit of the protein abundances or mRNA levels (such as FPKM) were canceled out and did not affect the 
relative quasi-potentials in Eqs. (5) -(8). In the landscapes of this work, we observed high relative quasi-potentials 
especially when the interactions between two categories of proteins were dense. However, a cutoff of ± 50 was 
applied in the quasi-potentials of all contour maps because it could capture the indispensable information yet 
provides a relatively good comparison among different landscapes. The variations of the dissociation constant 
cannot be justified in this work, however, we showed that significant changes of the landscape could be induced 
by a relatively slow decay rate (d) for the dissociation constants of the PPIs (Fig. 6).

In summary, in the present work we apply a simple statistical approach to approximate the interaction prob-
abilities of protein groups using either the protein abundances or the gene expression levels. Then quasi-potentials 
based on these probabilities were visualized as landscapes, which may infer the variations of interaction patterns 
caused by the aging process.
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Figure 6.  Proteome-based PIPL on RLS with dissociation constants exponentially decay. The decay rate (d, in 
the unit of 1/t) of the protein–protein interactions (PPIs) was chosen as (a) d = 0, from which K43 = K0, also see 
Fig. 1; (b) d =  10–4, from which K43 = 0.990 K0; and (c) d =  10–3, from which K43 = 0.906 K0, where the dissociation 
constants K43 (at the  43th generation or ca. 71.7 h, close to the oldest cells in the analysis) was compared with 
the initial K0. The model with d = 0 (a) corresponds to constant dissociation constants in the models, which 
was applied to other PIPLs in the main text. However, there is a transition from d =  10–4 (b) to d =  10–3 (c), in 
the latter PIPL the intra-essential interactions were located in a ridge for the old cells whereas in the former the 
intra-essential interactions were also in a basin for the old cells.
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Quasi‑potentials of proteome‑wide protein‑interaction potential landscape. Here we calcu-
lated the protein-interaction quasi potentials based on the probability (p) for more interactions between certain 
categories of genes in the PIN than in the null models. The NetPAS  method17 was used to calculate the p-values 
using 22,188 null models. The protein-interaction quasi potential can also be calculated using Eq. (6). The base 
of the logarithm function may vary for the conceptual barriers in Eq.  (6). As 22,188 null models were used, 
the occurring p = 0 cases could be interpreted as p < 1/22,188, which was converted to p = 1/22,189 in practice 
to avoid the infinite log0 values. The resulted quasi-potentials were then normalized to [0,1] for the landscape.
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