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A novel causality‑centrality‑based 
method for the analysis 
of the impacts of air pollutants 
on  PM2.5 concentrations in China
Bocheng Wang 

In this paper, we analyzed the spatial and temporal causality and graph‑based centrality relationship 
between air pollutants and  PM2.5 concentrations in China from 2013 to 2017.  NO2,  SO2, CO and  O3 
were considered the main components of pollution that affected the health of people; thus, various 
joint regression models were built to reveal the causal direction from these individual pollutants to 
 PM2.5 concentrations. In this causal centrality analysis, Beijing was the most important area in the 
Jing‑Jin‑Ji region because of its developed economy and large population. Pollutants in Beijing and 
peripheral cities were studied. The results showed that  NO2 pollutants play a vital role in the  PM2.5 
concentrations in Beijing and its surrounding areas. An obvious causality direction and betweenness 
centrality were observed in the northern cities compared with others, demonstrating the fact that 
the more developed cities were most seriously polluted. Superior performance with causal centrality 
characteristics in the recognition of  PM2.5 concentrations has been achieved.

China is suffering from severe air pollution due to haze, especially in developed  cities1–3. Densely populated areas 
such as Beijing, Tianjin, and Shanghai are often accompanied by poor air quality. Excessive emissions from the 
chemical industry and continuous increases in private cars lead to atmospheric photochemical pollution and high 
concentrations of fine particulate matter, defined as particles that are 2.5 microns or less in diameter  (PM2.5), and 
other harmful substances in the air, which affect the health of people. Olmo et al.4 reviewed 113 studies related 
to atmospheric pollution and human health published between 1995 and 2009, and 109 of the analyzed studies 
showed evidence of adverse effects on human health. Du et al.5 investigated 1563 acute exacerbations of chronic 
obstructive pulmonary disease (AECOPD) hospitalization cases in China and analyzed the association between 
air pollution and these cases. Sulfur dioxide  (SO2), nitrogen dioxide  (NO2) and ozone  (O3) concentrations were 
found to be significantly responsible for the increase in AECOPD hospitalizations. Liu et al.6 explored the short-
term effects of air pollution on cardiovascular disease (CVD) mortality during 2013–2016. High susceptibility 
to air pollutants was found among females, elderly people, and ischemic heart disease patients. In particular, air 
pollution effects on CVD mortality were 2–8 times greater during the nonheating period than during the heating 
period in Northeast China. Air pollution is becoming a common concern worldwide. The improvement in air 
quality should be achieved by seeking the origin of pollution. Economic development has made great changes 
in the proportions of various components in the  air7,8. Once the concentration of nitrogen oxides or sulfides 
exceeds a certain degree, it will seriously affect almost all living things on Earth. The change in air quality is a 
long-term and gradually accumulating process. Only limited results and incorrect conclusions will be obtained 
when only a certain period is considered. In recent years, the  literature9–11 mentioned that the widespread severe 
haze in northern China could be blamed on the burning of straw and heating in winter. Wang et al.12 established 
twelve joint regression models by collecting four air pollutants and eight meteorological factors to analyze the 
impacts on  PM2.5 concentrations and found that the haze formed in China was mainly due to  NO2. The Chinese 
government also introduced policies to restrict these activities. It is well known that the burning of crop straw 
and rural heating are ways of living that have been handed down for thousands of years in China, while serious 
 PM2.5 concentrations have not appeared until recent years. Thus, there are still many unknowns related to the 
formation of haze that must be studied.

Centrality-based analysis methods are widely used in many domains. Most studies calculate centrality meas-
ures such as degree, clustering coefficient or local efficiency to characterize the nodal importance based on a 
correlation coefficient matrix generated from a communication graph. Han et al.13 examined the effects of spatial 
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polycentricity on  PM2.5 concentrations using spatial econometric models based on a three-year panel of data 
for urban cities in China and used the spatial centralization index and spatial concentration index together to 
quantify polycentricity. Zhou et al.14 collected high-resolution  PM2.5 data by mobile monitoring along different 
roads in Guangzhou, China, and explored the spatial–temporal heterogeneity of the relationship between the 
built environment and on-road  PM2.5 during the morning and evening rush hours, calculating the betweenness 
centrality index for measuring the pollution impact. Despite all these studies, no research has covered further 
analysis with topological centrality for meteorology or air pollutants, especially in causal-based adjacent matri-
ces. The causal direction would be such an important factor in differentiating the mutual functionality of each 
pollutant in the air.

Recognition of air quality by model training is a future trend in the domain of atmospheric artificial intel-
ligence. Deep learning can be used to achieve accurate prediction with specialized knowledge. Wang et al.15 
collected eight meteorological factors from the 100 most developed cities in China and trained an ensembled 
boosted tree model with 90.2% accuracy. Huang et al.16 developed a deep neural network model that integrated 
the convolutional neural network (CNN) and long short-term memory (LSTM) architectures and collected 
historical data such as cumulated hours of rain, cumulated wind speed and  PM2.5 concentrations. The feasibility 
and practicality of the trained model were verified to improve the ability to estimate air pollution, especially in 
smart cites. In these studies, meteorological or pollutant factors were passed directly through machine learning 
models, and the intrinsic relationship among these factors was ignored during training. The spatial–temporal 
characteristics need to be more widely studied over a large extent.

In this paper, we studied the air pollutants  NO2,  SO2, carbon monoxide (CO) and  O3 by means of time series 
from a large number of air monitoring data in the Jing-Jin-Ji region in China and focused on the causality influ-
ence of the accumulative process of each pollution component on air  PM2.5. By establishing four joint regression 
models, we quantitatively analyzed the influence degree of air pollutants on the cause of  PM2.5 to better clarify 
the formation of haze and trained a multilayer perception model to achieve improved performance compared 
with other methods.

Results
Figure 1 illustrates the new causality (NC) impacts from the four pollutants on  PM2.5 concentrations. For the 
inner-city impact, as shown in Fig. 1A,  NO2 has an obvious causal effect on the  PM2.5 concentrations in Beijing 
and Tianjin, followed by those in Chengde and Tangshan.  SO2 also has a significant causal effect on the  PM2.5 
concentrations in Langfang and Cangzhou. In Fig. 1B, the causality of pollutants from peripheral cities around 
Beijing to the Beijing  PM2.5 concentrations is considered, and  NO2 in Zhangjiakou and Chengde have the greatest 
influence, followed by CO in Langfang.  SO2 in all the cities bordering Beijing, such as Langfang and Zhangjiakou, 
has certain impacts on the  PM2.5 concentrations in Beijing. Neither  O3 from the inner city itself that from the 
peripheral cities has a causal impact on the  PM2.5 concentrations, as shown in green. Detailed information on 
Fig. 1 is listed in Table 1 and Table 2. The column order refers to lagging days in the NC model.

The causality-centrality results are drawn in Fig. 2. The upper row shows the betweenness centrality under the 
four pollutants in the Jing-Jin-Ji region, and the bottom row shows the clustering coefficient mapping results. A 
large betweenness centrality is present in the northern cities, especially those adjoining Beijing, such as Chengde 
(CO and  O3), Langfang  (SO2) and Zhangjiakou  (NO2). The discriminative ability of clustering coefficients in 
Fig. 2B does not behave as well as the betweenness centrality. Although the coefficient values are close to each 
other, it can still be inferred that pollutants around the Beijing area play an important role in the  PM2.5 concen-
trations in the Jing-Jin-Ji region.

Figure 3 shows the causal direction among the Jing-Jin-Ji cities under the four pollutants. In Fig. 3A, the 
causal impacts for CO among each city are modeled by NC. The causalities in Shijiazhuang, Langfang, Baoding 

Figure 1.  Quantitative NC impacts of (A) pollutants inside each city on  PM2.5 and (B) pollutants from 
peripheral cities on  PM2.5 in Beijing.
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Table 1.  NC results of the pollutants to  PM2.5 concentrations inside each city.

CO NO2 O3 SO2

NC Order NC Order NC Order NC Order

Cangzhou 0.030 22 0.027 11 0.025 9 0.103 22

Langfang 0.101 21 0.105 8 0.034 13 0.107 22

Xingtai 0.032 22 0.052 22 0.016 22 0.057 22

Zhangjiakou 0.085 20 0.017 10 0.013 7 0.047 13

Shijiazhuang 0.077 22 0.055 22 0.010 19 0.083 22

Qinhuangdao 0.030 10 0.074 13 0.015 13 0.089 13

Tangshan 0.035 22 0.084 8 0.016 9 0.032 22

Chengde 0.071 14 0.091 15 0.027 8 0.063 13

Baoding 0.089 16 0.064 10 0.027 10 0.091 22

Handan 0.034 22 0.010 22 0.020 22 0.023 22

Beijing 0.030 8 0.166 8 0.022 9 0.013 8

Tianjin 0.056 22 0.165 8 0.019 8 0.065 22

Hengshui 0.061 22 0.052 22 0.024 22 0.055 22

Table 2.  NC results of the pollutants from peripheral cities to  PM2.5 concentrations in Beijing.

City

CO NO2 O3 SO2

NC Order NC Order NC Order NC Order

Cangzhou 0.026 15 0.019 11 0.021 9 0.041 22

Langfang 0.106 17 0.082 8 0.026 9 0.056 22

Xingtai 0.038 19 0.039 8 0.018 9 0.030 22

Zhangjiakou 0.078 8 0.122 8 0.021 8 0.066 13

Shijiazhuang 0.058 22 0.050 8 0.016 8 0.052 22

Qinhuangdao 0.016 10 0.024 6 0.012 9 0.034 13

Tangshan 0.016 15 0.037 8 0.018 9 0.020 22

Chengde 0.060 13 0.109 13 0.024 8 0.035 13

Baoding 0.064 11 0.059 10 0.021 9 0.035 13

Handan 0.032 22 0.022 22 0.021 9 0.022 22

Tianjin 0.025 13 0.046 8 0.019 9 0.033 22

Hengshui 0.027 13 0.017 11 0.021 10 0.024 22

Figure 2.  Maps of the (A) betweenness centrality and (B) clustering coefficients. The maps were drawn with R 
package ggplot2 version 3.3.3, https:// ggplo t2. tidyv erse. org/.

https://ggplot2.tidyverse.org/
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and most of Beijing behave as output-oriented to other cities, and input-oriented cities include Handan, Heng-
shui, Xingtai, Tangshan and Qinhudangdao. For the  NO2 pollutant, in Fig. 3B, the output-oriented cities are 
Zhangjiakou, Langfang and most of Beijing and Baoding. Qinhuangdao, Tangshan and Handan are still input-
oriented polluted cities. In Fig. 3C, obvious causal directions from Beijing, Langfang, Cangzhou and Baoding 
to other cities can be seen for the  O3 pollutant. In Fig. 3D,  SO2 in Shijiazhuang, Tianjin, Hengshui, Cangzhou, 
Zhangjiakou, Baoding and Handan has a direct causal impact on that in other cities, and Beijing becomes an 
input-oriented  SO2 polluted city.

Table 3 lists the recognition results with causal centrality measures used in the multilayer perception (MLP) 
model. By constructing a three-class confusion matrix, weather was categorized into ‘Fine’, ‘Bad’, and ‘Polluted’ 
according to the air quality index, and the corresponding evaluation indicators, including accuracy, precision, 
sensitivity, and F1 score, were computed with different training parameters. The model was tested with [50, 100, 
200] epochs. To accelerate the training process, the batch size was enlarged to 32 when the epoch number was 
200.

Discussion
In this study, the causal centrality characteristics are analyzed for the relationship between the air pollutants and 
 PM2.5 concentrations of the Jing-Jin-Ji region in China. The NC-based adjacent matrices with causal direction 
weighting information reveal the basal functionality for the formation of  PM2.5 under air pollutants. Different 

Figure 3.  Causal direction among the cities in the Jing-Jin-Ji region. Pollutants are (A) CO, (B)  NO2, (C)  O3 
and (D)  SO2. Gaps are used to roughly distinguish the borders of the pollution impact directions among cities.

Table 3.  Model performance with causal centrality measures used in MLP.

CO NO2 O3 SO2

Epoch 50 150 200 50 150 200 50 150 200 50 150 200

Batch size 16 16 32 16 16 32 16 16 32 16 16 32

Accuracy 0.7143 0.7551 0.7347 0.8163 0.9184 0.9167 0.5102 0.6122 0.5918 0.7959 0.8367 0.8163

Precision 0.7143 0.7619 0.7381 0.8333 0.9524 0.9500 0.4762 0.7143 0.7143 0.8571 0.9524 0.9048

Sensitivity 0.6522 0.6957 0.6739 0.7609 0.8696 0.8636 0.4348 0.5357 0.5172 0.7200 0.7407 0.7308

F1 score 0.6818 0.7273 0.7045 0.7955 0.9091 0.9048 0.4545 0.6122 0.6000 0.7826 0.8333 0.8085
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from previous studies, topological causal centrality is fully analyzed for the first time on a spatial–temporal scale. 
For the inner-city causal impact,  NO2 has an obvious causal effect on the  PM2.5 concentrations in the Beijing and 
Tianjin areas. The main source of  NO2 comes from the combustion of fuel and exhaust of urban vehicles. These 
cities are among the most developed regions in China, and millions of vehicles are concentrated on urban roads 
every  day17. Carbon monoxide emissions from heating combustion in northern China are the second leading 
cause of  PM2.5 concentrations, especially in mountainous areas. None of the pollutants in Qinhuangdao have a 
significant causal impact on  PM2.5 due to its special coastal narrow terrain.

NO2 has the greatest impact on the  PM2.5 concentrations in Beijing and its surrounding 
areas. For the pollution sources imported to the Beijing region, in Fig. 1B,  NO2 from Chengde, Langfang and 
Zhangjiakou, which are located adjacent to the capital, has the greatest impact on the  PM2.5 concentrations in 
Beijing. This result can be interpreted to be due to the extensive movement of the population during peak time 
each  day18. Economic development in China has a great effect on air  quality19. Although ozone has been listed 
as one of the air pollution observations, no significant causal direction is shown in the inner cities or peripheral 
cities around Beijing. According to the Spearman correlation test, ozone was negatively correlated with  PM2.5 
concentrations, which is coincident with previous  studies12,20. Inferred from Tables 1 and 2, the closer to Beijing, 
the shorter the impact time of the causal function on  PM2.5 concentrations. The lagging order in the joint regres-
sion models fluctuates around 14 (average of 16.1 in Table 1 and 13.1 in Table 2), which means that the time of 
the long-distance causal effect is approximately half a month.

Northern cities have causal‑central roles in the  PM2.5 concentrations of the Jing‑Jin‑Ji 
region. Considering the causal centrality results in Fig. 2, the betweenness indicators show sensitive central-
ity characteristics in the cause of  PM2.5 concentrations. For the functional topological impact from pollutants 
on  PM2.5, northern cities in the Jing-Jin-Ji region have the greatest responsibility, especially those from  NO2. 
These northern cities are located at the junction of the first and second ladders in China. Monsoon winds from 
the Inner Mongolia Plateau and Loess Plateau blow air pollutants and sand into the southern  cities21. More 
importantly, remarkable differences in economic and energy consumption, development degree, and population 
density among these cities contribute to the uneven distribution of anthropogenic  emissions22,23. Both natural 
and anthropogenic factors aggravate the  PM2.5 concentrations.

Causal direction showed significance in developed areas. Significant causal directions are shown 
in Fig. 3, especially from developed cities such as Beijing, the capital of China, and Shijiazhuang, the capital 
of Hebei Province. Pollutants in Beijing not only have an impact on its own region but also are responsible for 
pollution in other peripheral cities, as shown in Fig. 3A–C. In Fig. 3D, due to the factory relocation policy and 
strict emission mitigation measures in recent years,  SO2 concentrations have decreased significantly (35.1%) in 
 Beijing24, especially  SO2 emissions in the industrial combustion and steel sectors, which decreased by 29% and 
27% from 2012 to  201725. This explains why Beijing acts as an import-oriented city.

Superior performance with causal centrality characteristics in the recognition of  PM2.5 concen‑
trations. Previous  studies26–28 have widely carried out research on air quality recognition mainly based on 
meteorological or pollutant characteristics. The centrality measured from the NC method shows superior perfor-
mance in distinguishing different degrees of air pollution. The method proposed in this study can be considered 
efficient and practical for training the deep learning model. As shown in Table 3, the number of epochs tested 
ranged from 50 to 200. The best testing results were generally obtained with the parameter set (epoch = 150, 
batch = 16). When the epoch reached 200, nearly all critical classification indicators declined, which means that 
overfitting existed in the model. For all the models tested in Table 3,  NO2 shows the most effective classification 
capability, which is in consensus with the results above that it has the greatest impact on the  PM2.5 concentrations 
in Beijing and its surrounding areas.

Limitations
There are some limitations in this study. First, only air pollutants are under consideration. However, air quality 
is affected by many factors in addition to air pollutants or meteorological factors. These factors should also be 
considered in the joint regression models. Second, data from restricted areas in China are collected and analyzed. 
Air pollution is such a complex and regional mutual weather phenomenon, and a vast spatial scale should be 
covered for the analysis of  PM2.5 formation.

Materials and method
Materials. Data on air pollutants were acquired from the website of the Ministry of Environmental Protec-
tion of the People`s Republic of China. This website publishes the air quality index (AQI) of each city in China 
on an hourly basis.  PM2.5 (μg/m3), CO (mg/m3),  NO2 (μg/m3),  O3 (μg/m3) and  SO2 (μg/m3) were recorded con-
tinuously at the monitoring stations. In the Jing-Jin-Ji region, 79 stations are used, which include 12 in Beijing, 
15 in Tianjin, 8 in Shijiazhuang, 6 in Tangshan, 4 in Qinhuangdao, 4 in Handan, 6 in Baoding, 5 in Zhangjiakou, 
5 in Chengde, 4 in Langfang, 3 in Cangzhou, 3 in Hengshui and 4 in Xingtai. The geographical locations of these 
stations are shown in Fig. 4. According to the occurrence of serious  PM2.5 concentrations in China, the study 
period for this research was set from December  2nd, 2013, to February 28th, 2017.

To illustrate the interactions between pollutants and  PM2.5 concentrations, two experiments are designed: A) 
the influence of local pollutants on  PM2.5 in each city in the Jing-Jin-Ji region and B) the relationship between 
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local  PM2.5 concentrations in Beijing and pollutants from peripheral cities. Long-term analysis is taken into 
account in each experiment.

New causality. New causality theory is derived from Granger causality (GC) theory. GC was proposed by 
Granger. This theory was first applied in economics and was recently widely used in neuroscience, global climate 
change and other scientific  domains29–31. A brief introduction is given here. Considering a set of time series, GC 
exhibits the causal relationship between variations based on past values. In the form of a linear regression model, 
two time series are assumed to be jointly stationary. The autoregressive representations (Eq. 1) and their joint 
representations (Eq. 2) are described below.

where i and j are integer numbers ranging from 1 to the lagging order m of time series X . aj is the coefficient of 
X . t  represents time. The noise terms, ǫi and ηi , are uncorrelated over time and have zero means. The covariance 
between η1 and η2 is defined by ση1η2 = cov ( η1η2 ). If the past values of variable X2 make the estimation of X1 more 
accurate, the noise term of σ 2

η1
 should be less than σ 2

ǫ1
 . In this case, X2 is said to have a causal influence on X1 . 

However, if σ 2
ǫ1

= σ 2
η1

 , X2 has no causal impact on X1 . The GC value from X2 to X1 is therefore defined in Eq. (3).

(1)
{

X1,t =
∑m

j=1 a11,jX1,t−j + ǫ1,t

X2,t =
∑m

j=1 a22,jX2,t−j + ǫ2,t

(2)
{

X1,t =
∑m

j=1 a11,jX1,t−j +
∑m

j=1 a12,jX2,t−j + η1,t

X2,t =
∑m

j=1 a21,jX1,t−j +
∑m

j=1 a22,jX2,t−j + η2,t

(3)FX2→X1 = ln
σ 2
ǫ1

σ 2
η1

Figure 4.  Geographical locations of air pollutant monitoring stations in the Jing-Jin-Ji region. The maps were 
drawn with R package ggplot2 version 3.3.3, https:// ggplo t2. tidyv erse. org/.

https://ggplot2.tidyverse.org/
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There is no causal influence from X2 to X1 when FX2→X1 = 0 , and if FX2→X1 > 0 , X2 is said to exhibit GC on 
X1 . For long-term empirical research, the vector of past values in X1 or X2 will be too large to build a regressive 
model. A general approach for determining the lagged order is the AIC-Akaike information criterion (AIC). 
Many algorithms can be adopted to estimate the coefficients in the joint representations. In this paper, the least 
squares method is used to solve the equations.

However, the value of Granger causality has been suggested to be inaccurate in some cases. It overlooks the 
influence of other variances in the multivariable regression model and considers only the noise terms. In 2011, 
Hu et al.32 pointed out the limitations and shortcomings of GC and provided plenty of examples that GC cannot 
exactly demonstrate the true causality relationship between variables. The NC method was proposed to avoid 
limitations and successfully applied to reveal the evident causal relationship between time series. In practice, the 
defined NC direction is most effective in explaining phenomena observed in nature and human activities, such 
as the processing of EEG signals, the increase in global temperature caused by the greenhouse effect, and the 
fluctuation of the stock market in the economy. In Eq. (2), past values of X1,t−j and X2,t−j occupy a large portion 
among the three contributors to X1,t or X2,t . Based on this, a more appropriate form of causality for multivariate 
interactions is defined in Eq. (4).

In which, i and k are any unequal integers. D represents the causal direction from variable Xi to Xk . m is the 
lagging order in Xi and Xk . N is the total length of observed time series. n is the number of variables. h ranges 
from 1 to n . t  ranges from m to N . j ranges from 1 to m . ηk,t is the noise term for Xk at time point t  . In this paper, 
the causality relationship between pollutants and  PM2.5 concentrations is tested, and the following model (Eq. 5) 
is built to describe the influence of each component contributing to haze, which appears frequently in the Jing-
Jin-Ji region. Each of the four pollutants is represented by Pollutant.

Graph‑based centrality analysis. Graph-based centrality analysis has been a widely used method for 
topological relationship analysis among variables. In this study, each city in the Jing-Jin-Ji region is considered 
the graph node, the NC value between any two cities is regarded as the weighted edge, and an 11 × 11 square 
adjacent matrix is generated. Topological centrality measures, including the betweenness and clustering coef-
ficient, are computed based on this matrix. Different from the correlation coefficient-based matrix, causality can 
be used to measure the causal direction between two factors. Thus, we build four-pollutant models, which cor-
respond to four NC adjacent matrices, to analyze the causal importance from pollutants to  PM2.5 concentrations.

The betweenness centrality is given in Eq. (6), and the clustering coefficient is defined in Eq. (7), where ρhj is 
the number of shortest paths between cities h and j , and ρ(i)

hj  is the number of shortest paths between cities h and 
j that pass through city i . N is the city set in the Jing-Jin-Ji region, and n is the number of cities in N . aij is defined 
as the connection weights between cities i and j . Betweenness centrality measures the number of shortest paths 
that pass through a given city in a communication graph. We use this measure to characterize the importance 
of each city in the process of pollutant spread. The clustering coefficient can be used to measure the degree of 
topological clustering of pollutants around cities.

Model training. To verify the effectiveness of the causality-centrality-based method proposed in this study, 
we use the calculated causality-centrality measures in MLP to determine whether these properties would bring 
superior classification results to the  PM2.5 concentration prediction. MLP is a deep learning model used for 
classification. It mainly consists of three parts: the input layer (dependent variables), the hidden layer (intercon-
nected neural network units) and the output layer (independent variable). The purpose of MLP is to obtain a 
prediction model with strong generalization ability by training the labeled input data. An MLP model with a 
1024 × 1024 hidden layer is trained with these causality and centrality modalities. Instead of batch normaliza-
tion, the layer normalization strategy is adopted for standardization with a range of [0, 1]. Principal component 
analysis is used for dimension reduction, and  L1 embedding feature selection is implemented to avoid sparsifica-
tion and overfitting. Equation (8) shows the  L1 penalty ( � ) term added to Eq. (5).

(4)n
Xi

D
→Xk

=

∑N
t=m (

∑m
j=1 aki,jXi,t−j)

2

∑n
h=1

∑N
t=m (

∑m
j=1 akh,jXh,t−j)

2
+

∑N
t=m η2k,t

(5)argmin
{Pollutant}

{

∑m
j=1 a11,jPM2.5t−j +

∑m
j=1 a12,jPollutant + η1,t

}

(6)bi =
1

(n− 1)(n− 2)

∑

h,j∈N
h�=j,h�=i,j �=i

ρ
(i)
hj

ρhj

(7)Ci =

∑

j,h∈N aijaihajh
∑

j∈N aij(
∑

j∈N aij−1)

(8)argmin
{Pollutant}

{

∑m
j=1 a11,jPM2.5t−j +

∑m
j=1 a12,jPollutant + �||Pollutant| | + η1,t

}
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After data preprocessing, the remaining causality or centrality properties are passed to the input layer of the 
MLP. The number of tested epochs ranges from 50 to 200, and the batch size is 16. The initial parameters of the 
network are set randomly, and the stochastic gradient descent algorithm is used for parameter optimization. For 
the output layer, the results are classified into ‘Fine’, ‘Bad’, and ‘Polluted’ after the model training and compared 
with the ground truth, which has been labeled before. To evaluate the performance of deep learning, indicators 
including the accuracy, precision, sensitivity, and F1 score are computed with different training parameters.

Conclusion
In conclusion, this study evaluated the influence of four air pollutants on the  PM2.5 concentrations in the Jing-
Jin-Ji region with spatial and temporal comparisons by integrating the new causality and graph-based central-
ity analysis methods. The results indicate that  NO2 has the greatest impact on the  PM2.5 concentrations in the 
northern region of China. In addition to the pollutants exhausted inside Beijing, those from Zhangjiakou and 
Langfang had the greatest impact on the  PM2.5 concentrations in Beijing. Significant causal directions are shown 
with significance in developed cities in China. These results imply that further work could be done for pollution 
control. The main source of  NO2 resulting from human activities is the combustion of fossil fuels (coal, gas and 
oil), especially fuel used in cars. Therefore, higher emission standards, stricter policies for vehicle control and 
encouraging public transportation are expected to reduce air pollution.
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