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Liquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are 
a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for 
characterizing the design grammar of peptides that can regulate droplet formation and aggregation. 
The protocol essentially involves investigation of 19 amino acid additives and polymerization of the 
identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, 
we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors 
of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with 
specific residues of FUS, thereby inhibiting the cation–π and electrostatic interactions between the 
FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg 
monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid 
aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-
forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed 
protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of 
proteins.

Liquid–liquid phase separation (LLPS) of proteins results in the formation of a condensed phase known as 
liquid droplets in a dilute bulk phase, which enables a wide variety of cellular functions and their regulation at 
levels that cannot be achieved by the dilute bulk phase alone. Droplet formation is involved in processes such 
as transcription, condensation of DNA, and DNA repair. However, liquid droplets are associated with a poten-
tial risk of becoming solid aggregates or forming amyloid fibers, which can cause diseases. Fused in sarcoma 
(FUS), a model protein used in this study, forms liquid droplets to perform biological functions; however, the 
conversion of FUS to hydrogel and amyloid fibers causes neurodegenerative  diseases1–5. Aggregation-associated 
diseases can develop because of failure to maintain liquid droplet homeostasis. Accordingly, the liquid droplets 
of aggregation-prone proteins are a potential target for drug discovery.

The RNA-binding protein FUS participates in RNA transcription, splicing, transport, and translation. FUS 
consists of an N-terminal SYGQ-rich low-complexity (LC) domain and a C-terminal RNA binding domain 
containing three RGG-rich domains: an RNA recognition motif (RRM) domain, a zinc finger (ZnF) domain, 
and a nuclear localization signal (NLS) domain. The RRM and zinc finger domains have a small globular fold, 
whereas the other regions are intrinsically disordered. FUS undergoes phase separation among the dilute bulk 
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phase, liquid droplet state (spherical cluster with high dynamics), hydrogel state (spherical cluster with limited 
dynamics), and solid aggregation state including amyloid fiber (non-spherical cluster). The phase separation 
of FUS is primary driven by self-association of LC domains via cross-β  structures3,6,7 and regulated by post-
translational  modifications7,8. The liquid droplets are also mediated by multivalent cation–π interactions among 
Arg residues of the RNA-binding domain and Tyr residues of the LC  domain9,10. Additionally, Lys and Phe par-
ticipate in droplet formation via the weak cation–π  interactions9. Furthermore, other types of interactions are 
involved: electrostatic interactions with  Asp9; π–π interactions between Tyr and  Phe9; intermolecular β-sheet 
hydrogen  bonding10; and hydrogen bonding, π–sp2 interactions, and/or hydrophobic interactions with Gln in 
the LC  domain11. The structure in the disordered regions of the droplet is controversial; any secondary structure 
is not  induced11,12, while cross-β structure is  present7,13. The liquid droplets can transform into  hydrogels3,7,10,14 
and amyloid  fibrils4,6,7,13,15. The 37th–94th residues in the LC domain form the fibril  core7,13.

Despite extensive investigations on the molecular interactions in phase separations of FUS, studies on phase-
separation regulators were limited to several endogenous molecules, except for 1,6-hexanediol. ATP promotes 
liquid-droplet formation at a low concentration but suppresses it at a high  concentration16,17. RNA, 1,6-Hexan-
ediol, nuclear import receptor, and small heat-shock protein 27 suppresses droplet  formation18–21. Ubiquitin 2 
modulates the LLPS of the FUS–RNA  complex22.

Unlike these endogenous molecules, artificial peptides can potentially target disease-associated LLPS pro-
teins and serve as promising drug candidates. High affinity of the peptides for the target disordered region of 
the proteins is attributed to their flexible fitting to any conformation of the disordered regions based on the 
combination of the 20 amino acids with different characteristics. A peptide was designed that succeeded in tar-
geting the disordered region of p53 and modulating its  function23. Additionally, a short amyloid-genic peptide 
from FUS was observed to induce the aggregation of the LC domain of  FUS15. Considering these facts, peptide 
design is a promising approach for regulating the LLPS behavior. However, the design grammar for the peptides 
remains unclear. In addition, the theoretical pool of peptides is considerably large; for example,  2010 candidates 
are possible for a 10-residue peptide. An efficient search strategy needs to be developed for identifying LLPS-
regulating peptides.

In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides 
that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino 
acid additives and polymerization of the identified amino acids. As a proof of concept, we demonstrated the 
effect of amino acids and peptides on formation of the droplets and solid aggregates of the model protein FUS. 
We further determined the molecular mechanism underlying this process using MD simulations.

Results
Characterization of MBP-tagged FUS used in the droplet-formation study. Because FUS is an 
aggregation-prone protein, an N-terminal of FUS is commonly conjugated with a solubility tag—maltose-bind-
ing protein (MBP) tag—for  storage8,20. This tag is generally cleaved using tobacco etch virus (TEV) protease to 
induce FUS droplet formation. However, we used MBP-tagged FUS (MBP-FUS) without cleavage for most parts 
of this study to simplify the system; if the tag-cleavage step was used, the system could contain FUS, MBP-FUS, 
and MBP, as well as TEV protease. In this study, a molecular clowder dextran was added for inducing droplet for-
mation, instead of the MBP cleavage. When the dextran concentration was higher than 60 mg/mL, we detected 
an increase in light scattering from 5 µM MBP-FUS solution at 350 nm (Fig. 1A). Imaging of the solutions using 
a differential interference contrast (DIC) microscope identified micrometer-sized spherical droplets in the pres-
ence of 80 mg/mL dextran (Fig. 1B). These results are consistent with the crowding-enhanced droplet formation 
observed for non-tagged  FUS9. The droplets were formed through incubation for 10 min at 20 °C after adding 
the MBP-FUS stock solution into the dextran solution. We conducted subsequent measurements for the FUS 
droplets in the presence of 80 mg/mL dextran, except for MBP-tag cleavage experiments. As a control, MBP tag 
without FUS did not form droplets in 80 mg/mL dextran (Supplementary Fig. S1).

Figure 1.  Arg and Tyr additives suppress the formation of FUS droplets. (A) Dependence of MBP-FUS droplet 
formation on dextran concentration was detected as scattering at 350 nm  (OD350). (B) DIC images of MBP-FUS 
solutions in the presence/absence of 80 mg/mL dextran. (C) Effect of 19 amino acids as additives for MBP-FUS 
droplet formation detected as  OD350. "None" denotes the absence of additives. The solution contained 80 mg/
mL dextran and 40 mM amino acids, except for Tyr or 2 mM Tyr owing to low solubility. Asterisks indicate a 
significant difference (P = 0.044 for Tyr and Gly and 0.039 for Arg and Gly, two-tailed t test). (D) DIC images of 
MBP-FUS solutions in the presence of typical amino acids. (E) Distributions of cross-section area and circularity 
of individual droplets of MBP-FUS in the presence of typical amino acids; 177–293 droplets were analyzed. (F) 
A typical snapshot of MBP-FUS interacting with Arg additives in MD simulation. Red, orange, green, yellow, 
light blue, blue, purple, and white ribbon structures denote the MBP, LC, RGG1, RRM, RGG2, ZnF, RGG3, and 
PY-NLS domains of FUS, respectively. Space-filled structures represent Arg additives that form contacts with 
MBP-FUS. (G) Average number of contacts between the amino acid additives and intact residues of the LC 
domain (top) and RNA-binding domain (bottom) of FUS in the molecular dynamics simulations. RNA-binding 
domain includes RGG1, RRM, RGG2, ZnF, RGG3, and PY-NLS domains. The residues of FUS are classified into 
droplet-related residues plus Glu (colors or shaded) or others (blank). (H) Schematic diagram of competitive 
suppression of FUS droplet by Arg and Tyr additives. Error bars in (A, C) represent the standard errors (N ≥ 3). 
Scale bars in (B, D) denote 20 µm and 10 µm, respectively.
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Arg and Tyr additives suppressed FUS droplet formation. We examined the effect of 19 amino acid 
additives on the formation of MBP-FUS droplets. The amino acids were used at 40 mM except for Tyr, which 
used at 2 mM, because of the low solubility of Tyr. Cys was not tested, because Cys can form disulfide bonds to 
the Cys residues of proteins in general. The addition of Gly did not alter the scattering intensity from the MBP-
FUS solution (Fig. 1C). Similarly, the other amino acids, except for Arg, Lys, Tyr, and Phe, did not affect droplet 
formation (Fig. 1C). In contrast, Arg and Tyr significantly decreased the scattering intensity (p = 0.044 for Tyr 
and Gly and 0.039 for Arg and Gly, two-tailed t-test). Arg suppressed droplet formation at concentrations greater 
than 5 mM, and the scattering intensity from the droplet was saturated at 40 mM Arg (Supplementary Fig. S2A). 
For Lys or Phe, the scattering was reduced to a less extent (p = 0.063 for Lys and 0.074 for Phe, two-tailed t-test 
with Gly). Accordingly, the four amino acids suppress the formation of MBP-FUS droplets. Next, we examined 
the effect of the amino acids on the size and shape of the droplets using DIC microscopy. Spherical droplets of 
MBP-FUS were observed in the presence of any of the 19 amino acids (Fig. 1D and supplementary Fig. S3). 
Arg, Lys, Tyr, and Phe did not affect the relative distribution of the cross-section area and circularity of droplets 
compared to Gly as the control (Fig. 1E).

We examined how such effective additives suppress the formation of MBP-FUS droplets using MD simula-
tions. Molecular dynamics of MBP-FUS was simulated in the presence of Arg, Lys, Phe, or Gly at 100 mM or 
Tyr at 10 mM. In the simulations, MBP-FUS exhibited a rod-like shape, consistent with that observed through 
small-angle X-ray scattering  analysis20 (Fig. 1F and Supplementary Fig. S4). We analyzed the number of contacts 
between the additives and residues of MBP-FUS, where the contact was defined as a distance of less than 6.5 Å 
between the centers of two side chains, except for Gly, for which Cα was used (Fig. 1G). We focused on five 
residues that participate in droplet formation (Arg, Lys, Phe, Tyr, and Asp)9 and Glu with a negative charge. In 
particular, the Arg additive exhibited more contacts with Tyr residues of the LC domain and Asp/Glu residues 
of the RNA-binding domain (Asp residues of the RGG1 domain and Asp/Glu residues of the RRM domain, 
Supplementary Fig. S5A) than the Gly additive. The cation–π, π–π, and electrostatic interactions between the 
Arg additives and FUS molecules inhibit the interactions among the FUS molecules. In contrast, the Tyr additive 
formed contacts with Arg residues of the RNA-binding domain of FUS via cation–π interaction. Accordingly, 
we propose that Arg and Tyr interact with the droplet-forming residues of FUS, thereby competitively inhibiting 
the interactions among the FUS molecules and suppressing droplet formation (Fig. 1H).

Poly-Arg additive enhanced FUS droplet formation by bridging FUS molecules. We hypoth-
esized that, compared with Arg monomers, Arg polymers interact more effectively with FUS, because Arg poly-
mers have the potential to form multivalent interactions. To test this hypothesis, we investigated the effect of Arg 
polymers on the formation of MBP-FUS droplets. Poly-Arg (15–70 kDa; median, 200-mer; R200) significantly 
enhanced the scattering intensity from MBP-FUS droplets, at a concentration of 40 mM with respect to Arg 
units (p < 0.0001, two-tailed t-test, Fig. 2A); in contrast, Arg monomer suppressed droplet formation. Poly-Arg 
effectively promoted droplet formation at concentrations greater than 0.5 mM with respect to Arg units (Sup-
plementary Fig. S2B). Additionally, poly-Lys (30–70 kDa; median, 220-mer) increased the scattering intensity 
compared to Lys monomer (p = 0.045, two-tailed t-test, Fig. 2A). The effect of poly-Lys was lesser than that of 
poly-Arg likely due to the weaker cation–π and electrostatic interactions with FUS (Fig. 1F). The DIC images dis-
played the MBP-FUS droplets in the presence of poly-Arg (Fig. 2B). The occurrence percentage of large droplets 
with cross-section area greater than 3 µm2 was increased, coincident with the decrease in small droplets with 1–2 
µm2 (Fig. 2C). The circular shape of the droplets was not considerably changed (Fig. 2C). In contrast, poly-Lys 
did not affect the shape and size of the droplets, supporting the observation that the poly-Lys was less effective in 
regulating droplet formation than poly-Arg (Supplementary Fig. S6). We additionally confirmed the uptake of 
poly-Arg labeled with a fluorophore, Alexa488, into the MBP-FUS droplets using DIC and fluorescence micros-
copy (Fig. 2D). Furthermore, we confirmed the effect of poly-Arg on the formation of FUS droplets following the 
cleavage of the MBP tag by TEV protease in the absence of dextran (p = 0.01, two-tailed t-test, Fig. 2E). Overall, 
the results demonstrated that the polymer of Arg significantly promoted the FUS droplet formation, while Arg 
monomers exhibited the opposite effect.

To identify the effective peptide length for promoting FUS droplet formation, we examined the effect of Arg 
peptide length on the formation of MBP-FUS droplets. The peptide concentrations were adjusted to 40 mM in 
the Arg monomer unit. The scattering intensities of Arg dimer (R2) and trimer (R3) were higher than that of 
the Arg monomer (p < 0.02, two-tailed t-test, Fig. 2F), comparable to that in the absence of additives (Fig. 1C). 
In 5-mer peptide (R5), the intensity was further enhanced (p = 0.008, two-tailed t-test, Fig. 2F). The MD simula-
tions of MBP-FUS in the presence of R, R2, R5 or R10 showed similar patterns, that is, an increase in the absolute 
number of contacts in the LC- and RNA-binding domains with increase in the Arg peptide length (Fig. 2G). 
Additionally, the polymerization of Arg did not affect the binding regions over the FUS sequence (Supplementary 
Figs. S5B and S7). Collectively, the polymer length of Arg affects the droplet formation tendency, likely because 
the more Arg residues the polymers have, the more strongly they interact with FUS molecules via cation–π and 
electrostatic interactions, leading to FUS bridging and hence FUS droplet formation (Fig. 2H).

Arg and poly-Arg additives regulated FUS cluster formation similarly in cells. To test if Arg and 
poly-Arg additives work for regulating FUS clusters formed in cells, we expressed FUS-GFP in dopaminergic 
neurons and examined the effect of these additives (Fig. 3A).  H2O2 treatment was used for triggering the for-
mation of FUS clusters. In fact, the clusters of FUS-GFP (corresponding to yellow or green circles in the merge 
images of Fig. 3A) were increased by  H2O2 treatment (control vs  H2O2 with no additive in Fig. 3A). The average 
area of FUS clusters upon  H2O2 treatment, calculated from the images, increased 15-fold (Fig. 3B). When R10 
was added in  H2O2, the average area of FUS clusters in neurons were further increased 1.7-fold (Fig. 3A,B). We 
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Figure 2.  Polymerization of Arg and Lys promotes the formation of FUS droplets. (A) Effect of polymerization of Arg and Lys on 
MBP-FUS droplet formation detected as the scattering at 350 nm. Arg and Lys concentrations in monomer were set to 40 mM for 
monomers and polymers. Poly-Lys and poly-Arg are composed of 220-mer and 200-mer in median, respectively. Error bars represent 
the standard errors (N = 3). Asterisks indicate a significant difference (p = 0.045 for poly-Lys and < 0.0001 for poly-Arg (R200), two-
tailed t-test). (B) DIC images of MBP-FUS solutions in the presence of Lys/Arg monomer and polymer. Scale bar denotes 20 µm. 
(C) Distributions of cross-section area and circularity of individual droplets of MBP-FUS in the presence of Arg monomer (N = 177) 
and polymer (N = 829). D) DIC and fluorescence microscopic images of MBP-FUS at 5 µM and Alexa488-labeled poly-R at 0.1 µM. 
(E) Effect of MBP tag removal on FUS droplet formation detected as the scattering at 350 nm in the absence of Dextran. Error bars 
represent the standard errors (N = 3). Asterisk indicates a significant difference (p = 0.01 for poly-Arg, two-tailed t-test). "None" denotes 
the absence of additives. F) Effect of polymer length of Arg to MBP-FUS droplet formation detected as  OD350. Arg concentrations in 
monomer were set to 40 mM for monomer and polymers: 20 mM R2, 13 mM R3, and 4 mM R10. Error bars represent the standard 
errors (N = 3 except for R2 and N = 6 for R2). The data for R200 was the same as that for poly-R in (A). Asterisks indicate a significant 
difference between monomer and polymers (p < 0.0001 for R2, p = 0.019 for R3, p = 0.008 for R5, and p = 0.008 for R10; two-tailed 
t-test). (G) Molecular dynamics simulations of MBP-FUS in the presence of R, R2, R5, and R10 additives. The left and right panels 
show the average number of contacts between the additives and intact residues of LC- and RNA-binding domains of FUS, respectively. 
The colored or shaded and blank intact residues denote droplet-related residues plus Glu and others, respectively. (H) Schematic 
diagram of FUS droplets promoted by Arg polymer. Arg polymer connects intact Tyr, Asp, and Glu residues of different FUS 
molecules, thus promoting FUS droplets. In (A–D, F), the solutions contained 80 mg/mL dextran.
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assumed the action by R10 inside the cell, since R9 and other arginine-rich peptides are known as a cell-pen-
etrating  peptide24. In contrast, the addition of Arg decreased the area of FUS clusters significantly (Fig. 3A,B). 
Therefore, these results demonstrated that Arg and poly-Arg additives can work for regulating FUS cluster for-
mation in cells in a way similar to in vitro conditions.

Arg additives suppressed solid aggregate formation of FUS, but poly-Arg additive enhanced 
it. Arg and poly-Arg might affect the formation of solid aggregates of FUS from the liquid droplets, because 
Arg and poly-Arg affected the droplet formation significantly. To form the solid aggregate of FUS, we evaluated 
several in vitro conditions by changing the time and temperature of incubation and/or cleavage of the MBP 
tag and selected the following condition: the droplet formation of FUS was formed by incubating MBP-FUS at 
30 µM in the presence of TEV protease at 30 °C for 20 min, and solid aggregates of FUS were induced by incu-
bating the sample at 70 °C for 2 h. The DIC image of FUS in the absence of additives showed non-spherical solid 
aggregates (Fig. 4A). The amyloid fluorescence probe,  PicoGreen25, exhibited a high fluorescence intensity for 
the aggregates, implying amyloid formation in the FUS aggregates (Fig. 4A). The electron microscopy showed 
network structures composed of fibrous structures in non-spherical solid aggregates (Supplementary Fig. S8). In 
the presence of the Arg additive, the size of the FUS aggregates decreased (Fig. 4A). Thin filament structures in 
the aggregates were observed. In contrast, the poly-Arg (R200) additive increased the aggregate size (Fig. 4A). 
Similar result was obtained after incubation of MBP-FUS without MBP-tag cleavage for a week at 4 °C (Sup-
plementary Fig. S9). In both cases, the fluorescence images suggested the presence of amyloids in the aggregates 
(Fig. 4A).

To determine the percentage of FUS molecules incorporated into the aggregate, we determined the concen-
tration of soluble molecules in the supernatant by measuring the OD at 280 nm after centrifuging the samples 
(Fig. 4B). The OD at 280 nm (absorbance by FUS plus scattering) was corrected by subtracting the OD at 350 nm 
(scattering). In the absence of additives, 7% of the FUS molecules (corresponding to 2.1 µM) were in solution, 
indicating that 93% of the FUS molecules was included into the aggregate (Fig. 4C). When poly-Arg was added, 
the percentage of FUS in the aggregate slightly increased to 95%. In contrast, the Arg additive significantly 
reduced the percentage in the aggregate to 58%. Overall, the results demonstrated that the Arg additive sup-
presses the FUS aggregate formation, while poly-Arg promotes it. The similarity in the effect of the additives for 
the droplets and aggregates implies that aggregate regulation is achieved through regulation of the intermediate 
state (liquid droplets) (Fig. 4D).

QQQQ and NNNN additives at high concentrations drove liquid droplets of FUS to solid 
aggregations. Since the cross-beta structures formed by intermolecular H-bonds participate in the for-
mation of liquid droplets, as well as gel-like droplets and amyloid  fibrils7,10, we evaluated the effect of QQQQ 
(Q4) and NNNN (N4), amyloid-related peptides, on the droplet formation of MBP-FUS at 5 µM. Q4 and N4 

Figure 3.  Arg and poly-arg additives worked similarly for regulating FUS cluster formation in cultured 
dopaminergic neurons. (A) Effect of Arg and poly-Arg additives to FUS cluster formation in the cells detected 
by a confocal laser scanning microscopy. Cells were transfected with FUS-GFP and exposed to  H2O2 with no 
additive ( −), R10, or Arg. FUS-GFP (green) and anti-tyrosine hydroxylase (TH) antibody (neuron cell marker, 
red) were respectively detected. Scale bar denotes 10 µm. (B) Quantification of the area of FUS clusters in 
 TH+ neurons. Error bars represent the standard errors (N = 20). *** and **** indicate significant differences 
(p < 0.001 and p < 0.0001 for control) in one-way analysis of variance (ANOVA) with post-hoc Tukey’s multiple 
comparison test, respectively. $$$$ and #### indicate significant differences (p < 0.0001 for no additive ( −) and 
p < 0.0001 for R10) in one-way ANOVA with post-hoc Tukey’s multiple comparison test, respectively.
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at 10 mM, corresponding to 40 mM of monomer, increased the scattering intensity to some extent, suggesting 
the enhancement of droplet formation (Fig. 5A), where the  OD350 of Q4 or N4 was subtracted from that of the 
sample containing MBP-FUS plus Q4 or N4, because Q4 and N4 produced a small scattering effect. In contrast, 
YGQS, composed of four residues frequently observed in LLPS proteins, did not affect droplet formation. The 
DIC images demonstrated spherical droplets in the presence of the three different peptides (Fig. 5B). The cross-
section area and circularity analysis of the MBP-FUS droplets indicated no significant effect upon the addition of 
Q4 and N4 (Supplementary Fig. S10). Q4 and N4 additives at low concentrations slightly enhanced FUS droplet 
formation without modulating the shape and size distribution.

We examined the effect of Q4 and N4 additives in MBP-FUS droplets at higher concentrations. The solution 
contained 15 µM MBP-FUS and 30 mM Q4 or N4. Non-spherical aggregates of MBP-FUS were generated in the 
presence of Q4 and N4 additives (Fig. 5C). The aggregates exhibited a high fluorescence intensity from PicoGreen, 
which suggested amyloid formation in the aggregates (Fig. 5C). As a control, spherical droplets were detected in 
the absence of Q4 or N4 additives (Fig. 5C). Additionally, the droplets exhibited high fluorescence intensity from 
PicoGreen, implying amyloid formation in the FUS droplets, consistent with the results of a previous  study26. 
The circularity distribution of each droplet or aggregate became broader in the presence of Q4 or N4 additives, 
supporting non-spherical aggregates induced by the additives (Fig. 5D). In addition, the additives increased 
the frequency of droplets or aggregates with a cross-section area greater than 10 µm2 (Fig. 5D). Additionally, 

Figure 4.  Arg additive suppressed the aggregation formation of FUS, while poly-Arg promoted it. (A) Effect 
of Arg and poly-Arg additives to FUS aggregate formation detected by DIC and fluorescence microscopy. The 
aggregates were formed after MBP-tag cleavage in the absence of dextran. The fluorescence of amyloid sensitive 
PicoGreen was detected. "None" denotes the absence of additives. Scale bar denotes 20 µm. (B) Absorbance of 
soluble fraction at 280 nm in FUS aggregate solution in the absence/presence of Arg and poly-Arg additives. 
Asterisk indicates a significant difference (p = 0.01, two-tailed t-test). (C) Percentage of FUS molecules taken 
up into aggregates in the absence/presence of Arg and poly-Arg additives. In (B, C), error bars represent the 
standard errors (N = 3). (D) Schematic diagram of effect of additives on the liquid droplets and solid aggregates. 
Dashed red lines represent intermolecular interactions.
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Figure 5.  QQQQ and NNNN additives converted droplets of FUS into aggregates. (A) Effect of 4-mer peptides 
on droplets of MBP-FUS detected as the scattering at 350 nm (low concentrations). The solution contained 5 µM 
MBP-FUS plus 40 mM Gln or Asn or 10 mM 4-mer peptides in 140 mM KCl and 80 mg/mL dextran. Error bars 
represent the standard errors (N = 3). (B) DIC images of MBP-FUS solutions in the presence of 4-mer peptides at low 
concentrations. The solution conditions were the same as in (A). Scale bar denotes 10 µm. (C) DIC and fluorescence 
images of MBP-FUS solution in the presence/absence of Q4 or N4 at high concentrations. The solution contained 
15 µM MBP-FUS plus 30 mM Q4 or N4 in 183 mM KCl and 65 mg/mL dextran. Scale bar denotes 10 µm. The 
fluorescence of amyloid-sensitive PicoGreen was detected. None denotes the absence of additives. Scale bar denotes 
20 µm. (D) Distributions of cross-section area and circularity of individual droplets or aggregates of MBP-FUS in 
the DIC images in the presence of Q4 (N = 1170) or N4 (N = 2528) at high concentrations or in the absence of the 
additives (N = 3419). The solution conditions were the same as in (C). (E) Uptake of MBP-FUS into the aggregates 
evaluated using DIC and fluorescence microscopy; 0.1 µM MBP-FUS-Alexa488 was added to a solution of non-
labeled MBP-FUS, as described in (C). Scale bar denotes 20 µm. (F) Time-lapse DIC images for aggregate formation 
of MBP-FUS in the presence of N4 at high concentrations. The time after mixing MBP-FUS and N4 is displayed. The 
solution conditions were the same as in (C). Scale bar denotes 10 µm.
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MBP-FUS labeled with Alexa488 was incorporated into the aggregates, confirming the aggregation of MBP-FUS 
(Fig. 5E). Thin filament structures in the aggregates supported amyloid formation, especially in the presence of 
Q4 (Fig. 5E). The time-lapse DIC images demonstrated that MBP-FUS formed non-spherical aggregates; subse-
quently, the aggregates assembled and became larger (Fig. 5E). Long storage with Q4 or N4 solution promoted 
the aggregation of MBP-FUS. In addition, Q4 and N4 themselves formed small non-spherical aggregates con-
taining amyloids under this condition (Supplementary Fig. S11). Therefore, we propose that the small amyloid 
core formed by Q4 and N4 induced the conversion of the FUS droplets to FUS aggregates.

Discussion
In this study, we propose an experiment-guided protocol for designing peptides that can regulate the formation 
of liquid droplets and solid aggregates. Owing to the tremendous number of peptide candidates, experimental 
screening may not be successful. In contrast, the developed protocol can efficiently explore droplet-regulating 
peptides. The protocol is essentially composed of two simple steps, and it can be widely applied to various proteins 
of interest. The first step is evaluation of the effect of 19 amino acid additives on the droplets of a protein of inter-
est and identification of effective amino acid that can suppress droplets, such as Arg or Tyr for FUS. The second 
step is synthesis of the polymer of the identified amino acid. The synthesized polymer would bridge at least two 
protein molecules and promote droplet formation, such as poly-Arg for FUS. The use of the effective amino acids 
in designing the peptide can significantly reduce the pool of potential peptide candidates. Using this protocol, we 
succeeded in identifying additives that suppressed and enhanced the formation of FUS droplets and aggregates.

To alter the state of proteins from liquid droplets to aggregates or amyloids, we need to consider intermo-
lecular β-sheet formation between the backbones. The above protocol, focusing on the side chain effect, does 
not consider this aspect. Nevertheless, the β-sheet-forming peptide serves for this purpose. The Q-rich region of 
amyloid-forming proteins, such as the LC domain of FUS forms intermolecular β-sheets, which leads to aggre-
gation. The β-sheet-forming peptide supports this intermolecular β-sheet formation for the protein of interest. 
N4 or Q4 can form amyloids by  itself27–29 (Supplementary Fig. S11) and induce FUS to form liquid droplets 
at low concentrations and to convert from the droplet state to the aggregate state, including amyloids, at high 
concentrations (Fig. 5). This phenomenon may be similar to cross-amyloid aggregation and cross-seeding: co-
aggregation occurs between different proteins or  peptides30. For example, poly-Glu enhances Tau  aggregation31. 
We propose that the cross-β structure of FUS is induced near the small amyloid core of Q4 and N4 and that it 
propagates over other FUS molecules, thus promoting the aggregation of FUS.

The experiment-guided protocol and MD simulations provide information on the design grammar for LLPS-
regulating peptides. As an additive, poly-Arg, in this study, accelerated FUS droplet formation more effectively 
than poly-Lys. Arg and Lys in the polymer possess a positive charge, exhibiting cation–π and electrostatic inter-
actions with FUS. Arg may exhibit a stronger cation–π interaction than  Lys32. In addition, Arg enables π–π 
interactions via its π-bonded guanidium  group33,34. Such different interactions between Arg and Lys resulted 
in the Arg additives forming a greater number of contacts with Tyr and Phe residues of FUS compared to Lys 
additives, according to MD simulation (Fig. 1G). Consistent with this result, delocalization of positive charge 
within the guanidium group of Arg can result in hydrogen bond formation with the backbone of  FUS35 (Fig. 1G).

Poly-Arg additive promotes the droplet formation of FUS by contacting to Tyr residues of the LC domain, 
Asp residues of the RGG1 domain, and Asp/Glu residues of the RRM domain. These interactions are similar 
with those formed in FUS droplets, such as Arg residues of the RNA-binding domain and Tyr residues of the 
LC  domain9,10 and electrostatic interactions with  Asp9. Accordingly, poly-Arg bridges the key residues of FUS 
which participate in the droplet formation.

In conclusion, we propose an experiment-guided protocol for characterizing the design grammar of peptides 
that can regulate the formation of liquid droplets and solid aggregates. The design grammar would depend on the 
proteins of interest; however, Arg and poly-Arg, which were identified as effective additives in this study, might 
serve for other proteins, because the LLPS proteins provide many donors for cation–π, π–π, and electrostatic 
interactions with these additives. In drug design, this protocol could be used for the primary design of peptides 
targeting disease-related proteins formed via liquid droplets. The designed peptide might be further optimized 
toward achieving aggregate suppression with high affinity using other established methods such as phage display.

Materials and methods
FUS samples. We prepared the MBP-FUS sample composed of 6 × His-tag, MBP tag, TEV cleavage sequence, 
and human FUS wild type, 6 × His-MBP-TEV-FUS, following the protocol reported in an earlier  study12 with 
some modifications. The pTHMT plasmid containing 6 × His-MBP-TEV-FUS was purchased from Addgene 
(no. 98651). For labeling with a fluorescent dye, we prepared a gene containing the cys mutant of FUS, in which 
cysteine was introduced at the C-terminus using a PrimeSTAR Mutagenesis Basal Kit (TaKaRa), because no 
cysteine residue exists in wild-type FUS. Escherichia coli cells with the plasmid were cultured in LB media with 
50 µg/mL Kanamycin at 37 °C. When the  OD600 reached 0.8, we added 0.5 mM IPTG and cultured at 18 °C 
for ~ 12 h. The collected cells were lysed by ultra-sonication in a solution containing 50 mM HEPES, 1.5 M NaCl, 
10% glycerol, and 2 mM DTT (pH 7.4). A protease inhibitor cocktail was added to prevent the degradation of 
samples (cOmplete, Mini, Sigma-Aldrich). To remove DNA and RNA from the MBP-FUS sample, 1.5 M NaCl 
was used. The MBP-FUS samples were purified using HisTrap (HisTrap FF crude; GE Healthcare) and heparin 
columns (HiTrap Heparin HP; GE Healthcare) without cleavage of the MBP tag. The purity was confirmed using 
SDS-PAGE.

Amino acids and peptides. Amino acids were purchased from FUJIFILM Wako Pure Chemical Corpora-
tion and Nacalai Tesque. Poly-L-Arg and poly-L-Lys were obtained from Sigma-Aldrich and used without fur-
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ther purification. R2, R3, and R10 were purchased from GenScript. R10, R5, Q4, N4, and YGQS were synthesized 
using a standard Fmoc-based solid-phase peptide synthesis. These peptides were cleaved from the resin using 
trifluoroacetic acid at 95%, water at 2.5%, and triisopropylsilane at 2.5%. The cleaved peptides were precipitated 
in cold diethyl ether. The resultant peptides except for R10 were dissolved in 0.1% TFA (HCl for R10) and lyophi-
lized. The purity and identity of each peptide were verified using HPLC and mass spectrometry (LTQ Orbitrap 
XL ETD, Thermo Fisher Scientific Inc.).

Labeling with a fluorophore. The cysteine mutant of MBP-FUS was labeled with Alexa488 (Thermo 
Fisher) in a solution containing 100 mM Tris, 500 mM KCl, and 1 mM TCEP using maleimide chemistry and 
purified using gel filtration (PD MiniTrap G-25; GE Healthcare). Because MBP-FUS, bound nonspecifically to 
unreacted dyes, was eluted, the bound dyes were further removed using a centrifugal filter (Amicon Ultra-4, 
Millipore) by increasing the concentration of KCl to 1.5 M. The N-terminus of poly-R was labeled with Alexa488 
in a solution containing 100 mM  NaHCO3 and 500 mM NaCl (pH 8.3) using succinimidyl ester chemistry and 
purified using gel filtration. The labeling ratios were determined to be 1.1 for MBP-FUS-Alexa488, according the 
absorbance values at 280 nm and 495 nm, and 0.96 for poly-R-Alexa488, according to the absorbance values at 
220 nm and 495 nm.

Sample preparation for FUS droplets. To examine the dextran dependence of FUS droplets, we used 
solutions containing 5 µM MBP-FUS, 100 mM Tris, 140 mM KCl, and 1 mM DTT at pH 7.4. We used dextran 
with a molecular weight between 450,000 and 650,000 (Sigma-Aldrich). To evaluate the effect of amino acids 
and peptides on FUS droplets, we used solutions containing 5 µM MBP-FUS, 100 mM Tris, 140 mM KCl, 1 mM 
DTT, and 90 mg/mL Dextran at pH 7.4. To analyze the effect of Q4 and N4 at high concentrations, we used 
solutions containing 15 µM MBP-FUS, 30 mM Q4 or N4, 100 mM Tris, 183 mM KCl, 1 mM DTT, and 65 mg/
mL Dextran at pH 7.4. To evaluate the uptake of poly-R into FUS droplets, we used solutions containing 5 µM 
MBP-FUS, 0.1 µM poly-R-Alexa488, 100 mM Tris, 140 mM KCl, 1 mM DTT, and 80 mg/mL dextran at pH 7.4. 
These solutions were prepared through a fivefold dilution of a stock solution containing 500 mM KCl at pH 7.4 
and incubated for 10 min at 20 °C before the analyses. For the regulation of FUS droplets by additives in the 
absence of the MBP tag, the droplet formation of FUS was initiated through the addition of TEV protease (Tur-
boTEV Protease; Accelagen) at 769 µg/mL in a solution containing 15 µM MBP-FUS, 100 mM Tris, and 140 mM 
KCl (pH 7.4). After incubation for 20 min at 20 °C, 40 mM Arg and 8.3 mg/mL poly-R were added as additives; 
the final concentration of FUS was 5 µM. The solutions were incubated for 5 min at 20 °C, and the ODs were 
measured at 350 nm.

Aggregate preparation of FUS. Droplets of FUS were formed by incubating the solution containing 
30 µM MBP-FUS, 100 mM Tris (pH 7.4), 319 mM KCl, and TEV protease at 60 µg/mL at 30 °C for 20 min. 
Subsequently, solid aggregates of FUS were formed by incubating the sample at 70 °C for 2 h. Prior to the fluo-
rescence measurements, PicoGreen (Invitrogen) was added by 300-fold dilution of the purchased stock.

Scattering measurements. We analyzed light scattering from the droplets of MBP-FUS or FUS by meas-
uring the  OD350 using an absorbance spectrometer (NanoDrop One; Thermo Fisher).

DIC microscopy. We used the DIC mode of the inverted microscope (IX-73; Olympus, Tokyo, Japan), as 
described  previously36. The sample solution was casted on the coverslip and covered by the slide glass. The DIC 
images were captured at 40 × or 60 × magnification at 21 °C. The cross-section area and circularity of the droplets 
were calculated using the Image J software.

Fluorescence microscopy for in vitro measurements. To evaluate the uptake of poly-R-Alexa488 or 
MBP-FUS-Alexa488 into droplets and aggregates of non-labeled MBP-FUS, we used the fluorescence mode of 
the inverted microscope (IX-73; Olympus)36. The excitation and emission wavelengths were 470–490 nm and 
515–550 nm, respectively. Fluorescence images were captured at 21 °C.

MD simulation. MD simulations were conducted to investigate interactions between MBP-FUS and several 
amino acid additives. Because the MBP-FUS structure was not solved, it was generated from the crystal struc-
tures of MBP (PDB ID: 1Y4C), the RRM domain (PDB ID: 2LA6), and the ZnF domain (PDB ID: 6G99)37 of 
FUS. The disordered regions of FUS were modeled as extended structures. Through connecting these structured 
and disordered domains, the overall structure of MBP-FUS was constructed. To equilibrate the structure, 300 ns 
MD simulation was performed with implicit solvent. The protein was described using the AMBER14SB force 
 field38 and Generalized Born  energy39.

Next, the protein was simulated in a water/amino acid additive box. These molecules were placed in a dodeca-
hedron box with 24.1 nm sides. The system contained one molecule of MBP-FUS, 311,439 water molecules, 589 
amino-acid additive molecules corresponding to 100 mM, and 895 sodium and chloride ion molecules corre-
sponding to 150 mM. When the total charge of the system was not neutral, additional sodium or chloride ions 
were also included. The protein and amino acid additives were described using the AMBER99SB force  field40. 
Since the zwitterion form of amino acids is not prepared in this force field, we built their molecular model with 
restrained electrostatic potential (RESP)  charges41 (Supplementary text). Water was described by the TIP3P 
 model42. Sodium and chloride ion models were obtained from the  literature43.
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After energy minimization, constant-pressure and constant-temperature (NPT) MD simulations were per-
formed at 1 bar and 300 K for 0.1 ns for equilibrating the system, and the production runs were performed for 
100 ns. Three runs were performed for each amino acid solution with different initial velocities. The Parrinello-
Rahman method was used to maintain pressure during the NPT  simulation44. The Langevin dynamics was used 
to maintain the temperature with water viscosity set to 2  ps−1. The covalent bonds of hydrogen atoms in proteins 
were constrained using the LINCS  method45, and the integration time step was 2.0 fs. MD simulations were 
performed using GROMACS 2018.146.

For the contact evaluation, 10–100 ns trajectories were used. A contact was defined as a distance of less than 
6.5 Å between the centers of two side chains, except for Gly, for which Cα was used.

Cell measurements. Primary cultures of mesencephalic neurons were prepared as previously  described47,48. 
GFP-tagged human FUS (#HG16569-ACG) was purchased from Sino Biological Inc. The expression vector was 
transfected into cultured dopaminergic neurons using Lipofectamine 3000 (Thermo Fisher Scientific). 48 h after 
the transfection, cells were exposed to 100 µM  H2O2 with or without R10 (300 µM) or arginine (300 µM) for 6 h, 
and then fixed by 4% paraformaldehyde for 30 min. For immunocytochemistry, the cells were further incubated 
with 0.1% Triton X-100 for 15 min. After pre-blocking with 5% goat serum in phosphate-buffered saline (PBS) 
for 1 h, they were incubated overnight at 4 °C with the following primary antibodies: rabbit anti-TH affinity-
purified polyclonal antibody (1:400; Millipore). After washing with PBS, the cells were incubated with either 
Alexa Fluor 546-conjugated secondary antibodies (1:500 dilution, Invitrogen). Images were acquired at 37 °C 
using a confocal laser scanning microscope (TCS SP8, Leica Microsystems). The areas of FUS clusters, defined 
by an area above 1 μm2 in  TH+ cells, were calculated using Image J software.
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