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NREM delta power and AD‑relevant 
tauopathy are associated 
with shared cortical gene networks
Joseph R. Scarpa1, Peng Jiang2, Vance D. Gao2, Martha H. Vitaterna2, Fred W. Turek2 & 
Andrew Kasarskis3,4* 

Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has 
demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early 
marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy 
are associated with shared underlying cortical molecular networks in preclinical AD. We integrate 
multi‑omics data from two extensive public resources, a human Alzheimer’s disease cohort from the 
Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse 
population in which NREM delta power was measured (N = 98). Two cortical gene networks, including 
a CLOCK‑dependent circadian network, are associated with NREM delta power and AD tauopathy 
progression. These networks were validated in independent mouse and human cohorts. Identifying 
gene networks related to preclinical AD elucidate possible mechanisms associated with the early 
disease phase and potential targets to alter the disease course.

Alzheimer’s disease (AD) emerges over the course of decades, involving a dynamic integration of genetic, envi-
ronmental, and behavioral risk. A growing body of literature has elucidated the neurobiological changes in the 
preclinical phase of AD, noting significant neuropathologic and behavioral changes before the onset of cognitive 
decline. Studies of patients with dominantly inherited Alzheimer’s disease have demonstrated that amyloid-beta 
and tau accumulate for many years before pathologic changes in memory and executive  function1,2, and Aβ levels 
peak around the time clinical symptoms  manifest3. These early stages of AD also are accompanied by widespread 
multi-region loss in synaptic density and neuronal  populations3. This neuropathologic evidence complements 
the data demonstrating a complex neuropsychiatric symptomology in the early stages of  AD4–7. Recent stud-
ies have shown that the preclinical phase includes anxiety-depressive  symptoms8 and increased  loneliness9,10. 
Other work has noted significant changes to sleep–wake cycle and its influence on AD  pathology11–21. This body 
of literature is highly concordant with those of Parkinson’s disease and Huntington’s disease that demonstrate 
pathologic and behavioral changes during the  prodrome22–28. These characteristics may indicate a generalizable 
feature of neurodegenerative disease and may point to opportunities for early intervention.

Sleep and circadian disruption is a significant cause of morbidity in AD. This stressor is transmitted through 
the patient’s social and familial network, affecting the mental health of families and  caretakers29–32. Often sleep 
and circadian disruption leads to the institutionalization of patients in long-term care facilities that more reliably 
offer 24-h care. Though sleep disruption plays a significant role in late-stage AD, the relationship between sleep 
and dementia is highly intertwined throughout the progression of Alzheimer’s  disease16,18–20,33. Epidemiologic 
evidence indicates that sleep deprivation may increase dementia risk, and dementia often leads to sleep depriva-
tion, potentially creating a feedback  loop13–16,18,20,33,34. A number of sleep changes have been associated with AD 
 pathogenesis11,14,15,35–37. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing 
to its potential utility as an early marker of  dementia35. Reduced NREM in humans is associated with increased 
atrophy and Aβ accumulation in the medial prefrontal cortex and tau accumulation in specific Brodmann areas 
in the frontal, temporal, and parietal brain  regions35,38–40. This work shows particular sleep features that manifest 
in the preclinical phase and are associated with specific elements of AD pathology, but the molecular mechanisms 
underlying these neurophysiologic markers are poorly understood. Understanding the biological basis of these 
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complex features of preclinical AD may reveal insights into pathogenesis of preclinical Alzheimer’s and novel 
opportunities for therapy.

The motivation of the present work is to corroborate the relationship between NREM slow-wave activity 
(SWA) and cortical tau pathology at the molecular level and characterize the shared molecular basis of these 
intertwined  phenotypes35. We use data from two extensive public resources, a human Alzheimer’s disease cohort 
from the Mount Sinai Brain Bank (N = 125) reflecting AD  progression41 and a (C57BL/6J × 129S1/SvImJ) F2 
mouse population in which NREM delta power was measured (N = 98)42, to test the hypothesis that specific gene 
networks in the prefrontal cortex are associated with both NREM sleep and AD-related tau pathology. These 
large-scale studies catalogue extensive genetic and molecular information across species—rich public resources 
that can be used to investigate specific biological questions not considered in the original studies. By studying 
genetic, environmental, and phenotype data across species, we can characterize how genetic variation and gene 
expression integrate information in gene networks and identify molecular pathways robustly associated with 
both NREM sleep and tau development.

Methods
Multiscale data generation in mouse and human cohorts. We previously described in full detail the 
experimental design, quality control, and measurements of genetic, gene expression, and phenotypes in ninety 
eight (98) members of (C57BL/6J × 129S1/SvImJ) F2 mouse  population42. We used these mouse data for our 
analyses in the present study, and all animal experiments that generated these data were approved in advance by 
the Institutional Animal Care and Use Committee at Northwestern University and were in compliance with the 
Federal Animal Welfare guideline. Briefly, two hundred and eighty three (283) behavioral, affective, and elec-
troencephalographic traits were measured, including NREM delta power. Mice starting at 7 weeks of age were 
subjected to a battery of behavioral test and at 10 weeks of age were surgically implanted with electroencephalo-
gram (EEG) and electromyogram (EMG) electrodes for sleep/wake recordings. Two stainless steel screws (Small 
Parts, Miami Lakes, FL) serving as the EEG leads were screwed into the skull and placed in the cerebral cortex 
with one screw located 1 mm anterior to bregma and 2 mm lateral to the central suture (somatomotor areas), 
and the other (i.e., the reference electrode) at 1 mm anterior to lambda and 2.5 mm lateral to the central suture 
(visual areas). As is typical for studies in mice, one-channel EEG signals were used here as a proxy to describe 
the characteristics of cortical frequency spectrum in an individual animal. Two weeks after the surgery, three 
episode of continuous EEG/EMG recordings were made, including (1) a 24-h undisrupted baseline (ZT0 to ZT0; 
ZT0 = light on), (2) 6 h of sleep deprivation (starting at ZT2; i.e., 2 h after the end of baseline) followed by 16 h 
recovery period, and (3) sleep/wake after 1 h (ZT5–ZT6) of restraint stress given a week after the sleep depriva-
tion. EEG/EMG recordings were manually scored in 10-s epochs into NREM, REM, and wake, and then quanti-
fied into sleep phenotypes. For our current analysis, we focused on the relative NREM delta power during the 
24 h baseline sleep, the phenotype referred to as “BL.24h.nrem.delta” throughout the original manuscript. The 
power spectrum analysis was done epoch-by-epoch. Raw power of the delta band (1–4 Hz) was averaged for all 
NREM epochs in the 24-h baseline and was then expressed as a proportion of the epoch-averaged NREM total 
power of the 1–30 Hz range during the same period. The normalization to total power removes the variations 
in the EEG signal amplitude among individual animals, which are largely technical rather than biological varia-
tions. Our phenotype of interest, the relative NREM delta power during baseline reflects, the intensity of NREM 
delta activities, which is a commonly used marker of sleep homeostatic drive and is highly  heritable43–45. A 
closely related phenotype, NREM delta energy, which is a function of delta power and the amount of slow-wave 
sleep, is not analyzed here or in our previous study. Finally, as animal cohorts were found to have a widespread 
impact on the 283 phenotypes measured in this mouse population (ANOVA P values significantly deviate from 
a uniform distribution and are distorted toward smaller values), linear adjustments were used to remove cohort 
effects for all phenotypes. For each phenotype, phenotypic values of each animal were fitted in a linear regres-
sion model with cohort as the independent variable, and intercept + residuals were taken as the adjusted values. 
This linear procedure was taken because it is conceptually simple and compatible with subsequent analyses (e.g., 
correlations) which are also linear.

All mice were genotyped using the Affymetrix MegAllele genotyping mouse 5K SNP Panel, of which 2458 
were polymorphic between the C57BL/6J and 129/SvImJ inbred strains. To measure gene expression, Affymetrix 
GeneChip Mouse Genome 430 2.0 Array was used. Mice were left undisturbed for two weeks before euthanasia 
and tissue collection. All dissections were performed between ZT6 and ZT7, and four brain regions were col-
lected, including frontal cortex (cortical tissue rostral to the striatum), hippocampus, thalamus, and hypothala-
mus. Only the expression data in the cortical tissue were used the current study. Raw data were normalized using 
robust multiarray averaging with quantile normalization and consequently  log2-transformed. We adjusted data 
for effects of technical covariates, including RNA processing batch, array batch, and animal cohorts. Principal 
components analysis was used to capture the unknown source of variations, and data were further adjusted by 
treating principal components as covariates if they were not associated with any genomic loci [logarithm of the 
odds (LOD) < 3]. Lastly, multiple probesets mapping to a single gene were reduced to the gene level by calculating 
their median. The bottom 10% of genes by variance were removed to reduce noise in calculating gene coexpres-
sion, and samples with an interarray correlation two standard deviations away from the mean were considered 
outliers and removed. Gene expression and phenotype data are publicly available at GSE109112.

Data from the Alzheimer’s disease cohort was collected by the Mount Sinai Brain Bank, and full description of 
the experimental methods and data generation procedures have been previously  published41. These data include 
1053 postmortem brain tissues from 125 human brains. Gene expression was measured and merged from two 
Affymetrix microarray platforms, Human Genome U133A and U133B. Probes measured on both platforms were 
averaged before the gene expression matrix was corrected for covariates using linear regression. For each member 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7797  | https://doi.org/10.1038/s41598-021-86255-6

www.nature.com/scientificreports/

of the cohort, clinical dementia rating (CDR), diagnostic certainty score through the Consortium to Establish a 
Registry for Alzheimer’s disease (CERAD), Braak Score, and estimates of neuritic plaque (NPL) and neurofibril-
lary tangle (NFT) density were measured using a previously published  protocol46. This cohort includes individuals 
expressing the full spectrum of clinical and histopathologic phenotypes, from normal to severe, in order to cor-
relate variations in gene network expression with clinical and histopathological status and disease progression. 
Gene expression data is publicly available at GSE84422, and all data can be accessed through Synapse.

Calculating coexpression and module enrichment to identify functional molecular relation‑
ships. Both previous studies which we primarily examine in this work use weighted gene coexpression net-
work analysis (WGCNA) to calculate gene coexpression associations in high-dimensional microarray  data41,42. 
We further analyzed these coexpression networks to identify molecular relationships between tauopathy and 
non-REM slow wave activity. These coexpression networks were previously generated using a similar generalized 
methodology. For each cohort, the correlation matrix was calculated between all genes. This correlation matrix 
was then raised to a power, ß, to calculate the adjacency  matrix47, which was quadratically transformed to the 
topological overlap matrix to capture higher-level gene–gene relationships, like nearest neighbor  associations48. 
Hierarchical clustering revealed gene coexpression modules, which were assigned arbitrary colors for identi-
fication. Each color represents a different module, which was catalogued in the original manuscript. The first 
principal component of each module (module eigengene) was correlated with relevant phenotypes to determine 
associations between modules and traits. In the original F2 mouse study, twenty-six coexpression modules were 
identified. Notably, gene expression in three modules (“blue”, “green”, and “skyblue”) were found to be altered 
both by sleep deprivation and major depression. Network images were generated using Cytoscape v3.7.249.

To identify gene networks associated with both AD-relevant tauopathy and non-REM slow wave activity, we 
compared module memberships between all previously calculated coexpression modules in the frontal cortex 
of the (C57BL/6J × 129S1/SvImJ) F2 mouse population and BA10 of the human AD cohort. Fisher’s exact test 
was used to calculate module overlap and a module was considered conserved when Bonferroni-corrected 
p-value < 0.05 and Odds Ratio > 2. Fisher’s exact test was also used to investigate whether the two conserved 
modules were overrepresented with genes differentially expressed in non-demented individuals with AD his-
topathology when compared to an age- and sex-matched cohort that was clinically and histopathologically 
normal. Nominal p-values were reported since only two modules were investigated. Functional characterization 
of modules were calculated using  DAVID50,51, and Benjamini–Hochberg p-values are reported. Furthermore, 
enrichment using ChIP-seq and CLOCK-knockdown data was performed with Enrichr and corrected p-values 
were  reported52. The ChIP-seq data was catalogued in the ChEA database, derived from an experiment examining 
CLOCK-binding targets in 293T  cells53. The knockdown data is publicly available from GSE50588, generated in 
GM19238 cell lines after siRNA knockdown, and catalogued in Enrichr under “TF Perturbations Followed By 
Expression”. Lastly, Fisher’s exact test was used to test two networks for enrichment for causal cognition genes. 
The cognition gene list was assembled by querying the Mouse Genome  Database54 under the general category, 
MP:0002063. Next, genes in the two subcategories, enhanced learning (MP:0012314) and enhanced conditioning 
behavior (MP:0012316), were removed to ensure that the final gene list reflected genes causal solely for decreased 
cognitive behaviors. Fisher’s nominal p-values were reported since only two modules were tested. Odds ratios 
for all modules were plotted for the sake of comprehensiveness.

Probabilistic causal modeling to identify directed gene–gene relationships. In this analy-
sis, we examined previously reported graphical models representing gene–gene relationships in the F2 mouse 
 population42. Constructing probabilistic causal models of gene expression data have been extensively detailed 
 elsewhere55. Briefly, these probabilistic causal models are directed acyclic graphs in which each node represents 
gene expression of a gene, and the relationship between genes is captured by the conditional probability between 
 nodes56. Monte Carlo Markov Chain (MCMC) simulation was used to reconstruct one thousand gene networks 
that fit the gene expression data and the fit of each reconstruction was assessed with Bayesian Information 
Criterion (BIC)—a metric conservative to overfitting since it gives a lower prior probability to more complex 
models (i.e. with more parameters). A consensus network was consequently calculated by keeping edges that 
appear in more than 30% of the 1000 reconstructions to balance sensitivity and  specificity57. To infer causality in 
Markov equivalent structures, we used previously calculated cis-eQTLs as  priors42 and prevented genes without 
cis-eQTLs from being parents of genes with cis-eQTLs, under the assumption that they are primarily regulated 
by genetic variation.

Calculating key drivers of gene networks from probabilistic causal models. To calculate 
key drivers, we used a variant of module enrichment that utilizes the directedness of the probabilistic causal 
 graphs55,58. For each module of interest, the downstream neighborhood of each gene was calculated, and nodes 
whose downstream network is greater than two standard deviations above the mean are considered network 
drivers. This method classifies nodes based upon their downstream network and uses the principle that nodes 
with more downstream nodes likely have a greater influence on the gene expression of the module as a whole. 
Consequently, key drivers are those nodes with significantly larger downstream networks than the average node 
in the module.

Results
Characterizing functional gene networks associated with the NREM delta power. In a previous 
study, two hundred eighty-three (283) behavioral, affective, and neurophysiologic phenotypes were measured in 
a population of (C57BL/6J × 129S1/SvImJ) F2 mice, revealing gene network pleiotropy and novel relationships 
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between sleep–wake and behavioral  traits42. We used these data to specifically investigate cortical gene networks 
associated with NREM delta power. Notably, these gene networks were reconstructed in cortical regions ros-
tral to the areas where the EEG leads were placed. Although the regulation of NREM delta power and NREM 
homeostasis has a strong local  component59,60, it also involves many brain areas. Particularly, prefrontal cortex 
in both humans and mice plays an important role in regulating NREM delta waves recorded in other cortical 
 regions39,61. Four cortical gene networks were correlated with NREM delta power during baseline conditions 
(Fig. 1A–D): darkgreen  (rs = 0.25, P = 0.02, FWER = 0.03), grey60  (rs = − 0.28, P = 0.006, FWER = 0.01), lightyel-
low  (rs = 0.33, P = 0.001, FWER = 0.005), and skyblue  (rs = 0.34, P = 7.6 ×  10–4, FWER = 0.003). Skyblue showed 
the strongest association with NREM delta power and was previously implicated in both sleep deprivation and 
major depressive  disorder42. This network includes circadian clock genes and clock-regulator genes Per1, Per2, 
Bhlhe40, and Klf10. Further analyses of ChIP-seq and gene expression data demonstrated that skyblue genes 
are targeted by CLOCK (P = 9.2 ×  10–10, Q = 7.6 ×  10–8) and their expression is strongly modulated by CLOCK 
knockdown (P = 1.58 ×  10–3, Q = 0.016)62 (Fig. 1E). These results indicate that NREM delta power is correlated 
with four cortical gene networks and most strongly associated with the expression of a CLOCK-dependent corti-
cal gene network.

Identifying NREM delta power gene networks associated with AD progression and tauopa‑
thy. Reduced NREM slow wave activity was associated with AV-1451 tau levels in PET scans of Brodmann 
area (BA)  1035. Previous experiments have measured histopathologic markers and BA10 gene expression in 
patients with clinical symptoms across the AD spectrum, including patients with no symptoms at  all41. These 
experiments indirectly captured information regarding the development of AD pathogenesis and the gene net-
works involved. We reasoned that the association between human NREM slow wave activity and AD tauopa-
thy may be reflected by shared underlying gene networks. To investigate this relationship, we compared gene 
networks associated with NREM delta power to those networks previously associated with AD progression. 
This analysis showed that sixteen of the twenty-three (70%) cortical modules in the F2 mouse population are 

Figure 1.  NREM delta power correlates with module eigengene expression of skyblue (A), lightyellow (B), 
grey60 (C), and darkgreen (D) modules. Correlation coefficients for each module-trait relationship is denoted 
in its respective panel. CLOCK knockdown directly modulates the expression of the skyblue module, with 
Fisher’s p-value reported in the figure (E). Summary statistics for panels (A–D) were originally represented in 
Supplementary Table 3 in PMID: 30050989.
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conserved in the AD cohort. Of the modules associated with NREM delta power, lightyellow and skyblue are 
overrepresented in at least one AD gene network (Fig. 2A–E).

Next, we investigated if the AD modules associated with NREM delta power were also correlated with levels 
of tauopathy. NREM-lightyellow was overrepresented in AD-yellow (P = 2.7 ×  10–6, OR = 8.5 [4.1–16.8]), a gene 
network previously correlated with Braak score (r = − 0.29, P = 0.022) and neurofibrillary tangle density (r = − 0.33, 
P = 0.008). NREM-skyblue was overrepresented in AD-greenyellow (P = 0.01, OR = 8.5 [2.9–21]), which was 
primarily associated neurofibrillary tangle density (R = − 0.25, P = 0.046). Both AD-yellow and AD-greenyellow 
are strongly enriched for known Alzheimer’s disease genes (P = 1.8 ×  10–4 and P = 1.1 ×  10–3, respectively), further 
confirming their relevance to AD pathogenesis. AD-yellow is composed of genes primarily related to synap-
tic function (P = 1.6 ×  10–21), long-term potentiation (P = 8.8 ×  10–5), and circadian entrainment (P = 2.7 ×  10–3), 
while AD-greenyellow is primarily associated with mitochondrial biology (P = 1.9 ×  10–14) and metal ion binding 
(P = 5.3 ×  10–3). These results indicate that two cortical gene networks are associated with NREM delta power 
and AD tauopathy.

Gene networks associated with delta power are modulated in non‑demented individuals with 
neuropathological evidence of Alzheimer’s disease. Gene networks relevant to NREM delta power 
and Alzheimer’s-related tauopathy may indicate aspects of the molecular pathogenesis evident in the early 
stages of Alzheimer’s disease. We have provided indirect evidence of this by identifying NREM delta power 
gene networks relevant to AD progression. To validate this finding, we examined an independent cohort of non-
demented individuals with evidence of Alzheimer’s neuropathology (NDAD)63. These NDAD data were gener-
ated from BA10 and BA11 using laser capture microdissection and compared to an age- and sex-matched cohort 
that was both histopathologically and clinically normal. These data provide a useful approximation for examin-
ing the relevance of NREM delta power gene networks in preclinical AD. We reasoned that the two NREM delta 
power gene networks would be strongly modulated in NDAD if these networks reflected the early molecular 
stage of Alzheimer’s disease. Our analysis showed that genes differentially expressed in NDAD compared to 
their histopathologically and clinically normal controls (Benjamini–Hochberg FDR < 0.1) are overrepresented 
in NREM-lightyellow and NREM-skyblue. NDAD strongly modulates both NREM-lightyellow (P = 0.005, Odds 
Ratio = 3.6 [1.4–9.3]) and NREM-skyblue (P = 3.4 ×  10–7, Odds Ratio = 7.5 [3.2–19.6]), differentially regulating 
approximately 22% of the NREM-lightyellow gene network and 59% of NREM-skyblue (Fig. 3).

Figure 2.  Sleep-relevant gene networks were compared directly with AD-relevant gene networks to determine 
network conservation (A). The darkness of the blue is proportional to the Fisher’s exact test odds ratio, with 
darker colors suggesting greater overrepresentation. Each NREM network enrichment is represented on an 
independent plot (B–E). NREM network enrichment for each AD-relevant network is represented by an 
individual point on the plot. The odds ratio is plotted on the x-axis and the − log10 of the Fisher’s P value plotted 
along the y-axis. (B–E) NREM networks were considered conserved in the AD cohort when odds ratio > 2 and 
P < 0.05, represented by the dotted red lines respectively.
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Integrative probabilistic causal models reveal gene network regulators associated with delta 
power and preclinical AD. Probabilistic causal models offer an effective strategy to integrate genetic vari-
ant and gene expression data and predict directional relationships between  genes57. These models identify highly 
reproducible gene–gene  relationships64, and empirical validation has demonstrated that these methods can suc-
cessfully identify causal regulators in gene networks across a variety of  species57,65–67, including humans with 
late-onset Alzheimer’s  disease58,68,69. Given the phenotypic and transcriptional relationship between NREM and 
AD, we reasoned that key drivers of NREM-skyblue and NREM-lightyellow may contribute to preclinical AD 
pathogenesis and AD progression. Previous work investigated the intramodular and intermodular gene–gene 
regulation in this F2 mouse  population42. This earlier analysis independently highlighted the gene–gene rela-
tionships and key drivers in one of our networks-of-interest, NREM-skyblue, because it is strongly modulated 
by sleep deprivation and major depression. Arc and Egr2 were identified as key regulators of NREM-skyblue 
(Fig. 4A) and intermodular analysis demonstrated that it was upstream of a number of other functional path-
ways, including genes involved in respiratory transport chain, TCA cycle, mitochondrial function, and synaptic 
 processing42. In the present analysis, we also specifically report the gene–gene regulatory network of NREM-
lightyellow. Analysis of the directed gene–gene network in NREM-lightyellow revealed that Mrpl55, a mito-
chondrial ribosomal protein, was its primary regulator, upstream of genes altered in NDAD (Fig. 4A). These key 
drivers highlight the importance in preclinical AD of core components of bioenergetics and synaptic processing.

Examining NREM delta power networks for known causal genes in learning, memory, and con‑
ditioning. Lastly, we reasoned that these networks may causally influence cognitive behaviors. We projected 
genes known to cause abnormalities in learning, memory, and conditioning in mouse  models54 onto NREM-
lightyellow and NREM-skyblue to determine if these networks may play a causal role in cognition. NREM-
skyblue is strongly overrepresented with genes known to alter cognitive traits [P = 0.002, OR = 5.1 (1.7–12.6)] 
(Fig. 4B). These genes include the subnetwork key regulator, Arc, but known cognition-related genes are found 
throughout the downstream networks of both Arc and Erg2. On the other hand, we did not find such causal 
evidence for NREM-lightyellow [P > 0.05, OR = 0.89 (0.11–3.4)] (Fig. 4B), implying that its role in NDAD is not 
strongly causal or not captured by existing evidence for causal genes in cognition. These analyses provide corrob-
orative evidence for the causal role of NREM-skyblue in NDAD and equivocal evidence for NREM-lightyellow.

Discussion
Alzheimer’s disease progresses over the course of many years, culminating in pathologic changes to memory, 
executive function, behavior, and personality. Our analyses leverage insights from genetic, transcriptional, neu-
rophysiologic, and histopathologic data from human and mouse cohorts to investigate the common transcrip-
tional elements shared between AD progression and NREM delta power. These experiments were designed as 
a molecular corroboration of a recent study that showed reduced NREM slow-wave activity in predominantly 
cognitive normal patients with tauopathy. We showed that two gene networks, including a CLOCK-dependent 
circadian network, are positively correlated with NREM delta power in a population of (C57BL/6J × 129S1/
SvImJ) F2 mice and negatively correlated with tauopathy—estimated by neuropathologic measures of the Braak 
score and neurofibrillary tangle density—in a human AD population modeling AD progression. We confirmed 
that these two gene networks are particularly relevant for preclinical AD by demonstrating that they are strongly 
modulated in non-demented patients with neuropathologic features of AD. Lastly, probabilistic causal modeling 
identified Arc, Egr2, and Mrpl55 as key drivers of the network associated with preclinical AD, and further analysis 
confirmed that both Arc- and Egr2-related subnetworks include genes that alter memory and learning.

Network drivers possibly play an important role in the preclinical stages of AD. Arc is a critical regulator of 
synaptic  memory70–73 and is required for activity-dependent generation of Aβ74. Genetic variants of Arc confer 
genetic susceptibility to AD in Han  Chinese75 and neuroprotection in other  populations76. Our evidence points 

Figure 3.  Coexpression networks for skyblue (A) and lightyellow (B) were calculated using weighted gene 
coexpression network analysis. The large, labeled nodes are the module members that are modulated in non-
demented individuals with Alzheimer’s neuropathology. Network images generated using Cytoscape v3.7.2 
(https:// cytos cape. org/).

https://cytoscape.org/
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Figure 4.  These direct acyclic graphs represent a subset of the transcriptome-wide gene–gene relationships 
involving skyblue and lightyellow genes (A). Skyblue and lightyellow nodes are highlighted by their respective 
colors, while all other genes, irrespective of their modules, are pictured in grey. The larger nodes represent 
the key regulators. Our panel (A) was generated using Cytoscape v3.7.2 (https:// cytos cape. org/) and depicts 
a Bayesian network that was partially reproduced in Fig. 6B of PMID: 30050989. The Fisher’s odds ratio and 
95% confidence interval are pictured (B), representing each network’s enrichment for genes known to cause 
abnormalities in learning, memory, and executive function. Networks are sorted from highest to lowest odds 
ratio. Dotted red line represents an odds ratio of 2.

https://cytoscape.org/
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to its role in AD progression and NREM slow wave activity disruption. These results are consistent with our 
previous study, demonstrating that Arc is a probable upstream regulator of genes known to causally influence 
affective behaviors and sleep  patterns42, two phenotypes commonly dysregulated in preclinical AD. Egr2 also 
has a well-documented role in learning and  memory77, and has also been associated with Aβ plaque-associated 
microglia  activation78. In our directed networks, Egr2 is immediately upstream of Egr1, a transcriptional activator 
of BACE-179 and regulator of  acetylcholinesterase80. Egr2 is also binds to and transcriptionally regulates VGF81,82, 
a potential CSF biomarker for AD  progression83 and a recently discovered causal network mediator of Alzheimer’s 
disease whose overexpression decreases cortical  tau69. Further, Egr2, as well as Arc, are strongly downregulated 
by medium chain  triglycerides84, which some evidence indicates may generally improve cognition and possibly 
treat APOE-negative Alzheimer’s  disease85,86. Though there is strong evidence for the mechanisms of Arc and 
Egr2, there is very little experimental evidence for the biological function or pathologic role of Mrpl55, pointing 
to a potential new target for future investigation.

Our approach indirectly characterizes the molecular features of the AD prodromal phase. Understanding 
molecular changes in preclinical AD may reveal novel aspects of pathogenesis masked by data collected in late 
stage cohorts and offer new therapeutic approaches. The present study had the advantage of directly validating 
networks associated with NREM delta power and AD progression in a cohort of non-demented individuals with 
AD-related pathology, a reasonable surrogate for preclinical AD. By integrating data across multiple cohorts, pre-
clinical molecular networks can be reasonably inferred, partially mitigating the difficulty of measuring molecular 
changes in preclinical AD cohorts across time.

Alzheimer’s disease and sleep deprivation have a bidirectional relationship, increasing the risk of one another 
and likely leading to a pathologic feedback  loop19. Psychiatric symptoms, including depression, are also associated 
with neuropathologic features of Alzheimer’s  disease9,87, possibly increasing the risk of  neurodegeneration6,7. 
Our systematic approach prioritized gene networks linked to tauopathy and NREM delta power, however, this 
analysis recovered a network that has been previously associated with sleep deprivation and major depressive 
 disorder42. Interestingly, the network exhibits features of the bidirectional relationship between sleep and AD. 
Sleep deprivation strongly modulates this network’s expression, while its key drivers regulate genes known to 
causally influence sleep–wake cycles. These findings suggest that many varied features of AD emergence and 
progression converge onto these cortical networks, which may serve as focal points for the complex, dynamic, 
and intertwined symptomatology.

Our method has several limitations that should be considered as readers interpret our results. Firstly, the 
transcriptome measurements in the mouse and AD cohorts were derived from bulk tissue. These data are opaque 
to high-resolution gene expression information, including single-cell and cell-type specific variation. A notable 
exception in our analyses were those data generated in non-demented individuals using laser capture microdis-
section. These experiments targeted specific neurons and complement our analysis of bulk tissue with higher 
resolution data. Another limitation is that our analysis integrates data from mouse and human brain regions that 
are functionally homologous to a certain degree, but have important anatomical and histological differences. 
Cortical homology between rodents and primates is debated, and important distinctions are often made between 
histological and functional  homology88,89. The convergence of results in our experiments, despite differences 
between species, argues obliquely for the utility of our approach, but the interpretation of our findings should 
include an understanding of the inherent structural and functional differences between mouse and human pre-
frontal cortex. Lastly, our findings reveal molecular networks consistent with features of preclinical AD, including 
gene targets predicted by our modeling, and these findings were indirectly corroborated by analyzing numer-
ous independent data sets and investigating previous experimental literature. Nevertheless, careful prospective 
experimental study is required to dissect the functional role of key drivers in AD prodrome and pathogenesis.
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