
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7033  | https://doi.org/10.1038/s41598-021-86264-5

www.nature.com/scientificreports

An insight into the estimation 
of drilling fluid density at HPHT 
condition using PSO‑, ICA‑, 
and GA‑LSSVM strategies
S. M. Alizadeh1*, Issam Alruyemi2, Reza Daneshfar3, 
Mohammad Mohammadi‑Khanaposhtani2 & Maryam Naseri4* 

The present study evaluates the drilling fluid density of oil fields at enhanced temperatures and 
pressures. The main objective of this work is to introduce a set of modeling and experimental 
techniques for forecasting the drilling fluid density via various intelligent models. Three models 
were assessed, including PSO‑LSSVM, ICA‑LSSVM, and GA‑LSSVM. The PSO‑LSSVM technique 
outperformed the other models in light of the smallest deviation factor, reflecting the responses 
of the largest accuracy. The experimental and modeled regression diagrams of the coefficient of 
determination  (R2) were plotted. In the GA‑LSSVM approach,  R2 was calculated to be 0.998, 0.996 and 
0.996 for the training, testing and validation datasets, respectively.  R2 was obtained to be 0.999, 0.999 
and 0.998 for the training, testing and validation datasets, respectively, in the ICA‑LSSVM approach. 
Finally, it was found to be 0.999, 0.999 and 0.999 for the training, testing and validation datasets in 
the PSO‑LSSVM method, respectively. In addition, a sensitivity analysis was performed to explore 
the impacts of several variables. It was observed that the initial density had the largest impact on the 
drilling fluid density, yielding a 0.98 relevancy factor.

A drilling fluid is a complicated liquid containing heterogeneous compounds of a base fluid and chemical addi-
tives. The structure of a drilling fluid should remain unchanged within the favorable temperature and pressure 
ranges. The drilling fluid density is an important and fundamental property in the pressure calculations of 
wellbores and the successful completion of drilling  operations1. Also, downhole pressure and temperature vari-
ations significantly influence the effective density of the drilling  fluid2. This indicates its essentiality in drilling. 
Decreased exploitable reserves through shallow horizons have enhanced exploration activities of larger  depths3. 
In a high-pressure high-temperature (HPHT) well, the proceeding of drilling by the rise of the total vertical depth 
(TVD) demonstrates large alternations in the  density2,4,5. Such alternations essentially arise from the increased 
bottom-hole temperature and increased mud column height in an HPHT well.

The pressure and temperature have contradictory impacts on the equivalent circulating density (ECD). In 
contrast, a rise in increased temperature-induced thermal expansion with the wellbore decreased ECD. These 
two effects are most commonly believed to balance each  other6. However, this is not always the case, specifically 
concerning an HPHT well.

One can obtain the precise density alternations of drilling fluids at HPHT wells merely through real 
 measurements1. To measure the density, it is required to employ precise density devices. Furthermore, the 
measurement procedure is difficult, costly, and time-consuming. In addition, it is not possible to derive experi-
mental bottom-hole pressure and temperature data. Thus, it is important to develop a robust, rapid, and precise 
method to integrate such measurements. Intelligent approaches, e.g., the radial basis function (RBF)7–9, multilayer 
perceptron (MLP)10–14,  LSSVM15–19,  GA20–22,  ICA23–25, and  PSO26,27 have been of great interest to researchers to 
solve complicated classification and regression models in recent years. In addition, they have been employed for 
various petroleum and natural gas engineering purposes, e.g., the estimation of pressure–volume–temperature 
(PVT) characteristics, the prediction of gas characteristics, and estimation of permeability and  porosity28–33.
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The present study collected over 880 datasets, involving different mud types, temperature, pressure, and initial 
density (density at standard temperature and pressure), from earlier  studies34–36. To build an efficient model, it 
was required to classify the data into three categories, including the training, testing and validation datasets. 75% 
of the real data points formed the model in the training phase, 10% of them was kept for validation phase and the 
remaining 15% were exploited as the testing data to perform the performance assessment of the models includ-
ing PSO-LSSVM, ICA-LSSVM, and GA-LSSVM to make estimates of unobserved data. Statistic and graphical 
representation techniques were adopted to examine the accuracy of the model.

Literature review
One can classify drilling fluid density prediction models into linear empirical analytical, correlation ones and 
intelligent  approaches37. Many studies proposed such models to make an estimate of HPHT drilling fluid 
 density2,5,38.

The impacts of the pressure and temperature in ECD estimations are of great  importance6. Peters et al.38 were 
able to implement the compositional model of Hoberock et al.39 for the exploration of volumetric alternations 
in drilling fluids containing mineral oil/diesel as base fluids. They examined the liquid component densities of 
the drilling fluid at 0–15,000 psi and 78–350°F. The integration of their findings and those reported by Hoberock 
et al. enabled accurate predictions of drilling fluid density at HPHT condition. They derived an error of below 
1% in the experimental temperature and pressure ranges. Sorelle et al.40 developed a less successful model on the 
ground of the correlations of water and hydrocarbon densities at various pressures and temperatures.  Kutasov41 
developed an analogous correlation for the prediction of density behavior of water at various temperatures and 
pressures, leading to accurate HPHT water densities with a significantly lower error. Isambourg et al.5 proposed 
a polynomial model of nine variables for the behavior definition of liquid drilling fluid components. The compo-
sition-grounded model, which resembled that of Hoberock et al.39, was found to be valid at 14.5–20,000 psi and 
60–400°F. Their model assumed merely the liquid phase to be responsible for volumetric drilling fluid alterna-
tions. To employ their model, it is required to obtain the accurate reference mud density at surface conditions.

Despite their successful density modeling of drilling fluids, linear empirical correlation and analytical tech-
niques failed to consider the impacts of the drilling fluid type on HPHT density  evaluations1. This limits their 
competence in drilling fluids with particular surface densities. One can consider intelligent techniques to be a 
beneficial alternative to incorporate the impacts of the drilling fluid type on HPHT density evaluations. Several 
drilling fluid behavior models have been proposed based on artificial neural networks (ANNs) in recent years. 
Osman and  Aggour34 introduced an ANN model for the prediction of the mud density based on the mud type, 
temperature, and pressure. The density data of drilling fluids with oil/water base fluids at 0–1400 psi and up to 
400°F were exploited to train and test the ANN phases. There was a good agreement between the prediction 
of ANN density and experimental density measurements. Although the ANN approach was successful, such 
methods have a few drawbacks, including overfitting, the difficult achievement of stable solutions, a large train-
ing data requirement, and low generalizability to unobserved  data1. Support vector machine (SVM) and LSSVM 
techniques may serve to solve such problems in light of their ability to solve small-sized nonlinear prediction 
problems and high performance for off-training set  measurements42–47.

Theory
LSSVM. The LSSVM approach was introduced by Suykens and Vandewalle as a SVM variant. It is typically 
employed for pattern reorganization, regression, and clustering  purposes8,48,49. The general form of LSSVM may 
be formulated as:

in which f relates the output (i.e., the density of mud) and input (i.e., different mud types, temperature, pressure, 
and initial density data). Also, ω is the weighting vector, ∅ is the mapping function, and b is the bias term. To 
estimate ω and b, an objective function was proposed as:

in which ei is the error of variable  xi, and γ is the margin parameter. One can write the regression form of LSSVM 
as:

The present study employed the radial basis function (RBF) kernel as:

in which σ 2 is another tuning parameter representing the squared bandwidth found by an evolutionary algo-
rithm, e.g., genetic algorithm.
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The optimization objective function is the mean square error (MSE) of LSSVM  predictions19,50. It can be 
found as

in which MDpred . is the predicted mud density, MDexp. is the experimental mud density, and N is the data point 
count. Furthermore, one can formulate the problem as:

Imperialist competitive algorithms. Imperialist competitive algorithms (ICAs) are a socio-political 
class of strategies that have recently been adopted as an optimization approach. As with conventional optimiza-
tion methods, an imperialist competitive algorithm begins with an initial population of two types of members: 
(1) colonies and (2) imperialists. Such members together form empires, and their competition enables optimiza-
tion. A strong empire consistently attempts to control the colonies of weaker empires. Eventually, the competi-
tion results in a country with a single empire and several colonies of similar costs and  positions51.

Initially, each of the imperialists owns a colony and attempts to extend their initial empire. Then, the colonies 
attempt to become the intended imperialistic country during evolution. Such a transformation is a policy model 
known as assimilation. This used to be practiced by several imperialist  powers52. Imperialist states adopted such 
policies to build colonies in the favor of themselves concerning several socio-political axes, e.g., language, culture, 
and religion. An imperialist competitive optimization algorithm models this procedure by making the entire 
colonies move toward the imperialist in several optimization directions. The imperialist eventually assimilates 
the entire colonies. Let d be the imperialist-colony distance, and x be the travel of a colony in the direction of 
the  imperialist53; Thus,

in which x denotes a random uniformly-distrusted number, while β represents a number larger than 1. In fact, 
β makes colonies approach the imperialist from the two sides. One can evaluate the overall power of the empire 
through the power of the imperialist state and assimilated colonies. It is obtained by summing the power of 
the imperialist state and a mean power portion of the corresponding colonies. The competition dissolves some 
empires as they are not able to win and enhance their power. As a result, greater empires continue to obtain 
more power every day. This leads to a state with merely one empire in the world, with the other countries being 
controlled by the empire state. In such a condition, the entire colonies are of the same power and  position54. 
Figure 1 provides a simplified representation of an ICA. In addition to simply explaining the ICA approach, it 
may be proper to employ a straightforward pseudo-code to describe the ICA procedure  as55,56:

1. Apply random points to the function to initialize the empires;
2. Move the colonies toward the corresponding imperialist (i.e., assimilation);
3. Apply random position alternations in several colonies (i.e., revolution);
4. Replace the imperialist position with a colony of a lower cost, if any;
5. Unify analogous empires;
6. Find the total cost of the empire;
7. Incorporate weaker colonies of weaker empires into a more powerful empire (i.e., imperialist competition) 

to exclude the empires of no power; and
8. Finish the procedure if the discontinuation criterion is met; otherwise, go to step 2.

(6)MSE =

∑N
i=1

(

MDpred −MDexp.
)

N

(7)min F(γ, σ2) = min(MSE)

(8)x ≈ U(O,β × d)

Figure 1.  Schematic representation of the ICA optimization  method57.
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Genetic algorithms. Genetic algorithms (GAs) represent a popular optimization technique with a signifi-
cant ability to optimize several functions. Chromosomes are the initial solution of a GA. They are randomly 
produced by various operators, such as mutation, crossover, and reproduction. The crossover factor (CF) and 
mutation factor (MF) demonstrate the alternation likelihood of the chromosomes. One can make use of CF and 
MF to define the offspring generation likelihood. GA steps are described  as58,59:

1. Generating chromosomes as the initial solutions and defining CF and MF;
2. Determining the fitness of the initial solution as FKi = f

(

XK
i

)

 and determining the optimal chromosome 
index;

3. Producing updated chromosomes by genetic operators;
4. Utilizing the fitness assessment of FK+1

i = f
(

XK+1
i

)

 to identify the best chromosome;
5. Replacing the chromosome with a new chromosome; and
6. Continue the procedure to obtain the best conditions.

Figure 2 depicts the flowchart of the genetic algorithm-least square support vector machine (GA-LSSVM) 
approach.

Particle swarm optimization (PSO). Particle swarm optimization (PSO) is a stochastic optimization 
method grounded on various population patterns among natural species, e.g., insects, fishes, and  birds61–63. PSO 
solves optimization problems by promoting initial  populations64. Also, solutions are referred to as particles in 
 PSO65. A set of particles make a swarm. The term swarm represents the population, while particles stand for 
individuals. Although it resembles GA in some characteristics, PSO makes use of no evolution operators such 
as crossover and  mutation66. The topological particle neighborhood causes the particles to travel within the 
problem domain. The neighborhoods include the queen, physical neighborhood, and social neighborhood. PSO 
defines a velocity vector and a position vector for each of the  particles67. The velocity of a particle is updated as:

where  Pbest,id is the best previous position of particle i, gbest,id is the best global position of particle i, w denotes 
the inertia weight, C is the learning rate, and r is a randomly-selected number. This equation involves three com-
ponents, including social, cognitive, and inertia. Also, wvid stands for the inertia component that is the retention 
of the past movements and moves particle in its direction at iteration t. C1 is the cognitive term and transfers the 

(9)vid(1+ t) = wvid(t)+ C1r1
(

Pbest,id(t)− Xiid(t)
)

+ C2r2
(

gbest,id(t)− Xid(t)
)

d = 1, 2, . . .D

Figure 2.  Schematic representation of the GA-LSSVM  method60.
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particles to their best former positions, while C2 denotes the social component and assesses the performance of 
particles and the swarm trajectory within the optimization domain. The new position of a particle is indicated 
to be the sum of the new velocity and the previous position of the particle as

Figure 3 illustrates the general form of PSO-LSSVM.

Methodology
Pre‑analysis phase. The present work employed three analytical and modeling processes for the estimation 
of drilling fluid density at enhanced temperatures and pressures. The experimental findings in the first stage were 
utilized for model training. Four different types of liquids including water-based, oil-based, colloidal gas aphron 
(CGA), and synthetic fluids have been selected for the comprehensive modeling. Indices 1, 2, 3 and 4 have been 
used to show these drilling fluids in the model, respectively. Table 1 expresses the variation of the selected affect-
ing parameters.

Nearly 15% of the real data were exploited for model testing. Normalization was applied to the data as:

in which x denotes the value of parameter n. The absolute Dk is below unity. The remaining quantities are 
introduced to models, building models for forecasting and validation of the density of the drilling fluid (i.e., 
the output). In order to model the desired process, we used MATLAB toolbox LSSVM code and coupled it with 
optimization codes to determine optimized weight and bias values.

(10)Xid(t + 1) = Xid(t)+ vid(t + 1), d = 1, 2, . . . ,D

(11)Dk = 2
x − xmin

xmax − xmin
− 1

Figure 3.  Schematic representation of the PSO-LSSVM  method68.

Table 1.  Range of input affecting parameters and the output.

Parameter Parameter range

Pressure (Mpa) 0.020252–96.98939

Type of mud 1–4

Temperature ( K) 294.2611–477.5944

Initial density (g/cm3) 0.752067–2.15698

Density (g/cm3) 0.629264–2.212103
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Outlier detection. The data points employed in modeling were found to be capable of posing a strong 
impact on the accuracy of final model estimates. Hence, the incorrect experimental data were identified by using 
the outlier analysis.

An outlier (or anomaly) is an essential aspect of optimization problems. In such a case, it is required to 
employ statistical techniques or machine learning approaches. It is suggested that outliers should be removed 
in a distinct stage before proceeding with the analysis . To detect outliers, the present study adopted a leverage 
value process. The Hat matrix was calculated as:

in which X is an N × P matrix (where N stands for the total number of data points, while P represents the number 
of inputs), T is the transposed operator, and -1 represents the inverse operator. A warning leverage value was 
defined as:

The feasible region was considered to be a rectangle restricted within 0 ≤ H ≤ H* and 
−3 ≤ Standard Residual ≤ +3 . More details about this analysis are given  elsewhere69,70.

Model development and verification methodology. As with any model, model validation was 
applied in the final stage to evaluate model accuracy through a comparison of the results to the experimental 
data points. Validation is crucial and must undergo a revision in cases with changing variable ranges or experi-
mental enhancements. For the development of the corresponding models, this study applied the PSO-LSSVM, 
ICA-LSSVM, and GA-LSSVM methods, evaluating model accuracy by statistical techniques. The accuracy 
quantification of the models was performed by Eqs. (14–18).

in which X represents a property, N is the total number of data points, “actual” stands for experimental quanti-
ties, and “predicted” refers to the modeled quantities.

Results and discussion
Table 2 reports detailed results of the models. The tuning parameters γ and σ2 were employed in the LSSVM 
method and the optimal values of them are provided.

Model validation results. The present work employed statistical and graphical techniques for the per-
formance evaluation of the models concerning the prediction of drilling fluid density at HPHT condition. The 
results of modeled drilling fluid density are demonstrated in Fig. 4. The predictions are plotted versus the data 

(12)H = X
(

XTX
)−1

XT

(13)H∗
=

3(P + 1)

N
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(

R2
)
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i
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(16)Mean squared error(MSE) =
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∑
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(17)Root mean square error (RMSE) =
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√

√

√

1
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∑
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(18)Standard deviation (STD) =

√

∑N
i=1 (error − error)

N − 1

Table 2.  Detailed information about trained models.

Parameter GA PSO ICA

σ2 0.951 0.648 0.781

γ 976.335 1755.632 895.644
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index to represent the training, testing and validation outcomes. As can be inferred from Fig. 4, the ICA-LSSVM 
and PSO-LSSVM approaches yielded more satisfactory predictions as they were more accurate.

The coefficient of determination  (R2) demonstrates the closeness of predictions to experimental data. It ranges 
from 0.0 to 1.0. A coefficient of determination close to 1 stands for higher prediction accuracy. This coefficient 
was found to be nearly 1 for the proposed frameworks, suggesting that they had a high prediction capability for 
the drilling fluid density. Figure 5 illustrates the regression results of experimental and numerical coefficient of 
determination. As can be seen,  R2 was found to be 0.998, 0.996 and 0.996 for the training, testing and validation 
datasets, respectively, in the GA-LSSVM method.  R2 was obtained to be 0.999, 0.999 and 0.998 for the training, 
testing and validation datasets, respectively, in the ICA-LSSVM approach. Finally, it was found to be 0.999, 0.999 
and 0.999 for the training, testing and validation datasets in the PSO-LSSVM method, respectively.

Figure 4.  A comparison between the drilling fluid density obtained by (a) GA-LSSVM, (b) ICA-LSSVM, and 
(c) PSO-LSSVM models and the experimental values at the training, validation and testing phases.
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A majority of not only the training but also testing data points were found to be distributed around the Y = X 
line, implying high accuracy of the model predictions. This is also true for the validation phase. Apart from 
Figs. 4 and 5 is supportive of the accurate predictions of the ICA-LSSVM and PSO-LSSVM techniques. Table 3 
provides a detailed description of the evaluation results. According to the results, PSO-LSSVM exhibited excel-
lent accuracy as it yielded the lowest STD, RMSE, and MRE values and the largest coefficients of determination. 
Figure 6 depicts the relative deviation percentages of the proposed models. The PSO-LSSVM and ICA-LSSVM 

Figure 5.  Regression plots for the prediction of drilling fluid density using (a) GA-LSSVM, (b) ICA-LSSVM, 
and (c) PSO-LSSVM models in the training, validation and testing stages.
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models were observed to have higher accuracy as compared to the GA-LSSVM model. Also, their relative devia-
tion did not exceed 6 percent. The relative deviation range of the GA-LSSVM model was found to be from − 8 
to + 10 percent.

The approach of adopted outlier detection was used to detect the suspicious data sets of the models, as shown 
in Fig. 7. According to the standard residual results versus the Hat results, this study detected 15, 27, and 27 
outliers for the GA-LSSVM, ICA-LSSVM, and PSO-LSSVM models, respectively.

Sensitivity analysis. A sensitivity analysis was performed to the impacts of the inputs on the output (i.e., 
the drilling fluid density). Then, a relevancy factor was used to calculate the quantitative impacts of the param-
eters as:

in which n is the total number of data points, Xk,i denotes input i of parameter k, Yi is output i, Xk  is the average 
input k, and Y  is the average output. The relevancy factor ranges from − 1 to + 1; a larger relevancy factor stands 
for a larger impact on the corresponding parameter. A positive effect indicates that arise in a particular input 
would raise the target parameter, while a negative impact represents a decline in the target due to an enhanced 
parameter. Among the input parameters, it is found that the temperature and initial density directly affected the 
results. At the same time, an inverse relationship was identified between the pressure and drilling fluid density; 
suggesting that a rise in the pressure decreases the drilling fluid density. The results of sensitivity analysis are 
plotted in Fig. 8. As can be seen, the pressure was found to have the strongest negative impacts, with a relevancy 
factor of − 0.03.

By comparing the  R2 values related to models developed in this study with five models found in the literature, 
it was concluded that the PSO-LSSVM and ICA-LSSVM models proposed in this work have the highest ability 
to predict the density of drilling fluid under HPHT condition. This comparison is shown in Fig. 9.

Conclusion
The present work employed soft computing methods, including PSO-LSSVM, ICA-LSSVM, and GA-LSSVM, to 
model the oil field drilling fluid density at enhanced temperatures and pressures. The findings are summarized 
below:

• The PSO-LSSVM model yielded the most satisfactory results as it had the smallest deviation factor and high-
est accuracy with  R2 and RMSE equal to 0.999 and 0.0138, respectively.

• According to our analysis, ICA-LSSVM and PSO-LSSVM exhibited higher accuracy than GA-LSSVM. Also, 
they did not exceed 6% in their relative deviations and GA-LSSVM was found to have a relative deviation of 
− 8 to 10%.

• The sensitivity analysis results demonstrated that the temperature and initial density were directly related to 
the drilling fluid density, while the pressure was inversely related to it.

This work could be helpful in obtaining a deeper insight into predicting the mud density and its drilling 
application, particularly in high performance-required applications.

(19)r =

∑n
i=1

(

Xk,i − Xk

)(

Yi − Y
)

√

∑n
i=1

(

Xk,i − Xk

)2 ∑n
i=1

(

Yi − Y
)2

Table 3.  Statistical performance evaluation of the models.

Model Phase R2 MRE (%) MSE RMSE STD

GA-LSSVM

Train 0.998 0.771 0.000259006 0.0161 0.0130

Test 0.996 1.017 0.000551279 0.023479 0.0198

Total 0.998 0.851 0.000339246 0.0241 0.0151

Validation 0.996 1.209 0.000625866 0.025017 0.0193

ICA-LSSVM

Train 0.999 0.464 0.000225111 0.0150 0.0134

Test 0.999 0.455 0.000199963 0.014141 0.0126

Total 0.999 0.478 0.000228887 0.0155 0.0135

Validation 0.998 0.625 0.000304616 0.017453 0.0149

PSO-LSSVM

Train 0.999 0.435 0.000239871 0.0155 0.0140

Test 0.999 0.308 0.000146462 0.012102 0.0112

Total 0.999 0.424 0.00022778 0.0138 0.0137

Validation 0.999 0.529 0.000263576 0.016235 0.0142
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Figure 6.  Relative deviations of the training, validation and testing datasets by (a) GA-LSSVM, (b) ICA-
LSSVM, and (c) PSO-LSSVM.
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Figure 7.  Suspicious data detection based on Hat value results applying (a) GA-LSSVM, (b) ICA-LSSVM, and 
(c) PSO-LSSVM.
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