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Uncovering genomic regions 
controlling plant architectural traits 
in hexaploid wheat using different 
GWAS models
Ali Muhammad1,2,4, Jianguo Li2, Weichen Hu2, Jinsheng Yu3, Shahid Ullah Khan5, 
Muhammad Hafeez Ullah Khan5, Guosheng Xie2, Jibin Wang1 & Lingqiang Wang1,2* 

Wheat is a major food crop worldwide. The plant architecture is a complex trait mostly influenced by 
plant height, tiller number, and leaf morphology. Plant height plays a crucial role in lodging and thus 
affects yield and grain quality. In this study, a wheat population was genotyped by using Illumina 
iSelect 90K single nucleotide polymorphism (SNP) assay and finally 22,905 high-quality SNPs were 
used to perform a genome-wide association study (GWAS) for plant architectural traits employing 
four multi-locus GWAS (ML-GWAS) and three single-locus GWAS (SL-GWAS) models. As a result, 
174 and 97 significant SNPs controlling plant architectural traits were detected by ML-GWAS and 
SL-GWAS methods, respectively. Among these SNP makers, 43 SNPs were consistently detected, 
including seven across multiple environments and 36 across multiple methods. Interestingly, five 
SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and 
tplb0049a09_1302) consistently detected across multiple environments and methods, played a role 
in modulating both plant height and flag leaf length. Furthermore, candidate SNPs (BS00068592_51, 
Kukri_c4750_452 and BS00022127_51) constantly repeated in different years and methods associated 
with flag leaf width and number of tillers. We also detected several SNPs (Jagger_c6772_80, 
RAC875_c8121_1490, BS00089954_51, Excalibur_01167_1207, and Ku_c5191_340) having common 
associations with more than one trait across multiple environments. By further appraising these 
GWAS methods, the pLARmEB and FarmCPU models outperformed in SNP detection compared to the 
other ML-GWAS and SL-GWAS methods, respectively. Totally, 152 candidate genes were found to be 
likely involved in plant growth and development. These finding will be helpful for better understanding 
of the genetic mechanism of architectural traits in wheat.

Wheat (Triticum aestivum L.) is a staple crop worldwide, providing 20% of total food needs of the world 
population1,2. Plant architecture is a complex trait mainly depends on the three dimensional structure of the 
plant stature including branching pattern, morphology of leaves and flower organs3. Plant height directly indicates 
the ability of plant to compete for light, influencing plant growth and development4. It is of prime importance, 
strongly influencing plant defense against environmental stress, potential grain yield, and plant adaptability 
for better cultivation and harvesting5,6. Leaf morphology can regulate many important aspects related to plant 
growth and development7. In cereals, flag leaves have prominent role in photosynthesis and contribute about 
43% of the total carbohydrates required for gain filling8. To date, several loci have been identified associated 
with flag leaf related traits in cereals9,10. Productive tillers in wheat are of great importance which may directly 
affect spike number and thus influence the final yield. The plant stature and the number of tillers influence many 
factors, including the process of photosynthesis, the flowering and grain set in plant11. It is thus understandable 
that the genetic elucidation of tillers at various plant growth stages is an important component in wheat breed-
ing research programs11.
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Considerable work has been done to dissect the genetic background of plant height in wheat. To date, 25 
height reducing genes have been identified across different chromosomes in wheat12,13. One of the great achieve-
ments of the Green Revolution, was mainly based on modifying plant architecture by selecting the cultivars with 
reduced height that can carry more yield with enhanced resistance against lodging14. Achieving optimal plant 
height is of prime importance for the stability, productivity and yield potential of the cultivars15,16. Improvement 
in wheat yield during the Green Revolution was achieved through the introduction of Reduced height (Rht) 
dwarfing genes. Among them, the Rht-B1 and Rht-D1 loci ensured short stature by limiting the response to the 
growth-promoting hormone gibberellin (GA). In addition, a newly discovered gene for reduced height Rht24 
belongs to GA-sensitive type and was predicated to be commercial importance in worldwide wheat breeding17. 
Till now, more than 50 loci have been detected for plant height16,17. For instance, Wei et al.18, detected several 
stable SNPs on chromosomes 2A, 2B, 2D, 3B, 4B, 5A, 5D, 7B, and 7D associated with plant height. Griffiths 
et al.16, identified several height related genes on all chromosomes except for 3D, 4A, and 5D. Further studies 
are required to discover, to fine map and to clone more new semi-dwarf genes thus expanding the portfolio of 
Rht genes for the breeding of the favorable plant architecture.

Currently research has been accomplished through GWAS in wheat9, maize19, rice20, and cotton21. Compara-
tively hexaploid wheat has larger genome (≈ 17.9 Gb) than rice (≈ 400 Mb) and maize (≈ 2.32 Gb)9. Over the 
past decade, the absence of fully sequenced reference genome has limited the gene discovery of wheat. Recent 
advances in functional genomics have provided breeders with a new impetus to achieve their goals22. However, 
substantially more work is required because of the experimental bottleneck emerging from the absence of incon-
sistency among studies, and the utilization of low-density marker platforms in gene mapping studies. Despite 
the current research on plant height in wheat, the effects of important loci and several other candidate loci 
responsible for fine-tuning of plant height in hexaploid wheat is still an intrinsic part in wheat breeding17. The 
availability of high quality reference genome allows for previously impossible follow-up analysis. The applica-
tion of SNPs as molecular markers provides better understanding of variation in an organism or individual part 
and further provide high-throughput maps for detecting candidate loci and genes for target traits. Molecular 
markers are mostly used in segregation analysis, forensic examination, genetic mapping and diagnosis, and 
numerous biological applications23–25. In the present study we were interested to gain a comprehensive picture 
about the candidate loci responsible for modulating plant height and related traits in wheat through a series of 
different GWAS models.

Thus the present study was designed to conduct GWAS in a set of 319 wheat accessions employing high-
density wheat iSelect 90K SNP array. The objectives of this study included: (1) the investigation of marker-trait 
associations (MTAs) for plant architectural traits (2) appraising the correlation among these traits and further 
highlighting SNPs common to more than one trait (3) detecting candidate genes responsible for corresponding 
morphological traits. Overall, this study will provide insights by integrating three single-locus and four newly 
developed multi-locus GWAS methods, and will be helpful to establish a regulatory network in the genetic 
improvement of wheat architectural traits.

Results
Statistical analysis of phenotypic traits.  In the present study, we evaluated wheat germplasm collec-
tions for plant architectural traits, including plant height (PH), flag leaf length (FLL), flag leaf width (FLW) and 
the number of tillers per plant. The phenotypic characteristics for plant height across four environments and flag 
leaf length, flag leaf width and number of tillers per plant across two environments as shown in Supplementary 
Table S1 and Supplementary Fig. S1. All the traits exhibited the normal distribution pattern each year, indicating 
the quantitative nature of these traits (Fig. 1). Descriptive statistics revealed large phenotypic variations for all 
the traits as given in Supplementary Table S1. PH ranged from 48.40 to 124.82 cm with coefficient of variations 
(CVs) ranged from 11.09 to 16.11%. The FLL varied from 16.06 to 31.57 cm, FLW varied from 1.22 to 2.75 cm 
and for tillers, the number of tillers per plant ranged from 8.10 to 14.67. Analysis of variance indicated highly 
significant differences (P < 0.001) for all the studied traits (Supplementary Table S2).

Broad sense heritability was also estimated for PH, FLL, FLW and number of tillers with values ranged from 
0.79 (FLL) to 0.91 (PH), suggesting the stability of these traits. The correlation analysis revealed significant 
correlation between different environments for each of the four traits, indicating the consistency of these traits 
across various environments (Fig. 2). Furthermore, PH was significantly and positively correlated with FLL in 
almost all the environments. These results are further confirmed by GWAS results, which revealed several SNPs 
have common association to both PH and FLL. However, both PH and FLL significantly but negatively correlated 
with FLW in most of the environments indicating competition of these traits to assimilate at the plant growth 
stage. Finally, the relatively weak correlation of tillers with other traits suggested the independency of this trait.

Population structure analysis.  Population structure is important due to the large number of diverse gen-
otypes used in the study may produce false associations between the phenotypic values and unlinked markers. 
Therefore, a comprehensive analysis of population structure is prerequisite for evaluating successful association 
mapping. The number of subpopulations were calculated by the rate of change in the log probability of data 
between successive K-values. ΔK was calculated for increasing the number of K-value determined by STRU​
CTU​RE analysis according to the procedure of Evanno26. At K = 2, a break in the slope was observed followed 
by flattening of the curve (Supplementary Fig. S1a). Hence, the most likely number of subpopulations was two 
(K = 2) (Supplementary Fig. S1b). Moreover, this result was confirmed by PCA based on standardized covariance 
of genetic distances of SNP markers (Supplementary Fig. S1c). Linkage disequilibrium (LD) analysis indicating 
the mapping resolution and robustness was done using TASSEL v.5.0. software. LD for whole genome presented 
in (Supplementary Fig. S2a). The r2 value for the A, B, and D sub-genomes decreased gradually with increasing 
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the genetic distance (Supplementary Fig. S2b). The LD analysis for the A, B, and D sub-genomes indicated the 
highest marker density on B (58%) followed by A (34.6%) and then D (7.4%). Among the chromosomes, 2B has 
the highest marker density, while 4D has the lowest. More details about the description of LD and population 
structure analysis have been reported in our previous study27.

GWAS using four multi‑locus models.  To obtain more reliable results, the SNPs that were simultane-
ously detected in at least two years or by at least two methods were considered as most stable SNPs. After 
removing the repeated SNPs, a total of 113 and 62 significant SNPs were identified by ML-GWAS and SL-GWAS 
methods, respectively (Fig. 3a).

ML-GWAS models i.e. FASTmrMLM, FASTmrEMMA, mrMLM, and pLARmEB screened 47, 32, 46, and 
49, significant SNPs, respectively for PH (117 SNPs) across four environments and for FLL (24), FLW (15) and 
Tillers (18) across two environments (Fig. 4, Tables 1, 2, 3). Among these SNPs, 30, 8, 5, and 4 were detected by 
FASTmrMLM for PH, FLL, FLW, and Tillers, respectively (Fig. 3b, Table 1). By using FASTmrEMMA the number 
of significant SNPs identified for the above-mentioned traits were 24, 4, 1, and 3, respectively. Also 27, 6, 9, and 4 
significant SNPs were detected by mrMLM approach for the said traits, respectively. Finally, the pLARmEB model 
identified 36, 6, and 7 significant association signals with PH, FLL, and Tillers, respectively (Fig. 3b, Table 1).

To validate the findings, we further compared the results across multiple environments and found six and one 
SNPs were co-identified in at least two of the environments for PH and FLL, respectively (Fig. 3c, Table 2). These 
environment-stable SNPs were located on different chromosomes. For PH there was one SNP on chromosome 
2B, one on 3A, one located on 3B, one on 6A and two SNPs located on chromosome 6B. The LOD scores ranged 
from 3.05 to 7.92. One stable SNP across two environments located on chromosome 5A associated with FLL 
with LOD value ranging from 3.88 to 6.55 (Table 2). Comparing the results across different methods, we found 
36 common SNPs were co-detected simultaneously by at least two approaches (Fig. 3c, Table 1). Among these, 
four significant SNPs (RAC875_c8121_1490, Ku_27771_508, Tdurum_contig42962_2138, BS00022127_51) were 
detected by all four methods (Table 1).

We further checked the co-detected common SNPs simultaneously in multiple environments and differ-
ent methods and screened five most stable SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_
c66315_64480362, Ku_c5191_340, and tplb0049a09_1302). Among these, one SNP was associated with FLL 

Figure 1.   Phenotype distributions for plant architectural traits (a) Plant height across four environments (2015, 
2016, 2017, and 2018); (b) Flag leaf length (2017 and 2018); (c) Flag leaf width (2017 and 2018); (d) Number of 
tillers per plant (2017 and 2018).
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and the rest of four were identified for PH across multiple environments and methods (Fig. 3c, Table 3). Finally, 
we extended our screening criteria for significant QTLs and detected several major QTLs with phenotypic vari-
ation explained ranged from 5.5 to 13.8% associated with all the studied traits (Supplementary Table S3). Com-
paratively, the four ML-GWAS models (FASTmrMLM, FASTmrEMMA, mrMLM, and pLARmEB) to uncover 
genomic regions associated with plant height and related traits, the pLARmEB model detected the most SNPs 
(49), most of which associated with PH (36 SNPs), while, FASTmrEMMA identified the least SNPs (32; Fig. 4b).

GWAS using three single‑locus models.  Three single-locus GWAS (SL-GWAS) methods i.e. FarmCPU, 
MLM, and MLMM were used to further analyzed the results of the same plant architectural traits. A total of 97 
significant SNPs were detected by the three SL-GWAS methods for the above mentioned traits across multiple 
environments (Fig. 3d, Supplementary Table S4). Among these SNPs, chromosome 5A harbored most of the 
SNPs (28) followed by 3B (14) and 3A (11). In the three SL-GWAS methods, FarmCPU detected 56 significant 
SNPs, MLM detected 19, and MLMM detected 22 significant SNPs associated with different traits in multiple 
environments (Fig. 3d, Supplementary Table S4). We further checked the common SNPs detected by all three 
SL-GWAS methods across multiple environments and methods and found three most stable SNPs (RAC875_
c8121_1490, BS00049008_51, and tplb0049a09_1302) were repeated consistently by all methods in most of the 
environments (Supplementary Table S4). We further extended the screening criteria for significant SNPs and 
detected a total of 19 SNPs co-detected by using ML-GWAS and SL-GWAS methods together (Supplementary 
Table S5). This practice adds an extra screening to the GWAS approaches and thus makes us more confident 
about the results. By comparing the results of all three SL-GWAS methods, the FarmCPU model identified the 
most SNPs (56), while MLM detected the least SNPs (19). Manhattan and Q-Q plots of the above three single-
locus GWAS models for plant architectural traits are presented in Supplementary Fig. S4.

Traits having common associations.  SNPs associated with more than one trait are very useful for 
marker-assisted selection. A total of five SNPs (Jagger_c6772_80, RAC875_c8121_1490, BS00089954_51, 
Excalibur_01167_1207, and Ku_c5191_340) were detected associated with more than one trait across multiple 
environments (Supplementary Table S6). Among these, one SNP (Excalibur_01167_1207) on chromosome 5A 
associated with PH and FLW. The rest of four pleiotropic SNPs were associated with PH and FLL across multiple 
environments. The presence of pleiotropic effects of these SNPs controlling plant height and flag leaf length were 
confirmed by the correlation analysis (Fig. 2). These pleiotropic SNPs (Jagger_c6772_80, RAC875_c8121_1490, 
BS00089954_51, and Ku_c5191_340) were located on chromosome 1A, 3A, 3B, and 6B, respectively. Moreover, 

Figure 2.   Correlation among plant architectural traits across multiple environments. PH-Plant height (2015–
2018), FLL-Flag leaf length (2017–2018), FLW-Flag leaf width (2017–2018) and TILL-Number of tillers per 
plant (2017–2018). * and ** indicate significant correlation at P < 0.05 and 0.01, respectively.
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these pleiotropic associations suggest that the aforementioned SNPs have multifaceted role in plant architectural 
traits and highlight the significance of flag leaf length and width to plant height.

Candidate genes identification.  To further understand the genetic basis of plant architectural traits, 
we predicted a total of 152 candidate genes that were surrounding the peak SNPs. Interestingly, several major 
candidate genes that were directly associated with the consensus SNPs had exact same annotations (Fig. 5, Sup-
plementary Table  S7). For instance, several putative candidate genes for PH and FLL, annotated as Laccase 
which is used for lignin polymerization to help in a variety of functions in plant development28. Similarly, the 
putative genes responsible for PH and FLL annotated as Cysteine proteinase inhibitor, has a function in plant 
growth and defense29. We also found a significant hit for auxin related gene which regulates cell and organ 
growth in rice30, and plays a prominent role in shoot apical meristem growth31. Three putative candidate genes, 
TraesCS6A01G142000, TraesCS5A01G533200, and TraesCS5A01G533300 were revealed homology to the tran-
scription factor basic helix-loop-helix 74 (bHLH74) which was reported to be involved in cell elongation and 
plant development32–34. Another gene (TraesCS6A01G174700) corresponds to Cytochrome P450, which is a part 
of ent-kaurenoic acid oxidase, an enzyme of the gibberellin acid (GA) metabolism35. Additionally, six putative 
candidate genes surrounding significant SNPs associated with number of tillers have annotations as F-box family 
protein, involved in plant vegetative and reproductive growth36. Further examples are given in Fig. 5 and Supple-
mentary Table S7. Despite these results, further research is required to validate the possibility of these candidate 
genes with the architectural traits, these results will provide useful information for designing functional markers 
and for future work.

Discussion
In this study, we employed four multi-locus GWAS models and three single-locus models to identify SNPs that 
significantly associated with plant height, flag leaf length, flag leaf width, and number of tillers across environ-
ments in hexaploid wheat. Plant height is a key factor in crop breading as it plays a crucial role in reshaping plant 
architecture and affects lodging and grain traits16,37. The real success of green revolution was the use of semi dwarf 

Figure 3.   Significant SNPs detected through different GWAS methods in multiple environments. The traits 
include PH (Plant height); FLL (Flag leaf length); FLW (Flag leaf width) and TILL (Number of tillers per plant). 
(a) Significant SNPs detected via ML-GWAS and SL-GWAS methods, (b) Significant SNPs detected through 
four ML-GWAS methods i.e. FASTmrMLM, FASTmrEMMA, mrMLM, and pLARmEB, (c) Significant SNPs 
detected across multiple years and different ML-GWAS methods, (d) Significant SNPs detected through three 
SL-GWAS methods i.e. FarmCPU, MLM, and MLMM.
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Figure 4.   Manhattan and quantile–quantile (Q-Q) plots for plant architectural traits across different 
environments; (a,b) Manhattan and Q-Q plots for Plant height (2015–2018); (c) Manhattan and Q-Q plots 
for flag leaf length (2017–2018); (d) Manhattan and Q-Q plots for flag leaf width (2017–2018); (e) Manhattan 
and Q-Q plots for number of tillers (2017–2018). Note: Number of detected SNPs by four multi-locus GWAS 
methods. For brevity, we presented here the Manhattan and Q–Q plots of mrMLM model. The rest of the 
Manhattan and Q–Q plots are given in Supplementary Fig. S3.
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wheat cultivars. We identified some significant SNPs across multiple years by different ML-GWAS approaches 
(Tables 1, 2, 3, Fig. 4a–e). A total of 24 SNPs was consistently detected by most of the ML-GWAS methods for 
plant height (Table 1 and Fig. 3c). Most of them located on chromosomes 5A and 7A, consistent with some SNPs 
reported in previous studies38–40. Chromosome 5A was revealed to harbor the highest number of significant SNPs 
for plant architectural traits as showed in Table 1 in this study and has been confirmed of having the most useful 
and reproducible regions in wheat genome41–44. Sukumaran et al.45 reported the most numbers of significant 
SNPs for yield traits on chromosomes 5A and 6A in a spring wheat population. Similarly, the SNPs detected on 
chromosomes 5A and 6A are most likely the MTAs reported previously42,46.

Five SNPs were detected across both multiple environments and methods for plant height and flag leaf length, 
of which two were located on chromosome 6B (Table 3). These results revealed the significance of chromosome 

Figure 4.   (continued)
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6B on plant height, consistent with the findings of some previous studies47–49. Among the five stable SNPs, one 
(Kukri_c34553_89) was located on chromosome 2B with LOD ranging from 3.2–6.4, which was also detected 
as one of the environment-stable SNPs and was revealed the positive effects on harvest index50. Two consensus 
SNPs (RAC875_c8121_1490 on chromosome 3A and Ku_c5191_340 on chromosome 6B), were also reported for 
plant height across different wheat populations51. The stable SNP (tplb0049a09_1302) located on chromosome 
5A, was also reported by Ain et al.38, they used 90K array to identify several genomic regions associated with 
yield related traits in historical wheat genotypes of Pakistan. Another SNP (BobWhite_c5694_1201) located on 
chromosome 4B is likely same to the QTL identified in a spring wheat population by Zou et al.52.

In addition to the stable SNPs, if the other SNPs in this study were considered, a wider co-localization 
was found between the SNPs in this study and in previous studies. For example, the SNP, D_contig10675_778 
(located in chromosome 2D at 12.3 cM) was found to be co-localized with the QPht/Sl.cau-2D.1 (BobWhite_
rep_c63957_1472 located in chromosome 2D at 12.24 cM) reported in a previous study53, both at the physical 
location 20.8 MB with a dwarf gene (Rht8-19.6 Mb). The cultivars that harbors the reduced height gene Rht8, 
short stature tended to get more spike number in unit area9. In addition, the Rht8 has the ability to improve the 
early vigor of semi-dwarf wheat53. Thus, the SNP D_contig10675_778 identified in this study is of interest for 
further genetic studies and molecular breeding.

The SNPs BS00023152_51 and tplb0049a09_1302 (located on chromosome 5A) detected in two environ-
ments in this study falls in the region of the SNP (AX_110446653, 671.2 Mb) reported by a previous study1. It 
should be mentioned, except the Rht8, the SNPs in this study were not well co-mapped with some semi-dwarf 
genes such as the Rht1, 2, 14, 16 and 18. Similarly, in a previous study, where a total of 14 SNPs for plant height 
was mapped on chromosomes 1A, 1B, 2A, 3A, 3B, 4D, 5A, 5B, 6B and 7A, however, only the AX_108916749 on 
chromosome 4D is at the same position as Rht-D154. The reasons might be (i) that a relatively small population 
from a limited region was used in studies, (ii) that the 90K array in which the lower density of makers is not reli-
able for detected the SNPs with small effects and for the comparison of the SNPs across different studies and (iii) 
the inconsistency of SNPs with previous studies possibly indicated the identification of potentially new genes.

Flag leaves are the primary source of carbohydrate production to sustain proper crop growth and develop-
ment, thus the importance of flag leaf morphology on increasing grain yield has widely been studied7,8. In present 
study, we detected several consensus SNPs associated with flag leaf length and width. For flag leaf length (FLL), 
three consensus SNPs were detected on chromosomes 4B, 5A, and 6D (Table 1). Bilgrami et al. 11 reported a total 
of 47 significant SNPs associated with number of tillers in breed wheat. The SNP (BS00021881_51) associated 
with FLL simultaneously detected via two ML-GWAS approaches i.e. FASTmrMLM and pLARmEB was reported 
earlier in QTL mapping55. Number of tillers have been considered the primary trait for increasing cereal yield no 
matter in favorable or unfavorable environments11. In the present study, we highlighted several prominent SNPs 
controlling number of tillers. Two stable SNPs (BS00022127_51 and wsnp_BE499835B_Ta_2_5) associated with 
the number of tillers per plant corresponded to the previously reported SNPs in wheat56,57. Among the stably 
detected SNPs for number of tillers, BS00022127_51 located on chromosome 7B, consistently detected by all four 

Figure 4.   (continued)
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Table 1.   Common SNPs detected through different ML-GWAS methods associated with plant architectural 
traits. Methods (1–4): corresponding four multi-locus GWAS methods i.e. mrMLM, FASTmrMLM, 
FASTmrEMMA, and pLARmEB, respectively. r2 (%) represents proportion of total phenotypic variation 
explained by each SNP. PH (plant height); FLL (flag leaf length); FLW (flag leaf width); TILL (number of tillers 
per plant).

Trait Year Methods (1–4) SNP Chr Position (bp) LOD > 3 r2 (%)

PH

2015 2, 4 D_contig10675_778 2D 958016 3.1–3.58 1.31–2.35

2015 1, 2, 4 BobWhite_24364_73 3B 1551850 3.84–5.19 2.41–5.93

2015 1, 2 wsnp_Ex_rep_c67296_65839761 4D 2143869 3.38–7.15 5.21–6.17

2015 1, 2 wsnp_Ex_c39592_46849607 5A 2274396 3.20–3.94 1.35–3.70

2015 2, 4 BS00089076_51 5A 2414392 3.47–4.94 1.49–3.53

2015 1, 3 RAC875_c34971_137 7A 3550660 5.21–9.59 4.03–9.99

2016 2, 4 Kukri_04598_614 2A 87562 4.26–6.13 2.25–2.38

2016 1, 4 Kukri_c34553_89 2B 887912 3.22–6.43 2.32–3.42

2016 1, 2, 3, 4 RAC875_c8121_1490 3A 1272572 4.98–9.25 5.67–9.34

2016 1, 4 wsnp_Ex_rep_c66315_64480362 6B 3350805 3.12–6.78 3.10–5.73

2016 1, 2, 4 Ku_c5191_340 6B 3397322 4.54–7.23 4.23–8.44

2016 2, 3, 4 Excalibur_03094_523 7D 4302086 4.27–7.19 2.22–5.60

2017 1, 2, 4 RAC875_c33937_211 1B 1022 3.46–4.25 1.26–3.56

2017 1, 2 Kukri_c34553_89 2B 887912 3.40–4.60 1.95–3.04

2017 1, 2, 3 RAC875_c8121_1490 3A 1272572 7.07–7.81 7.44–13.88

2017 1, 2 RAC875_232_1895 5A 2256162 3.88–4.22 1.53–2.29

2017 1, 4 Ku_c5191_340 6B 3397322 7.92–9.30 4.10–12.99

2017 2, 3, 4 GENE_4469_430 7A 3542226 3.69–5.51 2.01–3.09

2018 3, 4 Kukri_2596_146 3A 1287688 3.03–3.14 0.43–1.53

2018 1, 2, 3, 4 Ku_27771_508 3B 1402891 4.21–8.20 1.42–8.38

2018 3, 4 wsnp_Ex_25573_34834321 3B 1536039 3.98–5.66 0.97–2.04

2018 1, 2, 4 Excalibur_01167_1207 5A 2153585 3.00–4.62 0.54–3.24

2018 1, 2, 3, 4 Tdurum_contig42962_2138 5A 2426777 4.96–6.13 1.51–7.82

2018 1, 2, 4 RAC875_c6911_412 7A 3921772 4.29–6.33 0.82–4.45

FLL

2017 1, 2 BobWhite_c5694_1201 4B 2087004 3.73–5.13 4.29–5.65

2017 1, 2 tplb0049a09_1302 5A 2453837 4.96–7.17 6.61–13.14

2017 2, 4 BS00021881_51 6D 3496747 4.384.59 1.98–2.97

FLW

2017 1, 2 IAAV8465 3D 1660873 3.70–4.19 5.48–5.77

2017 1, 2 RAC875_01969_384 7A 3547319 3.05–6.53 5.13–7.53

2018 1, 3 BS00068592_51 5B 2485486 3.79–5.65 4.95–5.37

TILL

2017 1, 4 TA001732_0977 2B 580007 3.10–3.96 1.15–5.85

2017 2, 3 wsnp_BE499835B_Ta_2_5 5B 2481742 3.81–4.51 3.64–3.99

2017 1, 4 Kukri_c4750_452 6A 2998535 3.23–3.46 1.59–6.30

2017 1, 2, 3, 4 BS00022127_51 7B 3924027 3.11–5.15 2.60–5.56

2017 2, 4 D_contig07330_330 7D 4292747 3.20–3.75 1.16–2.06

2018 1, 3 BobWhite_07783_174 2A 359541 4.11–4.27 4.18–5.93

Table 2.   Stable SNPs co-detected in multiple environments associated with plant height and flag leaf length. 
PH (plant height); FLL (flag leaf length). r2 (%) represents proportion of total phenotypic variation explained 
by each SNP.

Trait Years SNP Chr Position (bp) LOD > 3 r2 (%)

PH

2016, 2017 Kukri_c34553_89 2B 887912 4.60–6.43 1.95–2.32

2016, 2017 RAC875_c8121_1490 3A 1272572 5.05–7.07 5.76–13.88

2015, 2017, 2018 IACX3190 3B 1429597 5.05–6.35 4.29–8.51

2017, 2018 GENE_3659_104 6A 2991495 3.44–3.86 1.50–2.54

2016, 2017 wsnp_Ex_rep_c66315_64480362 6B 3350804 3.67–6.78 3.10–4.63

2016, 2017, 2018 Ku_c5191_340 6B 3397322 3.05–7.92 0.72–4.39

FLL 2017, 2018 tplb0049a09_1302 5A 2453837 3.88–7.17 5.04–13.14
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ML-GWAS methods (Table 1). Bilgrami et al. 11 reported a total of 47 significant SNPs associated with number 
of tillers in breed wheat. These SNPs might be the best target for improving the ability of light harvesting and 
the tiller number of plants. The comprehensive understanding of leaf morphology will provide new insights to 
the genetic mechanism of crop growth and development.

By further reviewing the significant SNPs results, 174 and 97 SNPs were detected by ML-GWAS and SL-GWAS 
models, respectively, these results signify the importance of ML-GWAS over SL-GWAS approaches. In earlier 
studies, mostly SL-GWAS methods were adopted, but only few SNPs for each trait have been identified due to 
its procedural limitations58. According to our results of SL-GWAS models, MLM model detected the least SNPs 
(19), which reveal the setting of very high threshold, due to which many small-effect loci are missed59. To make 
up for the limitations of these methods, some multi-locus approaches such as FASTmrMLM60, FASTmr EMMA61, 
mrMLM59, and pLARmEB62 have been used in this study. These models can improve the accuracy of SNPs with 
high detection power and less stringent criteria, and no Bonferroni multiple test correction is needed59,61. In our 
results, the number of significant SNPs by ML-GWAS were comparatively higher than SL-GWAS models, which 
suggest the significance of ML-GWAS models. Jaiswal et al.63 verified that ML-GWAS has more detection power 
than SL-GWAS by revealing ten MTAs through SL-GWAS while, 22 MTAs through multi locus mixed model 
(MLMM) and 58 MTAs through multi-trait mixed model (MTMM). Furthermore, we detected a total of 19 SNPs 
co-detected by using ML-GWAS and SL-GWAS methods together (Supplementary Table S5), which reveal the 
credibility of these SNPs as highlighted by several approaches. Zhu et al.64 suggested the combination of both 
SL-GWAS and ML-GWAS methods, which contributes efficiently to the detection of significant loci associated 
with pre-harvest sprouting tolerance in wheat. According to Li et al.65, the power of QTN detection in association 

Table 3.   Stable SNPs identified simultaneously in different environments and different methods associated 
with plant height and flag leaf length. Methods (1–4): Corresponding four multi-locus GWAS methods i.e. 
mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB, respectively. r2 (%) represents proportion of total 
phenotypic variation explained by each SNP. PH (plant height); FLL (flag leaf length).

Trait Years Methods (1–4) SNP Chr Position (bp) LOD > 3 r2 (%)

PH

2016, 2017 2016 (1, 4), 2017 (1, 2) Kukri_c34553_89 2B 887912 3.22–6.43 1.95–3.42

2016, 2017 2016 (1, 2, 3, 4), 2017 (1, 
2, 3) RAC875_c8121_1490 3A 1272572 4.98–9.25 5.67–13.88

2016, 2017 2016 (1, 4) wsnp_Ex_rep_
c66315_64480362 6B 3350804 3.12–6.78 3.10–5.73

2016, 2017, 2018 2016 (1, 2, 4), 2017 (1, 4) Ku_c5191_340 6B 3397322 3.05–9.30 0.72–12.99

FLL 2017, 2018 2017 (1, 2) tplb0049a09_1302 5A 2453837 3.88–7.17 5.04–13.14

Figure 5.   Putative candidate genes responsible for important functions associated with plant architectural 
traits. PH (Plant height); FLL (flag leaf length); TILL (number of tillers per plant).
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analysis can be improved by combining single locus and multi-locus GWASs. Through integrating the results of 
ML-GWAS and SL-GAWS methods led to the verification of the significance of ML-GWAS models. However, 
some recent findings revealed the reliability of association studies can be improved by combining single-locus 
and multi-locus GWAS approaches65–68.

Taken together, four multi-locus and three single-locus GWAS models were used for parsing the genetic 
background of plant architectural traits (PH, FLL, FLW, and TILL) in hexaploid wheat. A total of 271 significant 
SNP was detected across multiple environments and in different methods. Comparatively, 174 and 97 significant 
association signals were detected by ML-GWAS and SL-GWAS models, respectively which signifies the impor-
tance of ML-GWAS over SL-GWAS approaches. By further appraising these GWAS methods, the pLARmEB and 
FarmCPU models outperformed in SNP detection compared to the other ML-GWAS and SL-GWAS methods, 
respectively. Taken together, the results of ML-GWAS, revealed five most stable SNPs i.e. Kukri_c34553_89, 
RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and tplb0049a09_1302 which were 
consistently detected across multiple environments and methods.

Our study will provide new insights to the genetic basis of plant architectural traits and can serve as a basis 
for further functional investigation. The loci and significant SNP markers identified in this study can be used 
for pyramiding favorable alleles in developing varieties with desirable plant architecture and potentiality in the 
genetic improvement of grain yield. Among them, the stable SNPs identified across years in this study are of great 
importance. Secondly, based on the correlation between traits and the direction of SNP effects, we can design 
the combinations or find the accessions with a high percentage of favorable alleles. For example, the plant height 
and flag leaf length generally positive correlated with each other, but both have less correlation with flag leaf 
width and tiller numbers. These information, together with the SNPs identified, will be beneficial for breeding 
design. However, to achieve these goal, the larger populations and higher density genetic maps are required. It 
is necessary (i) to narrow down the SNP confidence interval thus that the markers tightly linked to the genes 
of interest should be much reliable for marker-assisted selection and for fine mapping and subsequent cloning 
of the candidate genes, (ii) to estimate the effects of number of alleles for desirable phenotypic values for each 
traits as reported by some previous studies1,69 and to convert the SNPs of interest into kompetitive allele-specific 
PCR (KASP) markers, and to further verify in bi-parental populations and (iii) to jointly investigate the SNPs for 
the other agronomic important traits including grain yield and grain qualities across multiple genetic mapping 
populations thus to gain a comprehensive picture for breeding design.

Materials and methods
Plant materials and phenotyping.  A total of 319 wheat germplasm accessions from the collection at the 
Hubei Academy of Agricultural Science in Hubei Province, China, which represent a wheat gene pool adapted 
to central China and the Yangzi River regions. The plant materials were grown in randomized complete blocks 
with three replicates at the experimental farm of Huazhong Agricultural University, Wuhan, China for four 
consecutive winter seasons (2015–2018). Twenty individuals from each variety (line) were grown in two rows 
with a distance of 15 cm between plants in each row and 20 cm between rows. Field management essentially fol-
lowed normal local wheat cropping practices. The lines were harvested individually at maturity to prevent seed 
contamination among lines. Four phenotypic traits were evaluated, including plant height across four environ-
ments (2015–2018) and the rest of three traits i.e. flag leaf length, flag leaf width, and the number of tillers per 
plant across two environments (2017–2018). The measurements of these traits were performed by selecting five 
random individual plants in the middle of the row for each accession. Plant height was measured after physi-
ological maturity by measuring the distance between the stem base and the top of the spike excluding awns. Flag 
leaf length was measured as the distance from the base to the tip of the leaf. Flag leaf width as the width of the 
widest section of the leaf. Number of tillers were recorded by counting the total number of fertile tillers per plant.

Genotyping.  A total of 319 wheat accessions were genotyped using the Illumina iSelect 90K SNP array 70 in 
the genotyping Laboratory of North Dakota State University in Fargo as described in our previously published 
study27. A quality preprocessing of genotyping data was done for sample call rate, SNP call rate, minor allele 
frequency (MAF) and Hardy–Weinberg equilibrium (HWE). This preprocessing was implemented in PLINK 
software (https://​zzz.​bwh.​harva​rd.​edu/​plink/)71.

Statistical analysis.  Descriptive analysis, ANOVA, correlation analysis and heritability estimates were 
conducted in the R statistical package72. The broad sense heritability for the traits was estimated by the formula 
H2 = VG/(VG + VE) where VG and VE represent estimates of genetic and environmental variance, respectively73. 
Variance components for the studied traits were analyzed according to our previous study27, using general linear 
model to detect the effect of genotypes, environment, replication and genotype × environment interaction. All 
sources of variation were considered as random effects.

Population structure and kinship analysis.  The SNP markers and estimated methods for population 
structure and linkage disequilibrium (LD) were the same as in Muhammad et al.27. Population structure using a 
Bayesian cluster analysis was estimated by STRU​CTU​RE 2.3.4 software74, and the obtained results were visual-
ized with the STRU​CTU​RE HARVESTER software75. A putative number of subpopulations ranging from K = 1 
to 7 was assessed using 100,000 burn-in iterations followed by 500,000 recorded Markov-Chain iterations. To 
estimate the sampling variance (robustness) of inferred population structure, 10 independent runs were carried 
out for each K. K was estimated using an ad-hoc statistic ∆K based on the rate of change in log probability of data 
between successive values26. Principle component analysis (PCA) was calculated by R software for evaluating 

https://zzz.bwh.harvard.edu/plink/
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the population structure and compared to the result of STRU​CTU​RE9. LD among markers was calculated using 
observed vs. expected allele frequencies of the markers in TASSEL v.5.038.

Genome‑wide association studies.  In this study, we used mrMLM software for four ML-GWAS (FAST-
mrMLM, FASTmrEMMA, mrMLM, and pLARmEB) and three SL-GWAS (FarmCPU, MLM, and MLMM) 
implemented by Genomic Association and Prediction Integrated Tool (GAPIT) in R76. Previously, SL-GWAS 
methods were mostly applied such as GLM and MLM. However, single-locus approaches have some limita-
tions such as GLM leads to high false-positive rates (FPRs), while MLM utilizes Bonferroni corrections for loci 
detection to reduce the FPRs77. Though, this procedure is so stringent that results in missing significant SNPs59. 
Therefore, multi-locus GWAS approaches are the best alternatives. The stringent Bonferroni multiple test cor-
rection in the SL-GWAS analysis is substituted by a flexible selection criterion in multi-locus GWAS analysis, 
that reduces the possibility of missing out significant loci59,61. The four ML-GWAS methods were performed with 
default parameters, and the screening criteria for significance were set with LOD scores 3 or > 359,61,62. However, 
for SL-GWAS models, the threshold for P-value was calculated based on the number of the markers (P = 1/n, 
n = total SNP used) according to the method of78. Significant markers were visualized with a Manhattan plot 
using Haploview 4.2 software79. Important p-value distributions (expected vs. observed p-values on a –  log10 
scale) were shown with a quantile–quantile plot.

Candidate gene analysis.  Candidate gene sites were aligned and downloaded from the ViroBLAST data-
base (https://​urgi.​versa​illes.​inra.​fr/​blast/​docs/​about​virob​last.​html). The R Package Pathway Association Study 
Tool (PAST) version 1.0.1 was used to identify genes around the peak SNPs with a window size of 200 kb. To 
find candidate genes or putative related proteins of SNP flanking-regions, BLASTx search was conducted for 
significant marker-trait associations (MTAs) against recently released genome sequence IWGSC RefSeq v1.080.
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