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The effect 
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An Huang1* 

Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types 
of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular 
foams were successfully fabricated by batch foaming with supercritical fluids  (scCO2). The effects 
of PTFE powder type on crystallization, rheological properties and foaming behavior were studied. 
PTFE L‑5 and PTFE JH‑220 powders showed good dispersion in the PBS matrix, and PTFE FA‑500 
powder underwent fibrillation during the melt blending process. All three PTFE powders gradually 
increased the crystallization temperature of PBS from 78.2 to 91.8 ℃ and the crystallinity from 45.6 
to 61.7% without apparent changes in the crystal structure. Rheological results revealed that PBS/
PTFE composites had a higher storage modulus, loss modulus, and complex viscosity than those of 
pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of 
magnitude in the low‑frequency region. The foamed structure of PBS was obviously improved by 
adding PTFE powder, and the effect of fibrillated PTFE FA‑500 was the most remarkable, with a pore 
mean diameter of 5.46 μm and a pore density of 1.86 ×  109 cells/cm3 (neat PBS foam: 32.49 μm and 
1.95 ×  107 cells/cm3). Moreover, PBS/P500 foam always guarantees hydrophobicity.

Polymer foams are generally considered to be gas-filled composites, which are characterized by light weight, low 
density, shock absorption and excellent mechanical properties. They can realize lightweight polymer materials 
without losing or while even improving the performance of  materials1. Many types of  polymers2–5 can form 
foams, such as polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene (PE). In recent 
decades, traditional petroleum polymers have primarily been used, which are difficult to recycle and degrade in 
nature. Because of the increasing concern of sustainable development and the effect of petrochemicals on the 
environment, biodegradable polymers have attracted much attention. As one of the biodegradable plastics with 
excellent comprehensive performance, poly(butylene succinate) (PBS)6–9 has good biodegradability, process-
ability, heat resistance and chemical resistance, as well as mechanical properties similar to those of PP and PE. 
However, PBS is a polycondensation product with a low molecular weight and highly linear molecular structure, 
resulting in a low melt strength. When fabricating PBS foams via supercritical carbon dioxide (sc‐CO2), the melt 
strength is too low to support the cells during cell growth, causing large cell sizes and collapsed  cells10, which 
limits their wide application. The method of enhancing the melt strength or elastic modulus is the key to devel-
oping high-performance PBS foams, which can further broaden their application areas.

Recently, chemical modification has been used as an alternative for improving PBS melt strength. Zhou et al.11 
improved the viscoelasticity and foamability of PBS through a chain extender (CE). A cross-linking structure was 
formed when the CE content was 0.75 phr, and the expansion volume ratio of the foam increased almost 15-fold. 
Li et al.12 also prepared high viscosity PBS with dicumyl peroxide (DCP) as a crosslinking agent. Boonprasert-
poh et al.13 enhanced the viscosity of PBS by crosslinking with DCP or branching with N3300 (branching agent 
(0–4 phr)), resulting in a higher degree of crosslinking, less crystallinity, and higher viscosity with increasing DCP 
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and N3300. However, crosslinking also has disadvantages, such as chemical reagent residues and environmental 
and human health risks, as well as a lack of reprocessability and recyclability.

Adding nanofillers is a more common method for improving the melt strength of PBS. Chen et al.14 success-
fully fabricated lightweight, high-strength and electrically conductive PBS/carbon black (CB) nanocomposite 
foams with a density of 0.107–0.344 g/cm3 using a solid-state sc-CO2 foaming process. Lim et al.15 compared 
the performance of biodegradable PBS/carbon nanofiber (CNF) composites fabricated using three methods, 
specifically, solution blending, melt compounding, and solution and subsequent melt blending. Lim et al.16 also 
investigated PBS nanocomposites with multiwalled carbon nanotubes (MWCNTs) to study the effect of MWNTs 
on the physical characteristics of biodegradable PBS/CNT foams. Wu et al.17 prepared PBS/halloysite nano-
tube (HNT) nanocomposite foams by melt compounding and  scCO2 foaming, indicating that HNTs obviously 
improved the foamability of the PBS matrix. However, these nanofillers easily aggregate during melt blending 
and are expensive, making them difficult to apply on a large scale in the preparation of high-performance foams.

More recently, virgin polytetrafluoroethylene (PTFE) powder has been used to improve the melt strength of 
polymers. Yang et al.18 prepared ultrahigh-cell-density polypropylene foam by  scCO2 foaming in the presence 
of micro PTFE powders. Wang et al.19 reported a strategy for preparing lightweight and tough PP/PTFE nano-
composite parts with defect-free surfaces by combining in situ fibrillation and nanocellular injection molding 
technologies. Huang et al.20 prepared in situ tripolymer nanofibrillar composites (istp-NFCs) of Polylactic acid/
Thermoplastic polyurethanes/PTFE (PLA/TPU/PTFE), investigating the effect of nanofibrillated PTFE on the 
ductility, crystallization, viscoelasticity and microcellular injection molding (MIM) of PLA/TPU blends. PTFE 
has attracted attention because of its high dispersion property, extremely high thermal stability, chemical resist-
ance and extremely high melt viscosity  property21. In addition, when foaming, the melt strength is usually too 
low to support the cells during cell growth for neat PBS, causing large cell sizes and collapsed cells. Adding fill-
ers, such as CNFs and CNTs, is a common method. However, these fillers are expensive and easily agglomerate. 
As an alternative, PTFE has better dispersibility and a low price. It has a good heterogeneous nucleation effect, 
which can substantially improve the foaming nucleation of PBS. Moreover, PTFE has excellent stability, can be 
used at − 180 to 260 °C for a long time and does not affect the normal use of PBS as a biodegradable polymer. In 
addition, PTFE is a biocompatible polymer that is not harmful to the environment and humans.

We studied the synergistic effect of CNT and PTFE to achieve PBS functionalization in our previous  research22. 
In contrast, this paper pays more attention to the modification of PBS by PTFE itself and different types of PTFE 
fillers, which better elucidates the influence of different types of PTFE on the PBS matrix and foaming process. We 
believe that different types of PTFE exhibit different properties in modification and melt processing; therefore, 
this work first fabricates lightweight PBS composite foams with low concentrations of different types of PTFE 
powder. A superior cell structure and low cell size were achieved. First, a series of PBS composites with three 
types of PTFE powder were fabricated by a direct melt-compounding approach. Then, the subsequent composite 
foams were prepared using a solid-state supercritical  CO2 foaming process. The morphological characteristics and 
thermal, crystallization and rheological behavior of the solid PBS/PTFE composites, as well as their mechanical 
properties, were investigated. Then, the foaming behavior and mechanical properties of the foams, as well as 
their wettability, were analyzed. This study provides a convenient solution for improving the melt strength and 
foaming properties of PBS and expands the application prospects of PTFE as a filler. PBS/PTFE foams can be 
used in some fields, such as heat insulation, sound insulation and shock absorption. In addition, because PTFE 
has anti-drip characteristics, it can be used as a flame retardant material. As a biodegradable composite, the PBS 
matrix is eventually completely decomposed, leaving only a small amount of PTFE for recycling.

Methods
Materials. PBS (GS Pla) was acquired from Anqing He Xing Chemical Co., Ltd. (Anqing, China). PTFE 
(L-5, 5–10 μm) and PTFE (JH-220, 20–30 μm) were purchased from Shanghai Ganyi Plastic Technology Co., 
Ltd. (China) and PTFE (FA-500, 500  μm) were purchased from RiBen Dajin Co., Ltd. (China), which were 
named by P5, P220 and P500, respectively. Commercial  CO2 (99.9%) was supplied by Fuzhou Xinhang Gas Co., 
Ltd. (Fuzhou, China).

Preparation of PBS/PTFE composites. PBS pellets and three kinds of PTFE powder were dried at 80 ℃ 
for 2 h before blending. Then PBS/PTFE composites with different types of PTFE (3 wt% loading) were prepared 
by melt-blending using HAAKE internal mixer (Germany) with rotors speed 80 rpm at 140 ℃ for 10 min. The 
obtained composites were compression molded (rectangular sheet with a thickness of 1 mm) at 140 ℃ 20 MPa 
for 5 min. The samples were named as PBS, PBS/P5, PBS/P220, PBS/P500 based on PTFE type.

Preparation of PBS/PTFE composite foams. PBS/PTFE composite foams were fabricated via a solid-
state supercritical  CO2 foaming. Firstly, the composites were saturated with  scCO2 in a high-pressure autoclave 
at 90 ℃ (below the melting point of PBS) and 20 MPa for 2 h to ensure equilibrium adsorption. And then the 
autoclave was rapidly depressurized and then cool down. The schematic of batch foaming is shown in Fig. 1.

Characterization. X‑ray diffraction (XRD). XRD patterns of samples were obtained by X-ray diffractom-
eter (XRD, Bruker D8, Germany) using CuKa radiation (40 kV and 20 mA) over a range of 10–50°, with a step 
interval of 4°/min.

Thermal characterization. The crystallization behavior of virgin PTFE, PBS and the composites were analyzed 
by differential scanning calorimetry (DSC 200 F3, Netzsch, Germany) in nitrogen atmosphere. Approximately 
5–8 mg sample was used and first heated from room temperature to 150 ℃ and maintained 3 min to erase the 
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thermal history. Then cooled down to 30 ℃ with cooling rate of 5 ℃/min and maintained 3 min, and then the 
temperature was raised again to 150 ℃ with heating rate of 5 ℃/min.

The crystallinities (Xc) of neat PBS and the composites were evaluated using Eq. (1) as follows,

where ΔHm is the melting enthalpy, ΔHcc is the cold crystallization enthalpy, ΔHm100 is the melting enthalpy of 
polymer with 100% crystallization (PTFE: 82.0 J/g, PBS: 200.0 J/g), φ is the proportion of filler. Thermal degra-
dation property was investigated using a thermo gravimetric analysis instrument (TG 209 F1 Libra, Germany) 
heating from room temperature to 600 °C with 10 °C/min in nitrogen atmosphere.

Mechanical properties. Mechanical properties of solid and foamed samples are measured with dumbbell 
samples (ASTM D638-03, type V), which solid samples were cut off from the hot-pressed sheet. The test was 
performed on the universal tensile machine (AGS-X, SHIMADZU, Japan) and the cross-head speed was set 
5.0 mm/min. The average values reported were based on at least seven specimens.

Rheological test. Rheological measurement was carried out on the rotating rheometer (TA ARES G2, Ameri-
can) at 130 °C. 1.0% strain was set and the frequency varied from 100 to 0.01 Hz. At the same temperature and 
strain parameters, a time sweep of 1000 s duration was performed. The creep properties of the materials were 
tested at 130 °C with a constant stress of 100 Pa and duration of 1000 s.

Microstructure analysis. The fracture surface of solid composite and foams was observed by a field emission 
scanning electron microscope (FEI Nova Nano SEM 450, American) operating at 2 kV. All samples are fractured 
after being soaked in liquid nitrogen holding by two pliers for the SEM analysis and sputtered with gold to avoid 
electrification in the inspection. Pore sizes (D) were obtained by the Image-Pro Plus 6.0 software from the SEM 
images. Pore density  (Nf) was calculated by the  equation23,

where N is the number of pores and A is the area of the image  (cm2).
Foamed samples were cut into rectangles and porosities were obtained by weighing the samples and measur-

ing their volume using the  equation24

where Vf is the volume of the foamed sample,  Wf is the measured weight of foamed sample, and ρ0 is the mass 
density of neat PBS.

The volume expansion ratio (Φ) of the foames was defined as the ratio of ρs (g/cm3) to that of ρf
19,

where ρs and ρf are measured by water displacement method (ASTM D792) and represent the mass densities of 
the sample before and after foaming, respectively.

(1)Xc =
�Hm −�Hcc

(1−∅)�Hm100
× 100%

(2)Nf =

[

N

A

]
3
2

(3)Porosity =
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Vfρ0
× 100%

(4)� =
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Figure 1.  Schematic of batch foaming.
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Water contact angle test (WAC). The water contact angle (WAC) of the sample surface was measured by the 
contact angle measuring instrument (KRUSS DSA25, Germany). The samples were placed on the platform of 
the contact angle measuring instrument, and then the deionized water droplets were dropped on the surface of 
the foam sample by hanging drop method, each drop was 2 μL, and the corresponding static WCA value was 
measured. The WCA values after 20 min were also collected. The average value of the five values was calculated.

Results and discussion
Virgin PTFE. Figure 2 shows the SEM images of virgin PTFE and the particle size distribution obtained by 
counting particles in several SEM images using Image-Pro Plus 6.0 software. As shown in Fig. 2, the diameter 
of the P5 powder is between 5 and 10 μm, P220 powders have irregular shapes with an average diameter of 
15–30 μm, and P500 powders have an average diameter of approximately 400 μm. Interestingly, at high magni-
fication, Fig. 2A4 shows that P5 particles are clustered together by many smaller nanoparticles with nanogaps 
through intermolecular forces, which is similar to the structure of P500 powders (Fig. 2C4); however, P220 has 
a smooth surface.

The thermal properties of virgin PTFE were determined using DSC and TGA. The curves and statistical data 
are shown in Fig. 3 and Table 1. In Fig. 3a, the crystallization temperature  (Tc) value is observed in the following 
order: P220 > P500 > P5, and all three types of PTFE have a high  Tc. Figure 3b shows that the melting temperature 
 (Tm) value is in the following sequence: P220 > P5 > P500, and all three PTFEs also have a high  Tm.

Figure 3c displays the TGA curves of the three types of PTFE. P500 powder clearly has the lowest ini-
tial decomposition temperature of 504.4 ℃  (Tonset, 5% weight loss); however, P220 and P5 exhibit higher 

Figure 2.  SEM micrographs and size distribution of PTFE powders: (A) P5, (B) P220, and (C) P500.
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decomposition temperatures than that of P500, 515.0 ℃ and 521.2 ℃, respectively. From the TGA results, it 
can be concluded that all three PTFEs have high thermal decomposition temperatures and a high temperature 
resistance. The three types of PTFE have the same molecular structure and chemical elements  (C2F4). Moreover, 
PTFE is a highly crystalline polymer, and different crystal structures caused by different molecular arrangements 
result in slightly different thermal properties  (Tm and stability).

Morphologies of PBS/PTFE composites. Figure 4 shows the SEM images of the fracture surface of PBS/
PTFE composites. For neat PBS, Fig. 4A shows a homogeneous, smooth and typically brittle fracture surface. 
However, PBS/PTFE composites (Fig. 4B–D) showed rough surfaces and ductile fractures. Moreover, all types 
of PTFE had good dispersion in the PBS matrix. P5 and P220 showed the same size as the virgin PTFE pow-
ders. Additionally, P5 had superior interface adhesion with the PBS matrix and dispersed well without common 
agglomeration, demonstrating that P5 had good compatibility with the PBS matrix due to its rough surface char-
acter in which the PBS matrix infiltrated the gaps between the tiny nano-PTFE (recall Fig. 2A4). However, the 
cracks between P220 and the PBS matrix were obvious, indicating poor compatibility, resulting from the better 
lubricity of P220 itself (smooth surface, recall Fig. 2B).

Interestingly, Fig. 4D shows that almost all P500 was fibrillated and deformed from the original round 
or oval shape into nanofibrillar structures because of the applied shear and elongational forces during melt 
blending. Many nanofibers with diameters of 50–200 nm can be observed and interpreted as a result of in situ 
 fibrillation19,20,25. Why fibrillation occurred only for P500 has two explanations: the different synthesis process of 
virgin PTFE particles results in P500 with fibrillation property, or the diameter of P500 (~ 400 μm) is much larger 
than that of P5 (5–10 μm) and P220 (15–30 μm), resulting in fibrillation more easily under shearing during melt 
processing. This in situ fibrillation nanocomposite is expected to greatly alter the properties of the PBS matrix.

X‑ray diffraction. The X-ray diffraction patterns of pure PBS, PTFE and PBS/PTFE composites are shown 
in Fig. 5. In Fig. 5a, the three PTFE powders showed the same sharp peak at a 2θ of 18.2°. This result indicated 
that the crystal forms of these three PTFE powders were consistent. In Fig. 5b, PBS exhibited three diffraction 
peaks at a 2θ of 19.6°, 21.9°, and 22.6°, which correspond to the (020), (021), and (110) crystal  planes10, respec-
tively. After adding three types of PTFE, the three diffraction peaks at the 2θ of the PBS composites did not shift 
and appeared as a sharp peak at a 2θ of 18.2° (diffraction spectra of the corresponding PTFE). However, the 
intensity of the three peaks ((020), (021), and (110)) of the PBS/P500 composites was higher than those of the 
other two PBS/PTFE composites. The XRD results showed that adding PTFE did not change the crystal form of 
the PBS matrix but affected the crystallinity.

Differential scanning calorimetry. Figure 6 displays DSC curves of neat PBS and PBS/PTFE composites, 
and the statistical data are listed in Table 2. The crystallization temperature  (Tc), crystallization enthalpy (ΔHc), 
cold crystallization enthalpy (ΔHcc), melting temperature  (Tm) and enthalpy of melting (ΔHm) were acquired 
based on cooling and second heating curves. Figure 6a shows that adding PTFE substantially improved the  Tc of 
the PBS matrix as a result of the heterogeneous nucleation of PTFE. P500 had the largest effect (91.8 ℃) because 
of the in situ nanofiber with a high aspect ratio, which can accelerate the crystallization rate and refine the crystal 
structure. The  Tc of the PBS/P5 composite was slightly higher than that of PBS/P220, resulting from the smaller 

Figure 3.  DSC curves of PTFE powders: (a) cooling, (b) second heating, and (c) TGA curves.

Table 1.  Statistical data of DSC and TGA for three PTFE powders.

Sample Tc (℃) Tm (℃) ΔHc (J/g) ΔHm (J/g) Xc (%) Tonset (℃)

P5 309.5 329.4 61.6 62.1 75.7 521.2

P220 316.2 330.0 50.1 52.0 63.4 515.0

P500 312.9 326.4 24.8 25.7 31.3 504.4
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particle size and more uniform distribution of P5, as well as better interface bonding with the matrix. The  Xc of 
the three composites exhibited a trend similar to that of  Tc.

As shown in Fig. 6b, for pure PBS, the melting peak appeared at approximately 113.9 ℃. The  Tm of PBS/
P5 and PBS/P220 slightly increased because of the higher  Xc. However, a double melting peak appeared in the 
DSC curves of the PBS/P500 nanocomposite. This result is interpreted as insufficient crystallization during the 
cooling process, and a more perfect crystal is reformed by melting recrystallization during the heating process. 

Figure 4.  SEM micrographs of the fractured surface of PBS and PBS/PTFE: (A) PBS (B) PBS/P5 (C) PBS/P220 
(D) PBS/P500.
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We know that ΔHc is the crystallization enthalpy and ΔHm is the melting enthalpy. In general, the enthalpy of 
melting is greater than the enthalpy of crystallization because the melting process in PBS involves the conver-
sion of amorphous to crystalline, i.e., recrystallization in the second heating (Table 2). Figure 6b shows that the 
absorption peak appears before the melting peak of PBS, PBS/P5 and PBS/P220, which indicates recrystallization. 
However, PBS/P500 showed a double melting peak, which is interpreted as insufficient crystallization during the 
cooling process, and a more perfect crystal was reformed by recrystallization during the second heating process.

Rheological properties. Frequency sweep. The viscoelastic properties of materials are crucial for  scCO2 
foaming performance. In Fig. 7a, neat PBS exhibited a homopolymer rheological  behavior26. With the addition 
of PTFE, the dependence of the angular frequency on the storage modulus (G′) tended to weaken. For PBS/PTFE 
composites, a plateau was clearly observed in the low frequency region, signifying that the rheological behavior 

Figure 5.  X‐ray diffraction patterns of (a) PTFE powders (b) PBS and PBS/PTFE composites.

Figure 6.  DSC curves of PBS and PBS/PTFE composites: (a) cooling and (b) second heating.

Table 2.  Statistical data of DSC for PBS and PBS/PTFE composites.

Samples Tc (℃) Tm (℃) �Hc (J/g) �Hm (J/g) �Hcc (J/g) Xc (%)

PBS 78.2 113.9 70.2 85.9 10.7 37.6

PBS/P220 85.7 114.5 72.8 81.8 4.5 39.8

PBS/P5 86.1 114.2 76.8 85.1 6.2 40.7

PBS/P500 91.8 116.3 78.2 86.8 – 44.8
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had changed from liquid‐like to solid‐like20. Thus, the addition of PTFE effectively limited the movement of 
molecular chains, especially for the in situ fibrillation of P500, which effectively limited the large-scale molecular 
chain relaxation behavior of the PBS matrix and stored more deformation energy due to the interconnection 
network structure of the PTFE nanofiber. Figure 7b shows the loss modulus (G″) versus frequency curves of neat 
PBS and PBS/PTFE composites, which show the same trend as that of G′.

Figure 7c shows the complex viscosity (η*) versus frequency curves of pure PBS and PBS composites at 
130 ℃. A typical Newtonian fluid platform appeared in the low-frequency region, and a typical shear thinning 
behavior appeared in the high-frequency region for pure PBS. After adding P5 and P220, a slightly higher η* 
was observed. However, the in situ fibrillation nanocomposite of PBS/P500 exhibited strong nonlinear behavior 
throughout the scanning frequency range, indicating strong interactions between the in situ nanofiber and PBS 
matrix. In the high-frequency section, the difference in η* between neat PBS and the composites became small 
because of the extremely low friction coefficient of PTFE itself and the destruction of the nanofiber entangle-
ment network structure of P500.

Figure 7d shows the loss tangent (tan δ) curves of pure PBS and PBS composites. Neat PBS exhibited typical 
viscoelastic fluid behavior, in which tan δ decreased with increasing frequency throughout the scanning fre-
quency range. However, all three PBS/PTFE composites showed that tan δ increased with the frequency in the 
low-frequency section, which is a property of physical gel, and tan δ decreased with increasing frequency in the 
high-frequency section, which is typical of the liquid-like behavior similar to that of pure PBS. Moreover, the 
transition point (at higher frequencies) was observed in the following order: PBS/P500 > PBS/P5 > PBS/P220, 
resulting from the higher shear stress, making the transition from solid-like to viscoelastic liquid-like behavior.

The G′–G″  Han27 curves of pure PBS and PBS/PTFE composites in Fig. 7e showed a more direct interaction 
between the PBS matrix and PTFE. The slope of the curve for neat PBS at low frequencies was approximately 
2, displaying a homogeneous isotropic system with linear and liquid-like  viscoelasticity28. In comparison, the 
slopes of the curves for the PBS/PTFE composites decreased, especially for PBS/P500. The reduced slope indi-
cated a more heterogeneous system. The relaxation behavior of the PBS molecular chain changed because of the 
addition of PTFE. As the shear frequency increased, the curve of PBS/P220 tended to overlap first with the PBS 
curve because of the smooth surface structure of P220 itself and the self-lubricating effect. P5 finally tended to 
overlap, primarily because the entanglement structure gradually disintegrated.

Figure 7f shows the cole–cole  curves29,30 with local enlarged images of pure PBS and PBS/PTFE composites. 
Neat PBS showed a single arc, indicating the relaxation time distribution, and the PBS/P220 composite showed 
a similar curve. However, the curves for the PBS/P5 and PBS/P500 composites had two parts: the first part at 
low viscosities represented the local relaxation of the PBS chain, and the second part at high viscosities displayed 
long-term relaxation caused by the restricted PBS chain. In particular, for the PBS/P500 composite, the first 
part of the arc almost disappeared, and long-term relaxation was dominant. This result clearly demonstrated 
that the interconnected or entanglement structure of PTFE fibers had been formed, leading to high restriction 
of PBS chains.

Figure 7.  (a) Frequency dependence of the storage modulus (G′) and (b) loss modulus (G″) at 130 °C, 
(c) frequency dependence of the complex viscosity (η*), (d) frequency dependence of the loss tangent (tan 
δ = G″/G′), (e) G′–G″ Han curves, and (f) cole–cole curves for neat PBS and PBS/PTFE composites.
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Time sweep. Figure 8a–c shows the time sweep curves in the linear viscoelastic region. In Fig. 8a, with the 
addition of P220, no obvious variation tendency was observed compared with that of neat PBS because of the 
smooth surface of P220 itself (recall Fig. 2B) and the self-lubricating effect. However, PBS/P5 showed a higher G’ 
than that of PBS/P220, resulting from the restrained movement of the PBS molecular chain caused by a smaller 
particle size and rough surface, as well as good dispersion in the PBS matrix. Exhilaratingly, the G′ of the PBS/
P500 nanocomposite further increased because of the existence of an interconnecting PTFE nanofiber network. 
Figure 8b,c shows that the trend of G″ and η* is similar that of G′. Figure 8d (logarithmic plot) shows that the 
creep deformation of neat PBS increased linearly with time; however, the strain rates (slopes) of all three PBS/
PTFE composites were smaller than that of neat PBS, showing lower strain at the same time. This could be 
caused by the high viscosity of PTFE and restrained movement of the PBS molecular chain. Among the three 
types of composites, at the same time, the strain values were as follows: PBS/P500 < PBS/P5 < PBS/P220, which 
was due to the in situ fibrillated P500 fiber.

Mechanical properties. A typical stress–strain curve and histogram of the tensile stress, Young’s modulus 
and elongation at the break for solid and foamed PBS and PBS/PTFE composites are given in Fig. 9a,b. PBS/
P220 has the highest elongation at the break because of the smooth surface. However, PBS/P500 has the highest 
Young’s modulus and tensile stress, which might be due to the in situ fibrillated network structure in the PBS 
matrix. The Young’s modulus and elongation at the break of PBS/P5 are between those of PBS/P220 and PBS/
P500.

The mechanical properties of foams are closely related to the pore structure. Figure 9c,d shows the mechani-
cal properties of PBS/PTFE foams. After foaming, the tensile stress and Young’s modules of neat PBS and PBS/
PTFE foams were obviously reduced compared with those of their solid counterparts, resulting from the pres-
ence of many imperfect cells after the foaming process (Ref. Fig. 10). In contrast, the elongation at the break of 
PBS/P500 foams was higher than that of solid PBS/P500, which was due to having the best cell structure and 
morphology, as well as fibrillated PTFE.

The Young’s modulus of the foams followed the same trend as that of their solid counterparts. The tensile 
strength obviously increased going from pure PBS foam to PBS/P5 and PBS/P500; however, PBS/P220 foam had 
less tensile strength than PBS/P5 because of the better cell morphology of PBS/P5 (Ref. Fig. 10). However, the 
elongation at the break also increased going from pure PBS to PBS/P5 and PBS/P500, and PBS/P500 was the 

Figure 8.  Time sweep curves of rheology: (a) storage modulus (G′), (b) loss modulus (G″) and (c) the complex 
viscosity (η*); (d) creep curves in the molten state of PBS and PBS/PTFE composites.
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highest in this property among the four types of foams, as a result of having the smallest and most perfect cell 
structure and fibrillated P500.

Microcellular morphology. Figure 10 shows the SEM micrographs of neat PBS and PBS/PTFE composite 
foams, and Fig.  11 summarizes the values of the average cell size, cell density, porosity, and volume expan-
sion ratio of the foams. Figure 10a shows that neat PBS foams presented large and elliptic heterogeneous pore 
structures, as well as mainly open cell structures. Figure 10c could be shown more clearly (partial enlarged view 
of Fig. 10a), which was similarly described in other  studies10–15. This was explained in terms of the poor melt 
strength of neat PBS. Figure 10b,c shows the PBS/P220 and PBS/P5 foams, which had smaller cell mean diam-
eters, higher cell densities and lower open porosities, signifying a transformation from opening cells to closed 
cells due to the enhanced melt strength of the PBS  matrix31. Additionally, in Fig. 10b3,c3, P220 was primarily 
located at the node of the cell wall, and P5 was uniformly dispersed in the cell wall. PBS/P500 foams (Fig. 10d) 
were primarily closed cells with a much smaller pore mean diameter (5.46 μm) and much higher pore density 
(1.86 ×  109 cells/cm3), which was due to the in situ nanofibrillated fibers greatly improving the melt strength and 
advancing  crystallization32. In addition, the high-aspect-ratio nanofibers effectively promoted the heterogene-
ous nucleation of cells, resulting in the best cell  morphology33.

Figure 12 shows a schematic illustration of fabricating PBS and PBS/PTFE composite foams via  scCO2 batch 
foaming. PBS/PTFE composites showed a more significant heterogeneous nucleation effect than that of pure 
PBS, especially PBS/P500. Consequently, the foamability of PBS was obviously improved by the addition of PTFE 
powder, and the effect of P500 in situ fibers was the most remarkable.

Wettability. Figure 13 shows the wettability of the prepared PBS and the composite foams. All foams ini-
tially exhibited excellent hydrophobicity, with initial WCA values higher than 90°. However, after 20 min, the 
WCA values of pure PBS sharply decreased and were almost identical to those of PBS/P5 and PBS/P220, which 
were lower than 90° and hydrophilic. This was because these foams mainly consisted of large and irregular cells 
(Ref. Fig. 10), in which water permeated the sample. However, PBS/P500 exhibited hydrophobic properties with 
a WCA value that was only slightly decreased because of its small and perfect cells. Moreover, PTFE is a highly 
hydrophobic polymer, and many PTFE nanofibers spread in the matrix (Ref. Figs. 4 and 10).

Figure 9.  (a, c) are tensile stress–strain curves; (b, d) are histograms of the Young’s modulus, tensile stress and 
elongation at the break of solid and foamed PBS and PBS/PTFE composites.
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Figure 10.  SEM micrographs and size distribution of PBS and PBS/PTFE foams: (a) neat PBS, (b) PBS/P220, 
(c) PBS/P5, and (d) PBS/P500.

Figure 11.  (a) Curves of mean pore size and pore density and (b) a histogram of the porosity and volume 
expansion ratio for PBS and the composite foams.
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Conclusions
The purpose of this work was to study the effect of different types of PTFE polymers on the crystallization prop-
erties, rheological properties and foaming behavior of PBS. The results showed that the P5 powder had better 
compatibility and better dispersion with the PBS matrix than that of P220. P500 underwent fibrillation during 
melt mixing, forming high aspect ratio nanofibers dispersed in the matrix. PTFE gradually increased the  Tc of PBS 
from 78.2 to 91.8 ℃ and the crystallinity from 45.6 to 61.7% without apparent changes in the crystal structure. 
PBS/PTFE composites exhibited a higher storage modulus, loss modulus, and complex viscosity than those of 
pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of magnitude in 
the low-frequency region, demonstrating that the network structure formed by P500 in situ nanofibers effectively 
limited the relaxation behavior of the PBS molecular chain. PBS/PTFE composite foams displayed improved 
foamability with lower cell diameters and higher density. In particular, PBS/P500 foams show closed cells with 

Figure 12.  Schematic illustration of fabricating PBS and PBS/PTFE composite foams via  scCO2 batch foaming.

Figure 13.  Water contact angle values of PBS and PBS/PTFE composite foams: (a) neat PBS, (b) PBS/P5, (c) 
PBS/P220, (d) PBS/P500, and (e) statistical curves.
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the smallest pore diameter of 5.46 μm and the highest pore density of 1.86 ×  109 cells/cm3 by combined action of 
enhanced melt strength and heterogeneous nucleation promoted by high-aspect-ratio in situ nanofibers. PBS, 
PBS/P5, and PBS/P220 foams initially were hydrophobic and became hydrophilic after 20 min, but PBS/P500 
foam remained hydrophobic. Thus, adding PTFE is an efficient method for fabricating high-performance PBS 
microcellular foams.
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