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Applying a bagging ensemble 
machine learning approach 
to predict functional outcome 
of schizophrenia with clinical 
symptoms and cognitive functions
Eugene Lin1,2,3, Chieh‑Hsin Lin3,4,5* & Hsien‑Yuan Lane3,6,7,8* 

It has been suggested that the relationship between cognitive function and functional outcome in 
schizophrenia is mediated by clinical symptoms, while functional outcome is assessed by the Quality 
of Life Scale (QLS) and the Global Assessment of Functioning (GAF) Scale. To determine the outcome 
assessed by QLS and GAF, we established a bagging ensemble framework with a feature selection 
algorithm resulting from the analysis of factors such as 3 clinical symptom scales and 11 cognitive 
function scores of 302 patients with schizophrenia in the Taiwanese population. We compared our 
bagging ensemble framework with other state-of-the-art algorithms such as multilayer feedforward 
neural networks, support vector machine, linear regression, and random forests. The analysis revealed 
that the bagging ensemble model with feature selection performed best among predictive models 
in predicting the QLS functional outcome by using 20-item Scale for the Assessment of Negative 
Symptoms (SANS20) and 17-item Hamilton Depression Rating Scale (HAMD17). Moreover, to predict 
the GAF outcome, the bagging ensemble model with feature selection performed best among 
predictive models by using SANS20 and the Positive and Negative Syndrome Scale-Positive (PANSS-
Positive) subscale. The study indicates that there are synergistic effects between negative (SANS20) 
and depressive (HAMD17) symptoms as well as between negative and positive (PANSS-Positive) 
symptoms in influencing functional outcome of schizophrenia using the bagging ensemble framework 
with feature selection.

Functional outcome of schizophrenia, which is commonly assessed by the tools such as Quality of Life Scale 
(QLS)1 and the Global Assessment of Functioning (GAF) Scale2, has an impact on psychiatric diagnosis and 
treatment. In patients with schizophrenia, multiple functional domains, including work activities, social relation-
ships, and independent living, of everyday life are usually impaired3, 4. Thereby, it is crucial to identify probable 
factors that influence functional outcome of schizophrenia5. Several potential predictors of its functional outcome 
include negative symptoms, verbal learning, visual learning, working memory, and social cognition, to name a 
few3, 4, 6, 7. GAF is recognized as an important objective measure to assess global psychological, social, and occu-
pational functioning in patients with schizophrenia2. On the other hand, QLS is also useful in evaluating their 
functional outcome8. Thus, QLS and GAF have been used together for the assessment of longitudinal outcome 
of schizophrenia9. While some studies showed the limited predictive effect of clinical symptoms, such as positive 
symptoms5, 10, on functional outcome of schizophrenia, other studies indicated that clinical symptoms, particu-
larly negative symptoms11, 12, were associated with its functional outcome. Moreover, it has been suggested that 
numerous cognitive functions such as neuro- and social-cognitions are also linked to its functional outcome13, 
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14. On another note, precision psychiatry is an emerging multidisciplinary arena of psychiatry and precision 
medicine15, 16, where state-of-the-art artificial intelligence and machine learning algorithms are incorporated 
with multiple data types such as genetic and clinical data to facilitate appropriate individual-tailored decisions 
during all stages of patient care17–20. For example, various applications in precision psychiatry encompass the 
prediction of patients with schizophrenia21, 22 and the prediction of antidepressant treatment outcome in patients 
with major depressive disorder23, 24 using machine learning models. We therefore proposed that machine learning 
models may be able to predict potential factors that affect functional outcomes of schizophrenia by using various 
clinical data (namely clinical symptoms and cognitive functions).

In a previous study, Lin et al.5 indicated that clinical symptoms mediated the relationship between cognitive 
impairment and functional outcome of schizophrenia by using the structural equation modeling method. Here, 
we utilized the same cohort of 302 patients with schizophrenia and carried out the first study on the QLS and 
GAF functional outcome prediction in schizophrenia patients with 3 clinical symptom scales and 11 cogni-
tive function tests by using a bagging ensemble machine learning approach25. In addition, in order to forecast 
functional outcomes, we employed the M5 Prime feature selection algorithm26 to pinpoint a small subset of 
feasible factors from 3 clinical symptom scales and 11 cognitive function tests. We hypothesized that our bagging 
ensemble machine learning method would be able to predict the QLS- and GAF-related outcome in patients 
with schizophrenia by using a small subset of selected clinical symptom scales and/or cognitive function assess-
ments. While no previous studies have evaluated predictive models for functional outcome of schizophrenia by 
using the bagging ensemble machine learning method with the M5 Prime feature selection algorithm, there have 
been studies that utilized the bagging and feature selection approaches generally for the prediction of functional 
outcome for individuals with psychosis27, 28. The bagging approach, which was created for simple bootstrapping 
in 1994, has been frequently utilized for experiments that employ a resampling scheme. We selected the bagging 
ensemble machine learning method since this method had been frequently applied to solve complex prediction 
and classification problems because of its advantages in reduction of variance and overfitting25, 26. This study 
directly compared the bagging ensemble machine learning model with widely-used machine learning algorithms, 
including multi-layer feedforward neural networks (MFNNs), support vector machine (SVM), linear regression, 
and random forests. We hypothesized that our bagging ensemble machine learning approach with the M5 Prime 
feature selection algorithm could lead to better performance.

Results
The clinical symptoms, cognitive manifestations, and functional outcome of the study 
cohort.  The participants included 302 patients with schizophrenia in the Taiwanese population. Study meas-
ures relevant to their demographic characteristics, 3 clinical symptoms, 11 cognitive functions, QLS and GAF 
were detailed before5.

Feature selection using clinical symptom scales.  We performed a series of different feature combina-
tions (Table 1; the Feature-A, Feature-B, and Feature-C sets) to predict the QLS and GAF scores using the 3 clini-
cal symptom scales. Note that the Feature-A set includes the 3 clinical symptom scales, namely 17-item Ham-
ilton Depression Rating Scale (HAMD17), 20-item Scale for the Assessment of Negative Symptoms (SANS20), 
and the Positive and Negative Syndrome Scale-Positive subscale (PANSS-Positive).

For predicting the QLS score, we used the M5 Prime feature selection algorithm (see Methods) to identify 2 
features (including SANS20 and HAMD17) from the 3 clinical symptom scales, where these 2 chosen features 
comprised the Feature-B dataset.

Table 1.   The results of repeated tenfold cross-validation experiments for predicting the QLS and GAF 
functional outcome of schizophrenia with clinical symptom scales using machine learning predictors such 
as the bagging ensemble model with feature selection, the bagging ensemble model, MFNNs, SVM, linear 
regression, and random forests. The best QLS or GAF scores are given in bold. Feature-A: 3 features (related 
to 3 clinical symptom scales) including PANSS-Positive, SANS20, and HAMD17. Feature-B: 2 features 
(related to 2 clinical symptom scales) including SANS20 and HAMD17. Feature-C: 2 features (related to 2 
clinical symptom scales) including PANSS-Positive, and SANS20. GAF = Global Assessment of Functioning; 
HAMD17: 17-item Hamilton Depression Rating Scale; MFNNs = Multilayer Feedforward Neural Networks; 
PANSS-Positive: the Positive and Negative Syndrome Scale-Positive subscale; QLS = Quality of Life Scale; 
RMSE: Root Mean Square Error; SANS20: 20-item Scale for the Assessment of Negative Symptoms; 
SVM = Support Vector Machine. Data are presented as mean ± standard deviation.

Algorithm

QLS GAF

RMSE Feature set Number of features RMSE Feature set Number of features

Bagging ensemble with 
feature selection 6.4293 ± 1.1332 Feature-B 2 7.7806 ± 1.1595 Feature-C 2

Bagging ensemble 6.4389 ± 1.1289 Feature-A 3 7.8133 ± 1.1758 Feature-A 3

SVM 6.4409 ± 1.1239 Feature-A 3 7.9147 ± 1.2053 Feature-A 3

MFNNs 6.4898 ± 1.0921 Feature-A 3 7.8432 ± 1.1721 Feature-A 3

Linear Regression 6.5616 ± 1.1660 Feature-A 3 7.9626 ± 1.2080 Feature-A 3

Random Forests 7.1563 ± 0.9873 Feature-A 3 8.4476 ± 1.2014 Feature-A 3
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For predicting the GAF score, we used the M5 Prime feature selection algorithm to find 2 features (including 
PANSS-Positive and SANS20) from the 3 clinical symptom scales, where these 2 chosen features comprised the 
Feature-C dataset.

Prediction of QLS and GAF using clinical symptom scales.  We combined clinical symptom scales 
(namely the Feature-A, Feature-B, and Feature-C datasets) to construct the predictive models for the QLS and 
GAF scores by employing the bagging ensemble framework, respectively. Table  1 summarizes the results of 
repeated tenfold cross-validation experiments for the predictive models using clinical symptom scales by the 
bagging ensemble model with feature selection, the bagging ensemble model, MFNNs, SVM, linear regression, 
and random forests. Moreover, we used the root mean square error (RMSE) values to measure the performance 
of the predictive models.

As indicated in Table 1, to predict the QLS, the bagging ensemble model with feature selection performed 
best in terms of the RMSE value of 6.4293 ± 1.1332 using the Feature-B dataset (namely SANS20 and HAMD17) 
among the predictive models. In other words, the combination of SANS20 and HAMD17 best predicted the QLS 
outcome among all combinations of clinical symptom scales.

In addition, to predict the GAF, the bagging ensemble model with feature selection performed best in terms 
of the RMSE value of 7.7806 ± 1.1595 using the Feature-C dataset (namely PANSS-Positive and SANS20) among 
the predictive models (Table 1). In other words, the combination of PANSS-Positive and SANS20 best predicted 
the GAF among all combinations of clinical symptom scales.

Feature selection using cognitive function scores.  We performed various feature combinations 
(Table 2; the Feature-D, Feature-E, and Feature-F datasets) to predict the QLS and GAF of schizophrenia using 
the cognitive function scores. Note that the Feature-D set included the 11 cognitive function scores.

For predicting the QLS, we used the M5 Prime feature selection algorithm (see Methods) to identify 5 fea-
tures (including category fluency, WAIS-III digit symbol-coding, verbal working memory, nonverbal working 
memory, and social cognition) from the 11 cognitive function scores, where these 5 chosen features comprised 
the Feature-E dataset.

For predicting the GAF, we used the M5 Prime feature selection algorithm to find 5 features (including 
category fluency, WAIS-III digit symbol-coding, d-Prime of blurred version, verbal working memory, and rea-
soning and problem solving) from the 11 cognitive function scores, where these 5 selected features comprised 
the Feature-F dataset.

Prediction of the QLS and GAF of schizophrenia using cognitive function scores.  We used cog-
nitive function scores (namely the Feature-D, Feature-E, and Feature-F datasets) to construct the predictive 
models for the QLS and GAF scores by employing the bagging ensemble framework, respectively. Table 2 sum-
marizes the results of repeated tenfold cross-validation experiments for the predictive models using cognitive 
function scores by the bagging ensemble model with feature selection, the bagging ensemble model, MFNNs, 
SVM, linear regression, and random forests.

Table 2.   The results of repeated tenfold cross-validation experiments for predicting the QLS and GAF 
functional outcome of schizophrenia with cognitive function scores using machine learning predictors 
such as the bagging ensemble model with feature selection, the bagging ensemble model, MFNNs, SVM, 
linear regression, and random forests. The best QLS or GAF scores are given in bold. Feature-D: 11 features 
(related to 11 cognitive function scores) including category fluency, trail making A, WAIS-III digit symbol-
coding, d-Prime of clear version, d-Prime of blurred version, verbal working memory, nonverbal working 
memory, verbal learning and memory, visual learning and memory, reasoning and problem solving, and social 
cognition. Feature-E: 5 features (related to 5 cognitive function scores) including category fluency, WAIS-III 
digit symbol-coding, verbal working memory, nonverbal working memory, and social cognition. Feature-F: 
5 features (related to 5 cognitive function scores) including category fluency, WAIS-III digit symbol-coding, 
d-Prime of blurred version, verbal working memory, and reasoning and problem solving. GAF = Global 
Assessment of Functioning; MFNNs = Multilayer Feedforward Neural Networks; QLS = Quality of Life Scale; 
RMSE: Root Mean Square Error; SVM = Support Vector Machine. Data are presented as mean ± standard 
deviation.

Algorithm

QLS GAF

RMSE Feature Number of features RMSE Feature Number of features

Bagging ensemble with 
feature selection 7.7717 ± 1.0024 Feature-E 5 8.6050 ± 1.1101 Feature-F 5

Bagging ensemble 7.8884 ± 1.0193 Feature-D 11 8.7804 ± 1.1481 Feature-D 11

SVM 7.9130 ± 1.0718 Feature-D 11 8.8969 ± 1.2218 Feature-D 11

MFNNs 7.9201 ± 0.9925 Feature-D 11 8.7932 ± 1.1239 Feature-D 11

Linear Regression 8.2865 ± 1.0381 Feature-D 11 9.0873 ± 1.2258 Feature-D 11

Random Forests 7.9133 ± 0.9795 Feature-D 11 8.9325 ± 1.1750 Feature-D 11
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As shown in Table 2, to predict the QLS, the bagging ensemble model with feature selection performed best 
in terms of the RMSE value of 7.7717 ± 1.0024 using the Feature-E dataset (including category fluency, WAIS-III 
digit symbol-coding, verbal working memory, nonverbal working memory, and social cognition) among the 
predictive models. In other words, among all combinations of cognitive tests, the combination of category flu-
ency, WAIS-III digit symbol-coding, verbal working memory, nonverbal working memory, and social cognition 
best predicted the QLS score.

In addition, to predict the GAF, the bagging ensemble model with feature selection performed best in terms 
of the RMSE value of 8.6050 ± 1.1101 using the Feature-F dataset (including category fluency, WAIS-III digit 
symbol-coding, d-Prime of blurred version, verbal working memory, and reasoning and problem solving) among 
the predictive models (Table 2). In other words, among all combinations of cognitive tests, the combination 
of category fluency, WAIS-III digit symbol-coding, d-Prime of blurred version, verbal working memory, and 
reasoning and problem solving best predicted the GAF score.

Benchmarking.  By comparing the results (Tables 1 and 2) for predicting the QLS of schizophrenia patients 
among machine learning predictive algorithms (including the bagging ensemble model with feature selection, 
the bagging ensemble model, MFNNs, SVM, linear regression, and random forests) using 4 feature datasets 
(including Feature-A, Feature-B, Feature-D, and Feature-E), the bagging ensemble model with feature selection 
(using Feature-B) performed best. The best RMSE value for predicting the QLS was 6.4293 ± 1.1332 (Table 1). In 
other words, the combination of SANS20 and HAMD17 best predicted the QLS performance among all clinical 
combinations and cognitive combinations.

By comparing the results (Tables 1 and 2) for predicting the GAF of schizophrenia among machine learn-
ing predictive algorithms (including the bagging ensemble model with feature selection, the bagging ensemble 
model, MFNNs, SVM, linear regression, and random forests) using 4 feature datasets (including Feature-A, 
Feature-C, Feature-D, and Feature-F), the bagging ensemble model with feature selection (using Feature-C) 
performed best. The best RMSE value for predicting the GAF was 7.7806 ± 1.1595 (Table 1). In other words, the 
combination of PANSS-Positive and SANS20 best predicted the GAF score among all clinical combinations and 
cognitive combinations.

Here, we found that the bagging ensemble model with feature selection using the selected features from 
clinical symptom scales performed best in predicting the QLS or GAF outcome when compared with other state-
of-the-art algorithms, including MFNNs, SVM, linear regression, and random forests. Our analysis indicated 
that the bagging ensemble model with feature selection was well-suited for predictive models in the functional 
outcome of schizophrenia.

Discussion
To our knowledge, this is the first study to date to identify synergistic effects between SANS20 and HAMD17 
as well as between PANSS-Positive and SANS20 in influencing functional outcomes in schizophrenia among 
Taiwanese individuals using a bagging ensemble machine learning approach with the M5 Prime feature selection 
algorithm. Moreover, we performed the first study to predict potential factors affecting functional outcome of 
schizophrenia by utilizing various clinical data (that is, clinical symptoms and cognitive functions). The findings 
pinpointed that the bagging ensemble model with feature selection using 2 factors excelled other state-of-the-art 
predictive models in terms of RMSE for predicting the QLS outcome of schizophrenia, where these 2 factors 
encompassed SANS20 and HAMD17. Moreover, for predicting the GAF of schizophrenia patients, we found that 
the bagging ensemble model with feature selection using 2 factors outperformed other state-of-the-art predictive 
models in terms of RMSE, where these 2 factors encompassed PANSS-Positive and SANS20.

Interestingly, our analysis revealed that the combination of SANS20 (for measuring negative symptoms) 
and HAMD17 (for measuring depressive symptoms) was the best predictor for the QLS functional outcome of 
schizophrenia among all clinical symptom combinations and cognitive function combinations. In addition, the 
combination of SANS20 (for negative symptoms) and PANSS-Positive (for positive symptoms) was the best pre-
dictor for the GAF functional outcome of schizophrenia among all clinical symptom combinations and cognitive 
function combinations. In other words, there are synergistic effects between negative and depressive symptoms 
as well as between negative and positive symptoms in influencing functional outcome of schizophrenia. To 
the best of our knowledge, no previous studies have been conducted to identify a synergistic benefit beyond 
that of either clinical symptom scale standing alone. The interaction effects of clinical symptoms remain to be 
elucidated. It has been suggested that negative symptoms may act as a key predictor for functional outcome of 
schizophrenia5, 29, 30; moreover, positive symptoms may contribute to the GAF functional outcome5, 31. In addition, 
it has been suggested that depressive symptoms were related to the QLS performance5, 30. In consideration with 
the previous results5, 29–31, we speculated that SAN20 (for measuring negative symptoms) may likely incorporate 
with other factors such as HAMD17 (for depressive symptoms) or PANSS-Positive (for positive symptoms) to 
influence functional outcome of schizophrenia since all clinical symptoms are important predictors for functional 
outcome of schizophrenia.

By leveraging the clinical data, we established the predictive models of functional outcome of schizophrenia 
by using the bagging ensemble machine learning approach with the M5 Prime feature selection algorithm. Our 
analysis also suggests that the bagging ensemble model with feature selection may offer a feasible solution to 
construct predictive models for forecasting functional outcome of schizophrenia with purposeful accuracy. 
Therefore, the bagging ensemble approach with feature selection in this study is a proof-of-concept machine 
learning tool for predicting functional outcome of schizophrenia.

Furthermore, it is worthwhile to bring the discussion on the M5 Prime feature selection algorithm for deal-
ing with potential factors affecting functional outcome of schizophrenia in our study. We observed that the 
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bagging ensemble model with the chosen factors of the M5 Prime feature selection algorithm always surpassed 
the bagging ensemble model without using feature selection. For instance, the bagging ensemble model with the 
Feature-B dataset outperformed the bagging ensemble model with the Feature-A in predicting the QLS. Similarly, 
the bagging ensemble model with the Feature-C dataset outperformed the bagging ensemble model with the 
Feature-A dataset in predicting the GAF. That is, the bagging ensemble models with feature selection tended 
to have lower RMSE values. In terms of the predictive performance, the lower the RMSE value, the better the 
performance. We speculated that it may be due to the advantage of the M5 Prime feature selection algorithm to 
pinpoint probable factors influencing functional outcome of schizophrenia. In line with our analysis, previous 
studies indicated that machine learning algorithms with feature selection performed better than the ones without 
feature selection in forecasting disease status or treatment response for psychiatric disorders24, 32, 33.

Remarkably, an intriguing finding was that any of the machine learning models with clinical symptom scales 
always surpassed any of the machine learning models with cognitive function scores. For example, the predic-
tive models with the Feature-A and Feature-B datasets always excelled the predictive models with the Feature-D 
and Feature-E datasets in predicting the QLS. Similarly, the predictive models with the Feature-A and Feature-C 
datasets always outperformed the predictive models with the Feature-D and Feature-F datasets in predicting the 
GAF. We hypothesized that it may be due to the advantage of clinical symptom scales over cognitive function 
scores on affecting functional outcomes in schizophrenia. In accordance with our analysis, it has been reported 
that clinical symptoms and cognitive functions accounted for 89% and 44% of the variance in the functional 
outcome of schizophrenia, respectively5.

This study had some limitations. The first weakness was that the cross-sectional methodology limited the 
predictive value. Second, both QLS and GAF scores were related to clinical symptoms, thereby causing an overlap 
between the predictors and the outcome.

In conclusion, we constructed a bagging ensemble machine learning framework with feature selection for esti-
mating functional outcomes in schizophrenia in Taiwanese subjects by using clinical data. The analysis indicates 
that our bagging ensemble machine learning framework with feature selection detects synergistic effects between 
negative and depressive symptoms as well as between negative and positive symptoms in influencing functional 
outcomes in schizophrenia. In the long run, we would expect that the discoveries of the present study may be 
generalized for precision psychiatry studies to forecast functional outcome and disease status for psychiatric 
disorders. Moreover, the discoveries may be likely utilized to contribute to prognostic and diagnostic applications 
in the near future. All in all, it is indispensable to investigate in independent studies with replication samples 
and further explore the role of the bagging ensemble machine learning framework created in the present study.

Materials and methods
This study was approved by the institutional review board of the China Medical University Hospital in Taiwan 
and was conducted in accordance with the Declaration of Helsinki.

Study population.  The study cohort consisted of 302 patients with schizophrenia, who were recruited 
from the China Medical University Hospital and affiliated Taichung Chin-Ho Hospital in Taiwan5. In this study, 
patients with schizophrenia were aged 18–65 years and were healthy in the physical conditions. After presenting 
a complete description of this study to the subjects, we obtained written informed consents from a parent and/
or legal guardian in line with the institutional review board guidelines. Details of the diagnosis of schizophrenia 
were published previously5.

Clinical symptom scales.  In this study, we employed 3 clinical symptom scales to assess positive, negative 
and depressive symptoms5, including the PANSS-Positive subscale34, SANS2035, and HAMD1736.

Cognitive function scores.  We employed 11 cognitive function scores to assess cognitive functions5, 
including category fluency, trail making A, digit symbol-coding (Wechsler Adult Intelligence Scale, third edition 
(WAIS-III)), d-Prime of clear version, d-Prime of blurred version, verbal working memory, nonverbal working 
memory, verbal learning and memory, visual learning and memory, reasoning and problem solving, and social 
cognition. In brief, these 11 cognitive function scores were used to assess 7 cognitive domains such as speed of 
processing, sustained attention, working memory, verbal learning and memory, visual learning and memory, 
reasoning and problem solving, and social cognition5. The speed of processing domain was assessed using cat-
egory fluency, trail making A, and WAIS-III digit symbol-coding. The sustained attention domain was assessed 
using d-Prime of clear version and d-Prime of blurred version. The working memory domain was assessed using 
verbal working memory and nonverbal working memory.

Functional outcomes.  We measured functional outcomes using the QLS1 and the GAF Scale of the DSM-
IV2. QLS is a tool to provide the rating of functional outcomes in schizophrenia, including social activity, social 
initiatives, social withdrawal, sense of purpose, motivation, curiosity, anhedonia, aimless inactivity, capacity for 
empathy, emotional interaction8. GAF is a tool to provide a measure for assessing global psychological, social, 
and occupational functioning in schizophrenia2.

Statistical analysis.  The Student’s t test was conducted to measure the difference in the means of two con-
tinuous variables37. We performed the chi-square test for categorical data. The criterion for significance was set 
at P < 0.05 for all tests. Data are presented as the mean ± standard deviation.
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With the assumption that a 95% confidence level and a proportion of 0.5, a simplified formula38 was used to 
calculate sample sizes as follows: n = N / (1 + N (e)2), where n is the sample size, N is the population size, and e is 
the level of precision. In this study, we assumed that N = 230,000 and e = 0.06.

Bagging ensemble predictive models.  We employed a key ensemble machine learning technique called 
bagging predictors25 and utilized the Waikato Environment for Knowledge Analysis (WEKA) software (which 
is available from https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/)26 to carry out the bagging ensemble predictive frame-
work. In addition, other machine learning software tools can be employed, for example, Pattern Recognition for 
Neuroimaging Toolbox (PRoNTo; http://​www.​mlnl.​cs.​ucl.​ac.​uk/​pronto/) and NeuroMiner (https://​github.​com/​
neuro​miner-​git). All the experiments were conducted on a computer with Intel (R) Core (TM) i5-4210U, 4 GB 
RAM, and Windows 721. It should be noted that we utilized the repeated tenfold cross-validation method to 
examine the generalization of bagging predictors21, 32, 39.

Figure 1 shows the illustrative diagram of the bagging ensemble predictive framework with feature selection. 
The technique of the bagging ensemble predictive algorithm is used to combine the predictive performance of 
multiple versions of a base predictor to achieve an aggregated predictor with higher accuracy. The multiple ver-
sions of the base predictor are formed by the bootstrap method, where the bootstrap method is one of the most 
popular data resampling methods used in statistical analysis. The technique of the bagging ensemble predictive 
algorithm tends to reduce variance and avoid overfitting. The base predictor we employed was MFNNs or SVM. 
Here, we used the default parameters of WEKA, such as 100 for the batch size, 100 for the percentage of the bag 
size, and 10 for the number of iterations21, 40.

Machine learning algorithms for benchmarking.  For the benchmarking task in the present study, we 
utilized 4 state-of-the-art machine learning algorithms including MFNNs, SVM, linear regression, and random 
forests. We carried out the analyses for these 4 machine learning algorithms using the WEKA software26 and 
a computer with Intel (R) Core (TM) i5-4210U, 4 GB RAM, and Windows 721. Other machine learning soft-
ware tools such as PRoNTo (http://​www.​mlnl.​cs.​ucl.​ac.​uk/​pronto/) and NeuroMiner (https://​github.​com/​neuro​

Figure 1.   The schematic illustration of the bagging ensemble predictive algorithm with feature selection. First, 
the M5 Prime feature selection algorithm is performed to select a subset of features, which serves as the input to 
the bagging ensemble predictive algorithm. The idea of the bagging ensemble predictive algorithm is to generate 
the multiple versions of a base predictor by bootstrap replications. The final prediction is then produced 
by averaging the predictive performance of the multiple versions. The base predictor was chosen as multi-
layer feedforward neural networks (MFNNs) or support vector machine (SVM) in this study. GAF = Global 
Assessment of Functioning; QLS = Quality of Life Scale.

https://www.cs.waikato.ac.nz/ml/weka/
http://www.mlnl.cs.ucl.ac.uk/pronto/
https://github.com/neurominer-git
https://github.com/neurominer-git
http://www.mlnl.cs.ucl.ac.uk/pronto/
https://github.com/neurominer-git
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miner-​git) could be also used. It should be noted that we utilized the repeated tenfold cross-validation method 
to examine the generalization of these 4 machine learning algorithms21, 32, 39.

An MFNN framework consists of one input layer, one or multiple hidden layers, and one output layer, where 
each layer contains neuron structures and connections among neuron structures contain no directed cycles21, 

41. In general, the back-propagation algorithm42 is widely leveraged to train the MFNN framework, where the 
back-propagation algorithm updates the weights of neuron structures in the layers of the MFNN framework21, 

43. In this study, we used the architecture containing 1 hidden layer. For example, we used the following WEKA’s 
parameters for training the MFNN model with 1 hidden layer: the momentum = 0.01, the learning rate = 0.01, 
and the batch size = 10021, 40.

The SVM algorithm44 is a popular technique for pattern recognition and classification21. The SVM algorithm, 
which is based on statistical learning theory, finds a linear relationship between input variables and the depend-
ent variable (that is, the predicted output)44, 45. The best model for the predicted output is obtained by minimiz-
ing both the coefficients of the cost function and the predictive errors, where the cost function consists of the 
regression coefficients and an error term44, 45. In this study, we used the polynomial kernel with the exponent 
value of 1.024.

The random forests model combines a collection of decision trees, where a decision tree is defined as an 
inverted tree with three types of nodes such as a root node, internal nodes, and leaf nodes21, 46. The random forests 
model is conceptualized to obtain a better prediction by aggregating the predictive results from a collection of 
decision trees21, 46. Here, we used the default parameters of WEKA for the random forests model; for example, 
100 for the batch size and 100 for the number of iterations21.

The linear regression model, the standard method for prediction problems in clinical applications, was used as 
a basis for comparison21, 26. Linear regression is suitable for assessing the relationship between a scalar response 
(that is, a dependent variable) and explanatory variables (that is, independent variables) by fitting a linear equa-
tion to the data 21, 26.

M5 Prime feature selection algorithm.  In the present study, we utilized an Akaike information criterion 
(AIC)-based approach called the M5 Prime algorithm26 for the feature selection task. The M5 Prime algorithm 
constructs a decision tree with multivariate linear models at the terminal nodes and iteratively removes the 
feature with the smallest standardized coefficient until no further improvement in the estimated error defined 
by the AIC47, 48. Moreover, we utilized the tenfold cross-validation method to examine the generalization of the 
feature selection task21, 32, 39.

To predict the QLS and GAF, we used the M5 Prime algorithm to select features from 2 different feature 
datasets (Fig. 1). The first feature dataset includes 3 clinical symptom scales. The second feature dataset includes 
11 cognitive function scores.

Evaluation of the predictive performance.  In this study, we utilized one of the most popular criteria, 
the RMSE, to assess the performance of predictive models32, 45, 49. The RMSE calculates the difference between 
the measured values and the estimated values by a predictive model. The better the prediction model, the lower 
the RMSE32, 49. Moreover, we utilized the repeated tenfold cross-validation method to examine the generaliza-
tion of predictive models21, 32, 39. First, the whole dataset was randomly split into ten separate segments. Second, 
the predictive model was trained using nine-tenths of the data and was tested using the remaining tenth of data 
to evaluate the predictive performance. Next, the previous step was repeated nine more times by leaving out 
distinct nine-tenths of the data as training data and a distinct tenth of data as testing data. Finally, the average 
estimation was reported over all runs by processing the aforementioned tenfold cross-validation for 10 times 
with distinct batches of data. We estimated the performance of all predictive models using the repeated tenfold 
cross-validation method.
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