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Emerging strains of watermelon 
mosaic virus in Southeastern 
France: model‑based estimation 
of the dates and places 
of introduction
L. Roques1*, C. Desbiez2, K. Berthier2, S. Soubeyrand1, E. Walker1, E. K. Klein1, J. Garnier3, 
B. Moury2 & J. Papaïx1 

Where and when alien organisms are successfully introduced are central questions to elucidate biotic 
and abiotic conditions favorable to the introduction, establishment and spread of invasive species. 
We propose a modelling framework to analyze multiple introductions by several invasive genotypes 
or genetic variants, in competition with a resident population, when observations provide knowledge 
on the relative proportions of each variant at some dates and places. This framework is based on a 
mechanistic‑statistical model coupling a reaction–diffusion model with a probabilistic observation 
model. We apply it to a spatio‑temporal dataset reporting the relative proportions of five genetic 
variants of watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) in infections of 
commercial cucurbit fields. Despite the parsimonious nature of the model, it succeeds in fitting 
the data well and provides an estimation of the dates and places of successful introduction of each 
emerging variant as well as a reconstruction of the dynamics of each variant since its introduction.

Plant and animal species—and as a consequence, their pathogens and pests—are translocated across the globe at 
an ever-increasing rate since the nineteenth  century1. Most introductions of microorganisms and insects (notably 
plant pathogens and/or their arthropod vectors) are accidental, while a few are deliberate for biological control 
 purposes2. Introductions of plant pathogens can have a dramatic impact on agricultural production and food 
 security3,4 and being able to predict the fate of a newly introduced disease based on surveillance data is pivotal 
to anticipate control  actions5.

Where and when alien organisms are successfully introduced are central questions for the study of biologi-
cal invasions, to elucidate biotic and abiotic conditions favorable to the introduction and establishment and 
spread of invasive  species6,7. Indeed, unraveling such conditions is a prerequisite to map the risk of invasion and 
to design an efficient surveillance  strategy7 as initial phases are critical for the establishment success of intro-
duced  pathogens8,9. It is also during this phase that invaders are the easiest to  control6,10. In addition, a precise 
knowledge of the dates and places of introduction is critical to accurately determine invader reproduction and 
dispersal parameters, as their estimated values are directly dependent on the time and distance between the 
actual introduction and the  observations11,12. However, biological invasions by alien organisms are often reported 
several years after the initial successful introduction  event13. Thus, monitoring data generally do not provide a 
clear picture of the date and place of introduction.

Many successful emergences of plant viruses have taken place worldwide in the last  decades14,15, whereas some 
have only been observed punctually with no long term establishment of the  pathogens16. As plant viruses are 
rapidly-evolving pathogens with small genomes and high mutation  rates17, they may present measurably evolving 
 populations18 over the time scale of decades. Thus, the spatio-temporal histories of invading species can some-
times be reconstructed from georeferenced and dated genomic data, with phylogeographic  methodologies19–21 
or population dynamic models embedding evolutionary processes. Over shorter time-scales, or when only 
abundance data are available, recent mechanistic modelling approaches have been proposed to infer the date 
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and place of introduction of a single species along with other demographic  parameters22. In many modeling 
approaches, the interactions of the new viruses or new strains with preexisting virus populations are not taken 
into consideration, even if it is known that synergism or competition between virus species or strains can affect 
their maintenance and  spread23–25.

Mechanistic models are increasingly used in statistical ecology because, compared to purely correlative 
approaches, their parameters can directly inform on biological processes and life history traits. Among them, 
the reaction–diffusion framework is widely used in spatial ecology to model dynamic species  distributions26,27. In 
such models, the diffusion coefficient is related to dispersal ability and the growth or competition coefficients may 
help in understanding the respective interactions between different species, variants or genotypes. Additionally, 
reaction–diffusion models can easily account for spatio-temporal  heterogeneities28,29. A drawback of this type of 
approach is that the compartments that are modelled typically correspond to continuous population densities, 
which rarely match with observation data. There is therefore a challenge in connecting the solution of the model 
with complex data, such as noisy data, binary data, temporally and spatially censored data. Recent approaches 
have been proposed to bridge the gap between reaction–diffusion models and data (e.g.,30, in a framework known 
as mechanistic-statistical  modelling31–33. An advantage of this method is that it allows to estimate simultaneously 
both the biological parameters and the date and place of introduction in a single  framework22. Recently, this 
type of approach was applied to localize and date the invasion of South Corsica by Xylella fastidiosa, based on a 
single-species reaction–diffusion model and binary  data11.

Our objective here is to propose a modelling framework to deal with multiple introductions by several inva-
sive variants, in competition with a resident population, when observations provide knowledge on the relative 
proportions of each variant at some dates and places rather than absolute abundances of the different variants. We 
develop a reaction–diffusion mechanistic-statistical model applied to a genetic spatio-temporal dataset report-
ing the relative proportions of five genetic variants of watermelon mosaic virus (WMV, genus Potyvirus, family 
Potyviridae) in infections of commercial cucurbit fields. Our framework allows us to (1) estimate the dates and 
places of successful introduction of each emerging variant along with other ecological parameters, (2) reconstruct 
the invasion history of the emerging variants from their introduction sites, (3) detect competitive advantages of 
the emerging variants as compared to the resident population, and (4) predict the fate of the different genetic 
groups, in particular the takeover of the emerging variants over the resident population.

Material and methods
Data. Pathosystem. WMV is widespread in cucurbit crops, mostly in temperate and Mediterranean cli-
matic regions of the  world16. WMV has a wide host range including some legumes, orchids and many weeds that 
can be alternative  hosts16. Like other potyviruses, it is non-persistently transmitted by at least 30 aphid  species16. 
In temperate regions, WMV causes summer epidemics on cucurbit crops, and it can overwinter in several com-
mon non-cucurbit weeds when no crops are  present16,34. WMV has been common in France for more than 40 
years, causing mosaics on leaves and fruits in melon, but mostly mild symptoms on zucchini squash. Since 2000, 
new symptoms were observed in southeastern France on zucchini squash: leaf deformations and mosaics, as 
well as fruit discoloration and deformations that made them unmarketable. This new agronomic problem was 
correlated to the introduction of new molecular groups of WMV strains. At least four new groups have emerged 
since 2000 and they have rapidly replaced the native “classical” strains, causing important problems for the 
 producers35. These new groups, hereafter “emerging strains” (ES) are significantly more related molecularly to 
worldwide strains than to any other isolates from the French  populations36. As emphasised  in35, this supports 
that the new group of emerging strains has arisen through introductions, mostly from Southeastern Asia, rather 
than through local differentiation.

In this study, we focus on the pathosystem corresponding to a classical strain (CS) and four emerging strains 
 (ESk, k = 1, . . . , 4 ) of WMV and their cucurbit hosts.

Study area and sampling. The study area, located in Southeastern France, is included in a rectangle of about 
25,000  km2 and is bounded on the South by the Mediterranean Sea. Between 2004 and 2008, the presence of 
WMV had been monitored in collaboration with farmers, farm advisers and seed companies. Each year, culti-
vated host plants were collected in different fields and at different dates between May 1st and September 30th. 
In total, more than two thousand plant samples were collected over the entire study area. All plant samples were 
analyzed in the INRAE Plant Pathology Unit to confirm the presence of WMV and determine the molecular 
type of the virus strain causing the infection  (see35 for detail on field and laboratory protocols). All infected host 
plants were cucurbits, mostly melon and different squashes (e.g., zucchini, pumpkins).

Observations.  In the absence of individual geographic coordinates, all infected host plants were attributed to 
the centroid of the municipality (French administrative unit, median size about 10  km2) where they have been 
collected. Then for one date, one observation corresponded to a municipality in which at least one infected host 
plant was sampled. Table 1 summarizes for each year, the number of observations (i.e. number of municipali-
ties), the number of infected plants sampled and the proportion of each WMV strain (CS, and  ES1 to  ES4) found 
in the infected host plants. Errors in assignment of virus samples to the CS or ES strains was negligible because 
of the large genetic distance separating them: 5 to 10% nucleotide divergence both in the fragment used in the 
study and in complete  genomes35, also precluding the possibility of local jumps between groups by accumulation 
of mutations.
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Landscape. To approximate the density of WMV host plants over the study area, we used 2006 land use data 
(i.e. BD Ocsol 2006 PACA and LR) produced by the CRIGE PACA (http:// www. crige- paca. org/) and the Asso-
ciation SIG-LR (http:// www. siglr. org/ lasso ciati on/ la- struc ture. html). Based on satellite images, land use is deter-
mined at a spatial resolution of 1/50,000 using an improved three-level hierarchical typology derived from the 
European Corine Land Cover nomenclature. Here we used the third hierarchical level of the BD Ocsol typology 
(i.e. 42 land use classes) to classify the entire study area in three habitats: (1) WMV-susceptible crops, (2) habitats 
unfavorable to WMV host plants (e.g. forests, industrial and commercial units…) and, (3) non-terrestrial habitat 
(i.e. water). The proportion of WMV-susceptible crops was then computed within all cells of a raster covering 
the entire study area, with a spatial resolution of 1.4× 1.4  km2. These proportions were used to approximate 
host plant density z(x) , which was normalized, so that z(x) = 0 corresponds to an absence of host plants and 
z(x) = 1 to the maximum density of host plants (Fig. 1).

Mechanistic‑statistical model. The general modeling strategy is based on a mechanistic-statistical 
 approach12,22,33. This type of approach combines a mechanistic model describing the dynamics under investi-
gation with a probabilistic model conditional on the dynamics, describing how the measurements have been 
collected. This method that has already proved its theoretical effectiveness in determining dispersal parameters 
using simulated genetic  data12 aims at bridging the gap between the data and the model for the determination 
of virus dynamics.

Here, the mechanistic part of the model describes the spatio-temporal dynamics of the virus strains, given the 
model parameters (demographic parameters, introduction dates/sites). This allows us to compute the expected 
proportions of the five types of virus strains (CS and  ES1 to  ES4) at each date and site of observation. The probabil-
istic part of the mechanistic-statistical model describes the conditional distribution of the observed proportions 
of the virus strains, given the expected proportions. Using this approach, it is then possible to derive a numerically 
tractable formula for the likelihood function associated with the model parameters.

Population dynamics. The model is segmented into two stages: (1) the intra-annual stage describes the 
dispersal and growth of the five virus strains during the summer epidemics on cucurbit crops, and the competi-
tion between them, during a period ranging from May 1st (noted t = 0 ) to September 30 (noted t = tf  , tf = 153 
days); (2) the inter-annual stage describes the winter decay of the different strains when no crops are present 
and the virus overwinters in weeds. We denote by cn(t, x) and enk (t, x) the densities of classical strain (CS) and 
emerging strains  (ESk, k = 1, . . . , 4 ), at position x and at time t  of year n.

Table 1.  Number of observations and corresponding proportions of classical and emerging strains.

2004 2005 2006 2007 2008

# observations 67 64 68 50 40

# infected samples 408 371 422 280 212

Classical strain (%) 55 45 28 17 14

Emerging strain 1 (%) 21 23 22 37 27

Emerging strain 2 (%) 13 18 23 21 32

Emerging strain 3 (%) 1 4 3 5 3

Emerging strain 4 (%) 10 10 24 20 24

Figure 1.  Approximated density z(x) of the host plants in the study area. The density was normalized, so that 
z(x) = z(x1, x2) = 0 corresponds to an absence of cucurbit plants and z(x) = 1 to the maximum density. The 
axes x1 and x2 correspond to Lambert93 coordinates (in km). The white regions are non-terrestrial habitats 
(water). Land use data were not available in the gray regions; the host plant density was then computed by 
interpolation.

http://www.crige-paca.org/
http://www.siglr.org/lassociation/la-structure.html
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Dynamics of the classical strain before the first introduction events. Before the introduction of the first emerging 
strain, the intra-annual dynamics of the population CS is described by a standard diffusion model with logistic 
growth: ∂t cn = D�cn + rcn(z(x)− cn) . Here, � is the Laplace 2D diffusion operator (sum of the second deriva-
tives with respect to coordinate). This operator describes uncorrelated random walk movements of the viruses, 
with the coefficient D measuring the mobility of the viruses (e.g.,26,37). The term rz(x) is the intrinsic growth rate 
(i.e., growth rate in the absence of competition) of the population, which depends on the density of host plants 
z(x) and on a coefficient r (intrinsic growth rate at maximum host density). Under these assumptions, the carry-
ing capacity at a position x is equal to z(x) , which means that the population densities are expressed in units of 
the maximum host population density. The model is initialized by setting c1980(0, x) = (1−mc)z(x) , where mc 
is the winter decay rate of the CS (see the description of the inter-annual stage below). In other terms, we assume 
that the CS density is at the carrying capacity in 1979, i.e., 5 years after its first detection and 20 years before the 
first detections of  ESs38.

Introduction events. The ESs are introduced during years noted nk ≥ 1981 , at the beginning of the intra-annual 
stage (other dates of introduction within the intra-annual stage would lead—at most—to a one-year lag in the 
dynamics). Their densities are 0 before introduction: enk = 0 for n < nk . Once introduced, the initial density 
of any ES is assumed to be 1/10th of the carrying capacity at the introduction point (other values have been 
tested without much effect, see Supplementary Fig. S1), with a decreasing density as the distance from this point 
increases:

where Xk is the location of introduction of the strain k. In our computations, we took σ = 5 km for the standard 
deviation.

Intra‑annual dynamics after the first introduction event. Intra-annual dynamics were described by a neutral 
competition model with diffusion (properties of this model have been analyzed in  [54]):

for t = 0 . . . tf  and for all introduced emerging strains, i.e. all k such that n ≥ nk . We assume reflecting boundary 
conditions, meaning that the population flows vanish at the boundary of the study area, due to truly reflecting 
boundaries (e.g., sea coast in the southern part of the site) or symmetric inward and outward  fluxes26. In addition, 
in order to limit the number of unknown parameters, and in the absence of precise knowledge on the differences 
between the strains, we assume here that the diffusion, competition and growth coefficients are common to all 
the strains during the intra-annual stage (see the discussion for more details on this assumption).

Inter‑annual dynamics. The population densities at time t = 0 of year n are connected with those of year n− 1, 
at time t = tf , through the following formulas:

with mc and me the winter decay rates of the CS and ESs strains (note that me is common to all of the ESs). 
Estimation of CS and ES decay rates provides an assessment of the competitive advantage of one type of strain 
vs the other.

Numerical computations. The intra-annual dynamics were solved using Comsol Multiphysics time-dependent 
solver, which is based on a finite element method (FEM). The triangular mesh which was used for our computa-
tions is available as Supplementary Fig. S2.

Probabilistic model for the observation process. During the years n = 2004, . . . , 2008 , In observa-
tions were made (see Section Observations above and Table 1). They consist in counting data, that we denote by 
Ci and Ek,i for k = 1, . . . , 4 and i = 1, . . . , In , corresponding to the number of samples infected by the CS and ESs 
strains, respectively, at each date of observation and location (ti , xi) . Note that these dates and locations depend 
on the year of observation n . More generally, the above quantities should be noted Cn

i ,E
n
k,i , t

n
i , x

n
i ; for simplicity, 

the index n is omitted in the sequel, unless necessary.
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Statistical inference. Unknown parameters. We denote by � the vector of unknown parameters: the dif-
fusion coefficient D, the intrinsic growth rate at maximum host density r , the winter decay rates (mc ,me) and the 
locations (xk ∈ R

2 ) and years (nk ) of introduction, for k = 1, . . . , 4. Thus � ∈ R
16.

Computation of a likelihood. Given the set of parameters � , the densities cn(t, x|�) and enk (t, x|�) can be 
computed explicitly with the mechanistic model for population dynamics. Thus, at a given year n , at (ti , xi) , the 
parameter pi of the multinomial distribution M

(

Vi , pi
)

 writes:

The probability P(Ci ,E1,i ,E2,i ,E3,i ,E4,i|�, Vi) of the observed outcome Ci ,E1,i ,E2,i ,E3,i ,E4,i is then

Assuming that the observations during each year and at each date/location are independent from each other 
conditionally on the virus strain proportions, we get the following formula for the likelihood:

A priori constraints on the parameters.  By definition and for biological reasons, the parameter vector � satis-
fies some constraints. First, D ∈

(

10−4, 10
)

km2/day , r ∈ (0.1, 1)day−1, and mc ,me ∈ {0, 0.1, 0.2, . . . , 0.9}, (see 
Supplementary Note S7 for a biological interpretation of these values). Second, we assumed that the locations of 
introductions Xk belong to the study area. To facilitate the estimation procedure, the points Xk were searched 
in a regular grid with 20 points (see Supplementary Fig. S3), and the dates of introduction nk were searched in 
{1985, 1990, 1995, 2000}.

Inference procedure. Due to the important computation time (4 min in average for one simulation of the model 
on an Intel(R) Core(R) CPU i7-4790 @ 3.60 GHz), we were not able to compute an a posteriori distribution of 
the parameters in a Bayesian framework. Rather, we used a simulated annealing algorithm to compute the maxi-
mum likelihood estimate (MLE), i.e., the parameter �∗ which leads to the highest log-likelihood. This is an itera-
tive algorithm, which constructs a sequence (�j)j≥1 converging in probability towards a MLE. It is based on an 
acceptance-rejection procedure, where the acceptance rate depends on the current iteration j through a "cooling 
rate" ( α) . Empirically, a good trade-off between quality of optimization and time required for computation (num-
ber of iterations) is obtained with exponential cooling rates of the type T0α

j with 0 < α < 1 and some constant 
T0 ≫ 1 (this cooling schedule was first proposed in= 39 = 39). Too rapid cooling ( α ≪ 1 ) results in a system frozen 
into a state far from the optimal one, whereas too slow cooling ( α ≈ 1 ) leads to important computation times 
due to very slow convergence. Here, we ran 6 parallel sequences with cooling rates α ∈ {0.995, 0.999, 0.9995} . 
For this type of algorithm, there are no general rules for the choice of the stopping criterion [HenJac03], which 
should be heuristically adapted to the considered optimization problem. Here, our stopping criterion was that �j 
remained unchanged during 500 iterations. The computations took about 100 days (CPU time).

Confidence intervals and goodness‑of‑fit. To assess the model’s goodness-of-fit, 95% confidence regions were 
computed for the observations 

(

Ci ,E1,i ,E2,i ,E3,i ,E4,i
)

 at each date/location (ti , xi), and for each year of obser-
vation. The confidence regions were computed by assessing the probability of each possible outcome of the 
observation process, at each date/location, based on the computed proportions pi =
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e3
i , p

e4
i

)

 , cor-
responding to the output of the mechanistic model using the MLE �∗ and given the total number of infected 
samples Vi . Then, we checked if the observations belonged to the 95% most probable outcomes.

Results
Convergence and goodness‑of‑fit. As expected, the highest likelihood was obtained with a slow cooling 
rate ( α = 0.9995). The corresponding MLE, denoted by �∗ =

(

D∗, r∗,m∗
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∗
e ,X

∗

1 ,X
∗
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)

 is 
presented in Table 2. In average, 96% of the observations fell within the 95% confidence regions, indicating that 
the model fits the data well (277 observations over a total of 289; 94% in 2004, 98% in 2005, 96% in 2006, 96% in 
2007 and 95% in 2008). We also note that the likelihood function is peaked at �∗ in the sense that any perturba-
tion in one component of �∗ leads to lower likelihood (see Supplementary Note S8 for likelihood-ratio based 
confidence intervals and Supplementary Fig. S4 for more details on the profile of the likelihood function). This 
suggests that the MLE �∗ is close to the actual maximizer of the likelihood function.

Parameter values. As shown in Table 2, the MLE corresponds to the same date of introduction for  ES1,  ES2,  ES3 
whereas  ES4 has been introduced five years later. Note that a same date of introduction does not mean a same 
date of detection: depending on local conditions, some strains may establish and spread faster than others (as 
observed below for  ES4).
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Regarding the sites of introduction, the MLE indicates that  ES1 and  ES2 have been introduced at the north-
eastern corner of the study area,  ES3 in the northwest and  ES4 in the southwest (see the white crosses in the 
2004 panel of Fig. 2; see also Supplementary Fig. S3 for more details on the corresponding likelihood). Three 
introduction points (ESs 1, 2 and 3) were estimated at the edge of the study site, indicating that the introductions 
may have occurred outside of the study area.

Regarding the biological parameters, the winter decay rate of the CS strain was much higher than that of the 
ESs strains (0.5 vs. 0), reflecting a high competitive advantage of the ESs. The value D∗ = 0.44 km2 per day of 
the diffusion coefficient indicates that a virus travels about 1.2 km per day in average during the growing season 
of cucurbit crops (see Supplementary Note S7). The growth rate of 0.31 day−1 corresponds to an increase by a 
factor e0.31 ≈ 1.3 each day, in the absence of competition.
Strain distributions. Figure 2 depicts the most prevalent strains at each position in the landscape, during four 
of the five years of observation (2008 is presented in Supplementary Fig. S5), obtained by solving our model 
with the MLE �∗ , together with the data. We graphically note a good agreement between the positions of the 
observed strains and the distributions obtained with the model:  ES1 and  ES2 tend to be distributed in the eastern 
part of the study area,  ES3 in the northwestern part and  ES4 in the southwestern part, while the CS strain tends to 

Table 2.  Maximum likelihood estimates.

Biological parameter D
∗

r
∗ m

∗

c m
∗

e

Value 0.44 km2 day−1 0.31 day−1 0.5 year−1 0 year−1

Date of introduction n
∗

1
 (ES1) n

∗

2
(ES2) n

∗

3
(ES3) n

∗

4
(ES4)

Value 1990 1990 1990 1995

Site of introduction X
∗

1
X
∗

2
X
∗

3
X
∗

4

Value (Lambert 93, km) (926, 6369) (926, 6369) (758, 6369) (758, 6294)

Figure 2.  Proportions of the classical and emerging strains in the landscape: data and simulations. The colors of 
the shaded regions indicate which strain is the most prevalent. The red regions correspond to the CS strain; light 
blue and blue:  ES1,  ES2 (these two strains have the same density, only  ES1 is represented); green:  ES3; pink:  ES4. 
The pie charts describe the relative proportions of the strains found in the data (same color legend). The white 
crosses on the 2004 panel represent the estimated sites of introduction. The simulation results presented here 
correspond to the middle of the intra-annual stage (2nd week of June), and were obtained with the MLE �∗.
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be progressively confined to the central part of the study area. In 2007,  ES3 seems to be more prevalent accord-
ing to the model than suggested by the observations, probably due to its introduction site, which is far from the 
observation sites (see the first panel in Fig. 2). Note that, with the deterministic framework used here, as  ES1 
and  ES2 share the same date and position of introduction, and the same parameter values, their distributions are 
completely equal; thus only  ES1 is represented in the figures.

The spatial distributions of the different strains at each year where one of the emerging strains becomes 
locally more prevalent are depicted in Fig. 3. Although ESs 1, 2 and 3 have been introduced at the same date, 
their dynamics are influenced by local conditions: ESs 1 and 2 become the most prevalent at least in one part 
of the study area in 1996 (6 years after their introduction),  ES3 in 2001 (11 years after introduction) and  ES4 in 
2002 (7 years after its introduction). Thus, despite the neutrality assumption, the heterogeneity of the landscape 
leads to different durations of the establishment stage. The full timeline of the dynamics of the different strain 
proportions in the landscape, from the first estimated introduction date of an emerging strain (1990) to 2019 
is available as Supplementary Fig. S6. Since 2008, due to their competitive advantage (modelled here as a lower 
winter decay rate), the ESs replaced the CS, which is not anymore the most prevalent strain, whatever the position 
in the study area, 18 years after the first introduction. Before saturation, the spread rates of the ESs are about 5 
km/year (estimated as the slope of 

√
invaded area/π  , the invaded area corresponding to virus densities > carrying 

capacity/100). Then, the distribution of the ESs remains almost at equilibrium until the last year of simulation, 
which is a consequence of the neutrality assumption (equal fitness of all the ESs) (Fig. 3; last panel).

Average proportions in the study area and effect of the CS on the ESs. To get a quantitative insight into the 
replacement of the CS by the ESs, we computed the relative global proportion of each strain by integrating the 
simulation results (with the parameters corresponding to the MLE �∗ ) over the study area (Fig. 4, panel (A)). 
Before the first introduction in 1990, the classical strain represents 100% of the infections. In 2010, it represents 
only 10% of the infections. This decline, which was already visible in the 2004–2008  data34,35, is well-captured by 
the model, though with a slight advance. These discrepancies between the predicted proportions and the data 
are probably due to the positions of the observation sites, which are concentrated at the center of the domain, 
where the CS is more prevalent (see Fig. 2). In order to understand the effect of the presence of a resident CS 
strain on the emerging ESs strains, we compared the dynamics presented in Fig. 4, panel (A) with a hypotheti-
cal scenario describing the dynamics of the ESs in the absence of CS. For this, we used the MLE �∗, to simulate 

Figure 3.  Simulated proportions of the classical and emerging strains in the landscape: before and after the 
observation window. The simulation results presented here correspond to the middle of the intra-annual stage 
(2nd week of June), and were obtained with the MLE �∗ . The colors of the shaded regions indicate which strain 
is the most prevalent. The red regions correspond to the classical strain; blue:  ES1,  ES2 (these two strains have the 
same density, only  ES1 is represented); green:  ES3; pink:  ES4.
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the hypothetical dynamics of the ESs assuming that the CS density is 0. The results are depicted in Fig. 4, panel 
(B). We observe a very fast convergence to an equilibrium, compared to the situation where the CS is present. 
Additionally, the last introduced ES  (ES4) cannot establish, and  ES3 which was confined in an unfavorable region 
in the presence of the CS, reaches more favorable regions, leading to a higher proportion. Thus, the competition 
with the CS alters the outcome of the competition between the ESs, and seems to promote the diversity of the 
ESs by slowing down the overall dynamics.

Discussion
In this work, we developed a reaction–diffusion model to describe the spatial dynamics of invasion of a resident 
population inhabiting a spatially structured environment by newly introduced variants. Using a mechanistic-
statistical framework, we confronted the model to a dataset recording the invasion by several emerging genetic 
variants of a resident population of WMV and succeeded in (1) estimating the dates and places of successful 
introduction of each emerging variant as well as parameters related to growth and dispersal, (2) reconstructing 
the invasion by the new variants from their introduction sites, (3) establishing a competitive advantage of the 
new variants as compared to the resident population and (4) predicting the fate of each variant. Simulations with 
the optimal parameter values showed an adequate fit, proving that the model is able to reproduce the observed 
spatial dynamics despite the strong mechanistic constraints of the model structure and the strong spatial cen-
sorship of the dataset, i.e. missing data. We used fraction frequencies in the dataset rather than counting data. 
We argue that such observations are more robust to heterogeneities in the sampling conditions as they do not 
require a standardized observation protocol. Similarly, frequency data should be more robust to heterogeneities 
in the susceptibility among host genotypes, provided that all of the strains are influenced in the same manner. As 
stated  by40, abundance data can only be used if the count-proportion, i.e. the ratio between expected count and 
population size, can safely be assumed to be constant, or if factors affecting variation in the count-proportion 
can be identified and then accommodated through parametric modeling.

The estimations suggest that three of the four emerging strains have been introduced at approximately the 
same date, while the fourth one was introduced 5 years later (the model considered only 5-yr intervals of intro-
ductions because of constraints on computation time). Despite the neutrality assumption that we made between 
the emerging strains, we observed different durations of the establishment stage: while ESs 1 and 2 became locally 
the most prevalent strains only 6 years after their introduction,  ES3 displayed delayed dynamics since it became 
locally the most prevalent strain 11 years after its introduction. In comparison,  ES4 was introduced 5 years later 
than  ES3 but became locally the most prevalent strain at about the same date. The low prevalence of the  ES3 in 
the dataset could be explained by a lower fitness of this strain, e.g. higher winter decay rate, lower growth rate or 
weaker competitivity. Our results indicate that this pattern can also be observed with a neutrality assumption, 
as a result of the joint effects of the local composition of the landscape, and of the position of the sampling sites, 
far away from the introduction site. Indeed, in the area where  ES4 was first observed, cucurbits crops are very 
frequent with high connectivity between crops, whereas the area where  ES3 was found is patchier. Similarly, 
our results indicate that the overall prevalence of the CS strain in the study area has been slightly overestimated 
in the data, due to sampling sites concentrated in the regions where it is indeed the most prevalent strain. The 
reconstructed dynamics of the five strains therefore underline the importance of estimating jointly the places 
and dates of the introduction and the other ecological parameters as well as the importance of considering the 
spatial structure of the sampling design.

Figure 4.  Estimated average proportions of the classical and emerging strains in the study area. (A) The 
plain lines correspond to the simulated proportions and the red crosses correspond to the proportions of CS 
in the data. (B) Simulated proportions of the ESs obtained by assuming that the CS is absent. In both cases, 
the parameter values correspond to the MLE �∗ . Note that the curves corresponding to the ESs 1 and 2 are 
superimposed.
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Based on WMV-infected samples collected in Southeastern France for more than 30 years,  ES1 was first 
detected in  199938 whereas the other ESs were observed in 2002–200435, i.e. 9–14 years after the estimated 
introduction dates. Such a lapse between the introduction of a plant pathogen and its first detection is consist-
ent with estimations obtained for other plant  viruses21,41–43. ESs strains have been detected in several European 
and Mediterranean countries (16), and in the  USA44, in the few years following their description in France, and 
their prevalence in these countries seems to increase even if few time series data are available. The reasons for 
these almost simultaneous emergences in distant countries and variable environments are not fully understood. 
WMV being considered so far as not seed-transmitted, the ESs strains have probably been disseminated through 
long-distance exchanges of plant  material35.

In addition to the dates and places of successful introduction, our model provides estimation of ecological 
parameters in natura. In particular, the diffusion parameter, measuring the mobility of the viruses (or, more 
precisely, of their aphid vectors) was estimated, leading to a value 0.44km2 per day for WMV. Among plant 
viruses, there are few estimates of diffusion coefficients, and most estimate rather focus on the speed of range 
expansion, which can be more directly derived from observations. For instance, an average speed of 33 km/yr 
and 13 km/yr was estimated for the leafhopper-transmitted wheat streak  virus45 and the whitefly-transmitted East 
African cassava mosaic  virus46 respectively, to be compared with the spread rate of 5 km/year found here. For 
non-persistently aphid-transmitted viruses like WMV and the other potyviruses, the insect remains viruliferous 
after probing on an infected plant for only a few minutes to  hours16, and the dispersal distance is supposed to be 
limited, even if in exceptional climatic conditions, the potyvirus maize dwarf mosaic virus was transmitted by 
viruliferous aphids over more than 1000  km47. Estimations for the potyvirus plum pox virus indicated that 50% 
of the infectious aphids leaving an infected plant land within about 90 m, while about 10% of flights terminate 
beyond 1  km48. Here, a diffusion coefficient of 0.44  km2 per day corresponds to a mean dispersal distance of √
πD ≈ 1.2 km after 1 day (see Supplementary Note S7), which seems in agreement with these data.

Another critical parameter that was estimated is the winter decay rate. Most studies focus on the epidemic 
period but off-season dynamics can be crucial to understand demography and genetic  diversity34,49. We assumed 
here that emerging strains differed from the resident population only through this parameter. Indeed, no obvious 
differences in host range, including both cultivated hosts and weeds, have been found between CS and ES strains, 
whereas ESs strains were found to be better transmitted than CS ones from some weeds infected by both CS 
and  ESs50. This could contribute to more efficient transfer from weeds to crops at the beginning of the growing 
season, leading to a lower winter decay of ESs strains. In our modelling approach we found that ESs strains were 
able to invade the resident population because of a lower decay during winter. Nevertheless, as all of the other 
parameters in the model of population dynamics have been set to the same value for the CS and the ESs, all of 
the competitive advantage of the ESs can be expressed only through the decay rates, explaining these differences, 
and the unrealistic 0-decay rate of the ESs. The unrealistic null winter decay rate that we found for the ESs sug-
gests that, contrarily to our assumptions, competitive advantage of ESs probably occurs also during summer. 
Consistently, there is no efficient cross-protection between CS and ESs  strains50,  but23 found that superinfection 
by ESs strains of a plant already infected by CS is easier than the opposite situation. In our model, we also make 
a neutrality assumption between the ESs that differ only by their introduction dates/sites. This assumption may 
not completely reflect the complexity of the interactions between viral strains and the biological variability 
between and within molecular  groups50. Our model could be extended to consider non-neutral competition 
between the strains and heterogeneous competitive advantages depending on the host genotype. However, such 
an approach would bring in a new difficulty in that it would involve a larger number of unknown parameters 
leading to identifiability issues and underdetermination of the model by the data. As is often the case, there is 
a trade-off between searching for a more realistic description and models that can be trusted because they still 
match the data satisfactorily with a small set of parameters to identify.

In 2008, the ESs have replaced the CS, which was not anymore the most prevalent strain, whatever the posi-
tion in the study area, 18 years after the first ESs introduction. Moreover, this competitive advantage of the ESs 
is expected to lead to the total replacement of the CS by the ESs in about 25 years, i.e. in 2015. These results are 
consistent with current knowledge: new observations carried out in 2016 and 2017 showed than the classical 
CS strain is no more  detectable51. Besides the disappearance of CS strains, the surveys performed in 2016–2017 
revealed a complex and dynamic situation that fitted partially with the model.  ES3 was detected in only one 
location in the southwestern part of the study area, confirming its low dispersal and probable low fitness. As 
predicted by the model,  ES1 and  ES2 were present in the Eastern part of the area and  ES4 was present in all the 
study area. However, it was found to be more prevalent than  ES1 and  ES2 even in the Eastern part, suggesting that 
its fitness is higher than  ES1 and  ES2. New variants, not detected in 2004–2008, were also observed in 2016–2017, 
and some of them presented a high prevalence in all the area. Deep sequencing of two genomic regions revealed, 
contrary to the 2004–2008  situation52, a high prevalence of recombinants among these new  strains51, blurring the 
distinction between molecular groups based on CP sequences only. As in 2004–2008, landscape heterogeneity 
seemed to affect virus  dispersal51.

In a more general perspective, this study shows how mechanistic approaches can be used to infer the histori-
cal dynamics of invasive genotypes or species from initial introduction. These approaches enable considering 
hypothetical scenarios, to get a better understanding of the impact of the biological interactions on the overall 
dynamics. Here, in agreement with theoretical results  in53, the simulations without the CS strain showed that its 
presence promotes a higher diversity among the emerging strains, by altering the outcome of the competition 
between the ESs, and by slowing down the overall dynamics, thus reducing founder effects. Another advantage of 
using a mechanistic-statistical approach, compared to a correlative approach, is that the parameter values bring 
some insight into biological processes and life history traits, (e.g. the diffusion coefficient is related to dispersal 
ability). Good knowledge of the parameter values, especially for the biological parameters, will be helpful for 
future modelling, either with reaction–diffusion models or with other approaches such as stochastic diffusion 
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models, which share some common parameters with reaction–diffusion models (e.g.,12). The method developed 
in this work is computationally very costly. We plan to develop much faster methods, based on deterministic 
optimization algorithms and analytic descriptions of the gradients of the likelihood. Introducing specific fitness 
parameters, besides winter decay rate, for the different groups will also help to better understand the effect of 
interactions between variants on the evolution of viral populations.
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