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The encoding of stochastic 
regularities is facilitated 
by action‑effect predictions
Betina Korka 1*, Erich Schröger1 & Andreas Widmann1,2 

Our brains continuously build and update predictive models of the world, sources of prediction 
being drawn for example from sensory regularities and/or our own actions. Yet, recent results in the 
auditory system indicate that stochastic regularities may not be easily encoded when a rare medium 
pitch deviant is presented between frequent high and low pitch standard sounds in random order, as 
reflected in the lack of sensory prediction error event‑related potentials [i.e., mismatch negativity 
(MMN)]. We wanted to test the implication of the predictive coding theory that predictions based on 
higher‑order generative models—here, based on action intention, are fed top‑down in the hierarchy 
to sensory levels. Participants produced random sequences of high and low pitch sounds by button 
presses in two conditions: In a “specific” condition, one button produced high and the other low pitch 
sounds; in an “unspecific” condition, both buttons randomly produced high or low‑pitch sounds. 
Rare medium pitch deviants elicited larger MMN and N2 responses in the “specific” compared to the 
“unspecific” condition, despite equal sound probabilities. These results thus demonstrate that action‑
effect predictions can boost stochastic regularity‑based predictions and engage higher‑order deviance 
detection processes, extending previous notions on the role of action predictions at sensory levels.

Information from various sources constantly arrives at our senses, some of the information is caused by our 
own actions, and other is of different origin. In order to make sense of it, our brains need to continuously build 
relationships between sensory events and between our actions and sensory events. Understanding the precise 
mechanisms that allow us to form complex models of the world has gathered considerable support for predic-
tive coding, a unifying brain theory based on the free energy principle which largely states that our brains are 
optimized to predict future  events1–5. Brain predictions are derived at multiple levels, for instance from detected 
sensory regularities or based on learned action-effects. In this paper, we focus on auditory predictions, as the 
auditory system has been particularly investigated in relationship to its ability to detect simple and complex 
 regularities6, but also in relationship to action intention and learned action-effects7,8. Here, we aim to further 
understand the relationship between sensory-regularity-based and action-effect-regularity-based predictions 
(or in short, sensory and action predictions), particularly, whether action-effect expectations can help detect 
sensory regularities that are otherwise difficult to be detected. In other words, can one type of auditory predic-
tion facilitate/compensate for the other?

In oddball paradigms, regularity detection is usually investigated by looking at stimuli that deviate from 
an established rule, which elicit the well-known mismatch negativity (MMN), a negative deflection typically 
observed at latencies between 100 and 250 ms post stimulus presentation by subtracting the standard-evoked 
from the deviant-evoked activity. Probably one of the most investigated ERP components since its  discovery9, 
the MMN has increasingly been interpreted from a predictive coding  perspective3,10–13. In short, the predictive 
coding theory postulates that higher cortical areas send prediction signals regarding the expected input to the 
lower areas, which, in turn, send prediction error signals back up the cortical hierarchy, in case the expected 
and the received input do not match. In this context, the MMN arises as the result of a comparison between the 
top-down expectations and bottom-up sensory input. Thus, it represents a marker of prediction error following 
mismatching stimuli.

The MMN is typically investigated in relationship to regularity violations, and outside the context of action. 
Yet in one  study14, participants were asked to randomly press left and right keys to generate tones A and B, which 
were inversely associated with the two key-presses (i.e., the left key-press frequently generated tone A, while right 
key-press frequently generated tone B). Rarely, these learned associations were violated by presenting the other 
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tone i.e,. the tone associated with the other key-press. Important to note here is that the two tones were overall 
presented with equal chances i.e., there was no overall sensory regularity (only an action-effect regularity). In a 
second condition, participants generated a typical oddball sequence where the left and right keys triggered tone 
A frequently and tone B rarely, regardless of the key-press choice (no action-effect regularity, only a sensory 
regularity). Interestingly, similar MMNs were found in both conditions, suggesting that the predictive system 
behind the MMN generation is able to rely on both sensory regularity-based predictions, as well action predic-
tions based on the intention to generate specific action-effects14.

Nevertheless, one interesting limitation of the MMN system has been recently brought forward: it seems to 
struggle with recognizing stochastic  regularities15. That is, when two highly probable standards (presented ran-
domly, each in 45% probability) enclosed the pitch of a rare deviant (presented randomly, with 10% probability), 
the MMN was consistently failed to be observed. This was not the case when the deviant’s pitch was excluded from 
the distribution defined by the two standards, or if the deviant was presented within a deterministic sequence of 
alternating standards. The results were interpreted from a predictive coding perspective and in agreement with 
previous  findings16,17 suggesting that predictions are based on a distribution of possible outcomes. However, this 
means that sounds from within the distribution body, no matter how rare, will not be identified as prediction 
violating. The authors of this study thus suggested that it seems like the brain did not quickly learn that two 
outcomes are more likely than a third one, as a gambler would easily  do15.

While this appears to be a surprising limitation, it might be that the detection of more complex (stochastic) 
regularities requires a stronger generative model and/or predictions at higher levels. After all, gambling involves 
acting with the intention to achieve expected outcomes, rather than just passive recognition of probabilities. In 
line with this, we were interested to see whether associating the two likely outcomes (i.e., the standard tones) 
with intended action-effects would lead to detection of the stochastic regularity violation. This was compared to 
a condition in which both key-presses generated both standard tones, equally likely. We expected that the rare 
enclosed deviant would lead to mismatch response(s) only when violating the expected action-effects, despite 
the two conditions being in fact identical in terms of physical stimulation, i.e. the overall as well as transitional 
probabilities of the three tones did not differ. This would first, extend previous findings indicating that intention 
leads to predictions at sensory  levels14 and second, confirm our hypothesis that action-effect expectations can 
help detect sensory regularities that are otherwise difficult to be detected.

Action predictions are often described in terms of filtering out the expected events via a feedforward mecha-
nism that sends information from the motor to the sensory  systems7,8,18. Yet, it has recently been argued that 
arbitrary and rapidly learned action predictions (such as is the case with key-tone associations), by contrast to 
more body-related predictions (e.g., experiencing pressure), should be best explained by inferential, cognitive 
processes rather than by motor-based  mechanisms19. From this perspective, the action and sensory prediction 
mechanisms become more comparable; indeed, functional equivalence between the two has previously been 
 proposed20,21. Given these alternative views on the correspondence between action and sensory predictions, 
this study should additionally offer important insights regarding the role of action predictions relative to that 
of (complex) sensory predictions.

Finally, while most action prediction studies look at the effects of sound predictability at post-stimulus 
intervals, an interesting question is whether the specificity of the action-sound associations differently modu-
lates the pre-stimulus, action preparation stages. While such a finding would provide important new directions, 
research on the topic remains scarce—in fact, to the best of our knowledge, the direct relationship between action 
preparation and action-effect specificity remains uncharted. We thus additionally address this in a secondary, 
exploratory analysis by focusing on the lateralized readiness potential (LRP), a component presumably reflecting 
the preparation of a specific hand (or foot)  action22.

Materials and method
Participants. Data were collected from 14 healthy participants (8 male, mean age: 23.3 year-old, age range: 
19–30 year-old) who gave a written informed consent for the study participation; all participants reported nor-
mal hearing, normal-to-corrected vision, no history of neurological conditions, nor regular intake of any pre-
scribed drugs. All participants were right-handed. The Ethics Advisory Board of Leipzig University approved the 
study procedure, in agreement with the Declaration of Helsinki (code of approval: 2020.02.24_eb_41). Partici-
pants received either compensation of 8 euros/hour or course credits.

Apparatus and stimuli. For the whole experiment duration, participants sat in a comfortable office chair 
in an electrically-shielded, double-walled sound booth (Industrial Acoustics Company). During each of the 
experimental blocks, participants were required to place their head into a chin and forehead rest, in order to 
minimise EEG-related artifacts. As  in15, stimuli were simple sine wave tones with fundamental frequencies of 
1000 Hz for the deviant and 900 Hz and 1100 Hz for the standards, respectively. The tones had a duration of 
50 ms including 5-ms rise-and-fall times and were presented binaurally over a pair of headphones (Sennheiser 
HD 25) at an intensity level of 82 dB SPL. The two keys to be pressed had dimensions of 3.8 × 4.5 cm and were 
placed on the desk in front of the participant. Importantly, we used custom‐built infrared photoelectric sen-
sor‐based keys which have the advantage of being completely silent while still providing tactile feedback, by 
comparison to typical membrane or mechanical keys. During each block, participants were required to fix their 
gaze on a fixation cross which was displayed on a 19-in. CRT monitor (G90fB, ViewSonic, resolution 1024 × 768 
pixels, refresh rate of 100 Hz), which was placed at a comfortable seeing distance in front of the participant 
(∼60 cm). The experiment was implemented in Psychtoolbox 323, in combination with GNU Octave Version 
4.0.0, running on Linux OS.
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Task. Figure 1 summarizes the experimental conditions. Participants pressed the left and right keys with their 
index fingers to generate tones according to the condition-specific instructions. In the condition with hand-
specific associations (hereafter SPEC), participants pressed the left key to produce the lower 900-Hz tone and the 
right key to produce the higher 1100-Hz tone, which were presented in 90% of the cases (each tone accounting 
for about 45% of the trials). Rare presentation of the 1000-Hz deviant tone accounted for the remaining 10% 
of the trials. Here, the left hand—low tone and right hand—high tone associations regarding the frequently pre-
sented tones were kept fixed for all participants, as pre-existent representations regarding size (operationalized 
here as tone frequency) are likely to be mapped on a left–right continuum. This would thus help create stronger 
expectations regarding the tone identity following the left and right key-presses. Note that such a relationship 
between mental spatial representations and both mathematical  decisions24 as well as pitch-related  decisions25 has 
been demonstrated before. In the condition with hand-unspecific associations (hereafter UNSPEC), both the left 
and right key-presses produced either the 900-Hz tone or the 1100-Hz tone with equal chances, thus making the 
key-press choice uninformative with regards to the identity of the forthcoming come. As in the SPEC condition, 
these two tones were presented on 90% of the trials (each with 45% overall probability), while on the remaining 
10% of the trials, the rare 1000-Hz deviant was presented instead. The two conditions may also be described in 
terms of transitional probabilities. That is, while they do not differ in terms of sensory probabilities, the action-
sound probabilities are different, this information representing an additional top-down source whose effect is 
of interest here.

In both conditions, participants’ task was to press the two keys with equal chances throughout one block; 
regarding the timing, a key was to be pressed every one second while avoiding to produce fixed left/right pat-
terns of key-presses. The time between consecutive key-presses was monitored online. If participants’ pace was 
much faster or slower than indicated (± 500 ms relative to 1000 ms), a corresponding error message (“Too slow/
Too fast”) was presented instead of the tone; this was displayed on the screen underneath the fixation cross after 
which participants proceeded normally to the next key press. Note that the timing errors did not affect the total 
number of collected trials for the standard and deviant tones, as error trials were repeated so that the planned 
number of “correct” timing trials and corresponding tones was insured. In order to have an estimate of task 
compliance, timing errors were analysed offline as error percentage (%ERR) from the total number of trials (i.e., 
“correct” timing + error trials), along with the total ratio of left/right key-presses.

Twenty experimental blocks (10 for each condition) were recorded in total. The duration of one block was 
about 1.5 min, and participants could take self-paced breaks in between. Each experimental block consisted of 
90 standard tones and 10 deviant tones. Two shorter practice blocks each consisting of 36 standard tones and 4 
deviant tones were performed in the beginning of every condition. The condition order was counterbalanced i.e., 
half of the participants started with the SPEC, and half with the UNSPEC condition, while the blocks belonging 
to the same condition were run one after another. The tone onset immediately followed the key-press (with a 
delay of ~ 5 ms), the total trial duration being about one second as a function of the participants’ self-pacing. For 
the whole duration of a block, participants fixed their gaze on the fixation cross presented in the middle of the 
screen. At the end of every experimental block, feedback regarding the timing (including the percentage of trials 
with “correct”, “too slow” and “too fast” responses, but also the average timing in ms), as well as the ratio of left-
to-right key-presses was displayed on the screen for a duration of 10 s, to help participants maintain/adjust their 

Figure 1.  Experimental conditions. In the case of hand-specific associations (left), the left key-press generated 
the standard lower 900-Hz tone and the right key-press generated the standard higher 1100-Hz tone. In the 
condition with hand-unspecific associations, both key-presses generated both standard tones with equal 
chances. In both conditions, the standards were presented with 90% probability (each in about ~ 45% of the 
trials), while the middle-pitch enclosed 1000-Hz deviant was presented in the remaining 10% of the cases. 
Participants fixed their gaze on a fixation cross and pressed a key of their choice every second, while avoiding 
to produce fixed sequences and ensuring that the two keys were pressed equally often throughout one block. 
The two keys (here, displayed in dark and light grey for the left and right hands for easy discrimination) were 
completely silent while still providing tactile feedback (i.e., were infrared photoelectric sensor‐based keys, 
dimensions: 3.8 × 4.5 cm). MS Office PowerPoint 2016 (https:// www. office. com) was used to generate this figure 
and edit subsequent figures.

https://www.office.com
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performance. Only during the practice blocks and starting from the second trial, the timing between consecutive 
key-presses was additionally displayed on the screen, underneath the fixation cross—this had the purpose of 
helping participants acquire the desired pace. All information presented on the screen including fixation cross 
and feedback were displayed in light grey on a dark grey background. The order of standard and deviant tones 
within a block (and within the same key for the SPEC condition) was randomized, with the constraint that the 
first two tones were always standards and no deviants were presented consecutively.

Finally, in a second part of the experiment, participants performed a passive listening task in which they 
heard the stochastic sequences generated in the active part. This was compared to a deterministic sequence of 
alternating standards, with rare and random deviants in between, as in the original study comparing the two 
regularity  types15. For details regarding the passive listening task including method and results, see the Sup-
plementary Information.

EEG data recording and preprocessing. EEG data were continuously recorded at a sampling rate of 
500 Hz with a system equipped with 32 Ag–AgCl active electrodes, using a BrainAmp amplifier and the Vision 
Recorder software (Brain Products GmbH, Munich, Germany). Two electrodes were placed on the mastoids. 
One electrode placed on the tip of the nose served as online reference, a ground electrode was placed on the 
forehead, while three electrodes were used to record EOG activity, two of which were placed on the left and right 
outer canthi, and one below the left eye. The remaining electrodes were mounted in an elastic cap (actiCAP) fol-
lowing the extended international 10–20  system26.

The EEG preprocessing was carried out using the EEGLAB MATLAB-based  software27. Data were first filtered 
using a 0.1 Hz high-pass and a 45 Hz low-pass windowed sinc finite impulse response (FIR) filter (Hamming win-
dow, filter order 8250—high-pass, and 166—low-pass), in accordance with current  recommendations28. Channels 
containing extreme amplitudes were removed using a deviation criterion (threshold = 3) which “calculates the 
robust z score of the robust standard deviation for each channel”29; on average, 0.3 channels were excluded (range: 
0–2). Data were then epoched around the tone presentation/key-press, separately for the post-stimulus (− 200 
to 600 ms) and pre-stimulus (− 850 to 200 ms) analyses. Epochs with amplitudes exceeding a 500 μV amplitude 
difference threshold were removed; on average, 4.8 epochs were excluded at this step (range: 0–36). An Inde-
pendent Component Analysis (ICA) was computed by using the built-in EEGLAB extended Infomax (runica) 
decomposition algorithm on the raw data, which were first filtered using a 1 Hz high-pass (Hamming window, 
filter order 1650) and a 45 Hz low-pass (same parameters as before) windowed FIR filter in order to optimize 
the ICA decomposition, epoched (− 200 to 600 ms relative to tone presentation), and cleaned by removing the 
same bad channels and epochs detected at the earlier step. The obtained weights were stored and transferred to 
the 0.1 Hz high-pass filter datasets. The removal of components containing eye-related and muscle artifacts was 
done based on visual inspection and paired with the recommendations computed by SASICA, which refer to 
low auto-correlation of time-course, focal channel topography, focal trial activity, correlation with vertical EOG, 
and correlation with horizontal  EOG30. On average, seven principal components (range: 6–8) were removed. The 
missing channels were interpolated using the built-in EEGLAB spherical interpolation function, and data were 
baseline corrected using the − 200 to 0 ms interval for the post-stimulus analyses, and the − 850 to − 650 ms 
interval for the pre-stimulus analysis, respectively. Epochs with amplitudes still exceeding a 200 μV signal change 
within epoch threshold after the ICA corrections were removed; on average, 9.2 epochs were excluded at this 
this step (range: 0–66). Finally, condition-specific grand-averages were calculated for the standard and deviant 
tones, for the post-stimulus analyses. Note that the standard grand-averages excluded each first tone presented 
after deviants. For the pre-stimulus analyses, the condition-specific grand-averages were calculated for the left 
and right hand responses (irrespective of whether these subsequently generated standard or deviant tones) and 
on the data additionally filtered with a 10 Hz low-pass filter (Hamming window, filter order = 414).

PCA analysis. To determine the ERP components of interest at the post-stimulus intervals, a temporal Prin-
cipal Component Analysis (PCA) was performed on the grand-average data corresponding to the standard and 
deviant tones in the SPEC and UNSPEC conditions, by using the ERP PCA toolkit MATLAB-based  toolbox31. In 
accordance with current  recommendations32, a Geomin rotation (ϵ = 0.05) with a covariance relationship matrix 
and no weighting was used. Horn’s parallel test further determined the number of components to be retained. 
Note that each principal component identified by the temporal PCA is characterized by two parameters: first, 
the time-variant component loadings reflect its correlation with the ERP at each point in time, that is, the compo-
nent time course or activation latency. Second, the time-invariant component scores represent the contribution 
of each component to the observed ERP wave per participant, electrode and condition, that is, the component 
amplitude.

Statistical analyses. The component scores of each component of interest identified by the temporal PCA 
at post-stimulus intervals were separately tested using a 2 × 2 repeated-measures ANOVA with factors Condition 
(SPEC vs. UNSPEC) and Stimulus type (Standard vs. Deviant). The LRP pre-stimulus analysis was conducted by 
using A 2 × 2 × 2 repeated-measures ANOVA with factors Condition (SPEC vs. UNSPEC), Hand (Left vs. Right), 
and Laterality (Contralateral vs. Ipsilateral), on the mean amplitudes in the − 350 to − 50 ms window. This more 
conventional approach regarding a rather large window of interest was preferred due to the exploratory nature 
of this analysis. The LRP onset latencies were computed on the mean of the contralateral minus ipsilateral dif-
ference over hands per condition with an absolute of 0.3 µV  criterion33, and were compared with frequentist and 
Bayesian t-tests between conditions. The statistical significance was defined at the 0.05 alpha level, and results 
are reported including the partial eta-square effect sizes (η2

p). We further investigated the frequentist ANOVA 
main effects and interaction with corresponding Bayesian t-tests. Note that this analysis strategy warrants opti-
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mal correspondence between the frequentist and Bayesian comparisons, while additionally allowing evaluating 
support provided by the data for the null hypothesis as well. However, for conciseness, in the LRP analysis, we 
only report the main effects and interactions that are significant/provide support for the alternative hypothesis. 
Significant interactions and/or interactions that provided evidence for the alternative hypothesis were followed-
up with (frequentist and corresponding Bayesian) t-tests.

For all Bayesian comparisons, the Bayes factor (BF10) was calculated; the null hypothesis corresponded to a 
standardized effect size δ = 0, and the alternative hypothesis was defined as a Cauchy prior distribution centered 
around 0 with a scaling factor of r = 0.70734. In line with the Bayes Factor  interpretation35,36 and with previous 
studies reporting Bayes  Factors14,37–39, data were taken as moderate evidence for the alternative (or null) hypoth-
esis if the BF10 was greater than 3 (or lower than 0.33), while values close to 1 were considered only weakly 
informative. Values greater than 10 (or smaller than 0.1) were considered strong evidence for the alternative (or 
null) hypothesis.  All statistical analyses have been conducted using the JASP 0.9.1.0 software.

Results
Behavioural results. Timing errors. These were calculated as error percentages (%ERR) relative to the total 
number of trials in each condition. In the SPEC condition, participants made on average 0.11%ERR (SD = 0.22%, 
range = 0–0.77%) by pressing the keys much faster than requested, and 0.14%ERR (SD = 0.16%, range = 0–0.49%) 
by pressing the keys much slower than requested (i.e., less than 500 ms or more than 1500 ms between consecutive 
key-presses). In the UNSPEC condition, participants made on average 0.16%ERR (SD = 0.21%, range = 0–0.66%) 
by pressing the keys much faster than requested, and 0.3%ERR (SD = 0.52%, range = 0–2.07%) by pressing the 
keys much slower than requested. Results of a 2 × 2 frequentist ANOVA showed no significant main effects of 
Condition (F(1, 13) = 3.21, p = 0.096, η2

p = 0.198) or Timing (F(1, 13) = 3.38, p = 0.089, η2
p = 0.206), nor a signifi-

cant interaction term (F(1, 13) = 0.70, p = 0.418, η2
p = 0.051). To conclude, the overall small percentages of error 

rates suggest that participants pressed the keys at the suggested pace, while the lack of condition differences sug-
gest that participants’ performance was stable throughout the whole task.

Ratio of left/right key-presses. On average, participants pressed the left key on 50.41% (range = 46.76–52.30%) 
and the right key on 49.59% (range = 47.70–53.24%) of the trials in the SPEC condition. Similarly, in the UNSPEC 
condition, the left key was pressed on 50.21% (range = 48.02–53.15%) and the right key on 49.79% (range = 46.85–
51.98%) of the trials. Results of a 2 × 2 frequentist ANOVA with factors Condition (SPEC vs. UNSPEC) and Hand 
(left vs. right) showed no significant main effects of Hand (F(1, 13) = 1.05, p = 0.324, η2

p = 0.075) or interaction of 
Hand × Condition (F(1, 13) = 0.23, p = 0.635, η2

p = 0.018). Thus, the left and right keys were pressed about equally 
often throughout the whole task.

ERP PCA results. The grand-average ERPs along with the PCA results are displayed in Fig. 2, for the specific 
(Fig. 2a) and unspecific conditions (Fig. 2b). As suggested by Horn’s parallel test, 14 components explaining 
over 95% of the epoch variability were retained (Fig. 2, last column). The condition-specific grand-average ERPs 
(Fig. 2, first column) and the reconstructed PCA waves representing the sum of the 14 retained components 
(Fig. 2, middle column) are displayed together for a region of interest composed of frontocentral electrodes 
Fz, FC1, FC2, Cz, CP1, and CP2. Note that the PCA reconstruction waves very well correspond to the grand-
average ERPs for the standard, deviant, and difference (i.e., deviant—standard) waves, suggesting that the PCA 
solution accurately represents the original data. The selection of the components of interest was based on latency 
and topographical information. Two sub-components of the classical MMN were separated: a peak at 150 ms 
presumably representing an early MMN response, and a later peak at 196 ms presumably corresponding to the 
N2 component. A component peaking at 102 ms and corresponding to the N1 response was also identified. Note 
that the principal components are ordered by explained variance, not by peak latency. That is, the MMN and N2 
are represented by components number 4 and 2, respectively, and together explain ~ 22.7% of the epoch variabil-
ity, while the N1 is represented by component number 7 and explains ~ 2.5% of the epoch variability.

Figure 3 displays the condition-specific waves for the standard and deviant tones, along with the difference 
waves and their specific topographical maps (deviant—standard activations), for the MMN (Fig. 3a) and N2 
(Fig. 3b) components. Additionally, Fig. 4 displays the distributions of the condition-specific difference scores 
(i.e., deviant—standard) along with a contrast between conditions regarding the observed difference scores 
(i.e. (SPEC deviant—standard)—UNSPEC (deviant—standard)) for the N1 (Fig. 4a), MMN (Fig. 4b), and N2 
(Fig. 4c) components. The components were analysed at canonical regions of interest (ROIs), in agreement with 
previous literature regarding the topographies of the  N17,15,  MMN6,11,15, and  N240. Specifically, the MMN has a 
frontocentral distribution largest at electrodes Fz, FC1, FC2, and Cz (see topographical maps in Fig. 3a)—the 
analyses therefore focused on an average of these, as was also the case for the N1 component (topographical maps 
not displayed). The N2 component has a central distribution posterior to that of the MMN (see topographical 
maps in Fig. 3b), the analysis thereby focused on an average of the FC1, FC2, Cz, CP1, and CP2 electrodes. For 
a summary of the statistical analyses that we report next, please refer to Table 1.

N1: The frequentist repeated-measures ANOVA lead to a significant main effect of Stimulus type (F(1, 
13) = 6.41, p = 0.025, η2

p = 0.330) and no significant interaction term (F(1, 13) = 0.16, p = 0.691, η2
p = 0.013), nor 

main effect of Condition (F(1, 13) = 1.49, p = 0.244, η2
p =0.103; see Table 1). The Bayesian t-test corresponding to 

the main effect of Stimulus type brought however only weak evidence for the alternative hypothesis (BF10 = 2.7). 
The Bayesian t-tests corresponding to the main effect of Condition (BF10 = 0.5) and interaction term (BF10 = 0.29) 
brought weak and moderate evidence for the null hypothesis, respectively. Therefore, no reliable N1 effects were 
observed overall, while the evidence supported the null hypothesis regarding the condition differences (see also 
Fig. 4a).
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MMN: The frequentist repeated-measures ANOVA brought forward a significant main effect of Stimulus type 
(F(1, 13) = 19.79, p < 0.001, η2

p = 0.604) and a significant interaction of Condition × Stimulus type (F(1, 13) = 11.79, 
p = 0.004, η2

p = 0.476), while the main effect of Condition was non-significant (F(1, 13) = 1.2, p = 0.292, η2
p = 0.085; 

see Table 1). The Bayesian t-tests corresponding to the main effect of Stimulus type brought strong evidence for 
the alternative hypothesis (BF10 = 56.27), as did the comparison regarding the interaction term (BF10 = 11.1), while 
the evidence corresponding to the main effect of Condition weakly supported the null hypothesis (BF10 = 0.45). 
Following up on the interaction term bringing evidence for the existence of MMN condition differences, the 
direct comparison of deviant vs. standard tones demonstrated significant elicitation of MMN in both the SPEC 
(t(13) = 4.76, p < 0.001), as well as in UNSPEC conditions (t(13) = 3.36, p = 0.005). Complementary Bayesian t-tests 
further proved that the alternative hypothesis was strongly supported in the SPEC (BF10 = 92.41), and moderately 
to strongly supported in the UNSPEC condition (BF10 = 9.98). To conclude, the data indicated that the MMN 
component was elicited in both conditions, but stronger in SPEC condition (see also Fig. 4b).

N2: The frequentist repeated-measures ANOVA pointed to significant main effect of Condition (F(1, 
13) = 11.24, p = 0.005, η2

p = 0.464) and Stimulus type (F(1, 13) = 15.23, p = 0.002, η2
p = 0.540), as well as to a signifi-

cant interaction term (F(1, 13) = 7.54, p = 0.017, η2
p = 0.367; see Table 1). The Bayesian t-tests corresponding to the 

main effect of Stimulus type brought strong evidence for the alternative hypothesis (BF10 = 23.59), while the evi-
dence corresponding to the main effect of Condition and interaction term moderately supported the alternative 
hypothesis in both cases (BF10 = 9.75 and BF10 = 3.75, respectively). Following up on the interaction term bringing 
evidence for the existence of condition differences regarding the N2 effect, the direct comparison of deviant vs. 
standard tones demonstrated significant elicitation of N2 in the SPEC (t(13) = 3.91, p = 0.002), but not in the 
UNSPEC (t(13) = 1.83, p = 0.082) condition. This was confirmed by the Bayesian complementary comparisons 

Figure 2.  ERP PCA results. Grand-average ERPs (left) display the standard, deviant and difference waves for 
the conditions with specific (a) and unspecific (b) associations, for an average of frontocentral Fz, FC1, FC2, Cz, 
CP1, and CP2 electrodes. Following the PCA analysis, 14 principal components explaining more than 95% of 
the epoch variability were retained, the sum of these components or the so-called reconstruction waves (middle) 
being displayed again for the standard, deviant, and difference wave in both conditions, for the same average of 
electrodes as before. Note that the reconstruction waves correspond well to the grand-average ERPs indicating 
the PCA solution accurately represents the original data. The 14 retained components are presented individually 
(right); out of these, three components presumably representing N1, MMN, and N2 responses were further 
analysed. Figure generated in MATLAB, version R2017a (http:// www. mathw orks. com/).
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indicating that the alternative hypothesis was strongly supported in the SPEC condition (BF10 = 23.94), while the 
evidence in the UNSPEC condition was uninformative (BF10 = 1.07). Thus, the data pointed towards condition dif-
ferences regarding the N2 effect, which only seemed to be reliably elicited in the SPEC condition (see also Fig. 4c).

LRP results. Figure 5 presents the Readiness Potential (RP; Fig. 5a) along with the LRP (Fig. 5b) component, 
which was analysed at electrodes C3 and C4, in agreement with current  recommendations41. The LRP had a more 
negative mean amplitude (− 0.72 µV vs. − 0.51 µV) and earlier onset latency (− 364 ms vs. − 248 ms) in the SPEC 
compared to the UNSPEC condition. The frequentist repeated-measures ANOVA on the LRP mean amplitudes 
lead to a significant main effect of Laterality (F(1, 13) = 21.92, p < 0.001, η2

p = 0.628) and a significant interaction 
of Condition × Laterality (F(1, 13) = 14.36, p = 0.002, η2

p = 0.525). Concurring, the Bayesian t-tests correspond-
ing to the main effect of Laterality brought strong evidence for the alternative hypothesis (BF10 = 81.01), as did 
the comparison regarding the of Laterality × Condition interaction (BF10 = 19.65). All other main effects and 
interactions were non-significant/did not provide support for the alternative hypotheses. Following up on the 
interaction term bringing evidence for the existence of LRP condition differences, the direct comparison of 
contralateral vs. ipsilateral responses demonstrated significant elicitation of the LRP component in both the 
SPEC (t(13) = 5.20, p < 0.001) and UNSPEC conditions (t(13) = 3.95, p = 0.002). Concurring, the complementary 
Bayesian t- tests bring strong support for the alternative hypothesis in both SPEC (BF10 = 178.72), and UNSPEC 
(BF10 = 25.32). Additionally, the t-test comparing SPEC vs. UNSPEC LRP onset latencies was statistically signifi-
cant (t(13) = 4.02, p = 0.001)/brought strong support for the alternative hypothesis (BF10 = 28.62). To conclude, 
the data indicated that the LRP was elicited in both conditions, but stronger and earlier in SPEC.

Discussion
The predictive coding framework suggests that in order to process the incoming sensory information efficiently, 
the brain is continuously building up and updating predictive models, where sources for predictions may be 
drawn from sensory regularities and/or action-effect regularities. Since recent results from the auditory system 
literature indicate that stochastic regularities (i.e., learning that some tones are more likely to occur than oth-
ers) seem to be rather difficult to detect if the pitch of two standards enclose the pitch of the deviant  tone15, the 
scope of this paper was to test whether associating the two standard tones with intended action-effects would 
lead to facilitated detection of the enclosed rare tone. Indeed, a larger MMN response was obtained in the SPEC 
condition, by comparison to the UNSPEC condition in which the standard tones could not be predicted based 
on the action choice. Our results thus suggest that intention-based action-effect predictions can enhance the 
encoding of stochastic regularities, extending previous findings that action intention alone (i.e., in the absence 
of any auditory regularities) leads to predictions at sensory  levels14. The data further indicated that higher-order 
deviance detection processes reflected by the N2 component were reliably engaged when the tones could be 
predicted based on the action choice (in the SPEC condition), but not based on the stochastic regularity alone 
(in the UNSPEC condition). Nevertheless, the necessary and sufficient conditions for the encoding of stochastic 
regularities is still yet to be determined by future research, as we also observed a weaker MMN when specific 
predictions based on the action choice were not possible.

Additionally, an exploratory analysis focusing on the LRP component tested whether the specificity of the 
expected action-effects modulates action preparation. Congruent with our post-stimulus findings, the pre-
stimulus LRP was larger when the action choice lead to specific sound predictions, that is, the hand-specific 
preparatory activity was stronger in the SPEC compared to UNSPEC condition. According to a previous  study42, 
the RP may be increased when key-presses are associated with sounds, by contrast to when they have no sensory 
consequences. Moreover, action preparation presumably represents a hierarchical process, where the magni-
tude of the (L)RP depends on whether the precise action parameters such as direction of movement are already 
 known43. Our result seems to go one-step further: the LRP magnitude does not only depended on the action 
parameters or on whether the action has any sensory consequences at all, but it depends on whether it is carried 
out to determine specific sensory outcomes. The present effect can further be related to the recently-described 
prediction potential (PP)44. The PP is a negative going shift preceding sensory input that can be predicted by 
contextual information. The RP is also a negative going shift, but preceding an action, rather than a stimulus. 
Considering that action and perception can be conceptualized in a joint theoretical framework postulating 
common mental codes for action and  perception45 and that the intention to press a key makes the action highly 
predictable, one may regard the present RP as the motor analogue of the sensory PP. Moreover, similarly as the 
PP reflects perceptual and semantic features of anticipated stimuli before they  appear46,47, its motor analogue, 
the RP reflects this “feature” specificity by the fact that it lateralizes (the LRP) with the hand that will execute 
the action. Finally, while this finding may provide important new directions, further corroboration is needed, 
given the explanatory nature of this comparison.We next focus on discussing the post-stimulus MMN and N2 
findings in more detail.

Action‑effect predictions facilitate the early sensory predictions. Previous findings demonstrated 
that action-effect predictions can modulate the  N148,  MMN14,  N2b49, and  P3a14,50 amplitude, depending on 
whether the received input can be correctly predicted based on the action choice or not. While some of these 
studies do not clearly separate the effects of action predictions from those of sensory predictions based on stimu-
lus regularity, one study found that the MMN component was elicited without global regularity, but based on 
expected action-effects only; that is, the MMN was elicited to violations of the expected action-effects when 
two tones (inversely associated with left or right key-presses) were overall presented with equal  chances14. Thus, 
even though it has been demonstrated that sensory regularity, if available, plays a role in the context of action 
 predictions37,51–54, it seems that the action intention alone can be sufficient to drive predictions at sensory levels, 
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when no regularities can otherwise be extracted from the incoming stimulation. In the present study, we found 
that the magnitude of the MMN was larger in the SPEC condition, even though MMN responses were observed 
in both the SPEC and UNSPEC conditions. This extends the previous action prediction results and demonstrates 
that under certain task conditions, predictions based on expected action effects can help boost the early sensory 
predictions based on encoded environmental regularities. Note the observed MMN effect is clearly post-N1 and 
presumably represents a “true” prediction marker, rather than neural adaptation-related  processes55. Specifically, 
the N1 was detected by the temporal PCA as a separate component for which no reliable modulation was found.

Note however that based on the present data, we cannot conclude whether what we observe as a facilita-
tion effect occurs due to an interaction of (stochastic) regularity-based and action-effect-based predictions, or 
rather due to independent and thus additive effects of the two predictions types. Recent  results14 indicated that 
deterministic regularities and intention might integrate rather than add up, when available simultaneously – this 
means that once the prediction system gathers enough information (which could be extracted from either regu-
larity or intention), additional input does not change the observed effects. Yet, the relationship between stochastic 
regularities where the expected input cannot be accurately determined on a trial-by-trial basis and intention 
might be fundamentally (and functionally) different. While the previously reported integration of action and 
sensory  predictions14 may suggest equivalence between the two prediction  types20, the present results bring 
forward a new functional role of the action predictions: they may serve to increase the precision gain referring 
to the reliability of the  prediction56, in case of (more complex) sensory predictions.

Finally, we would like to point out the possibility that this facilitation effect on the encoding of stochastic 
regularities might not be specific to action predictions. Previous studies showed that the magnitude of the 
Incongruency Response (IR), an ERP component indexing visual-auditory  predictions39,57 may increase in case 
of concurrent visual-auditory and regularity-based prediction  violations58. Moreover, previous results indicated 
that action predictions and sensory visual-auditory predictions lead to comparable effects, indicating that the two 
information types feed into a common generative model, despite presumably having different brain  sources59. 
This would confirm that action predictions are not qualitatively different from sensory  predictions20,21 and that 
they are likely to stem from more general cognitive processes, rather than from specific information coming 
from the motor  system19. Nevertheless, while most studies focus on identity  predictions8, additional decisions 
regarding when and whether to act which in turn modulate the sensory processing of action-effects as  well60,61, 
might still make action-related predictions functionally distinctive from other types of sensory predictions.

Action–effect predictions additionally lead to higher‑order deviance detection. In addition to 
the MMN, we observed a further N2 component, as identified by the principal component analysis (PCA), 
which is highly reliable at identifying the components of interest, given the complex nature of an ERP  wave62. 
The two identified components (i.e., MMN and N2), importantly, were differently modulated in the two condi-
tions: that is, the MMN was elicited in both cases with different magnitudes, while the N2 was reliably elicited 
in the SPEC condition only. Correspondingly, the two are not likely to reflect sub-components of the same clas-
sical MMN response that is typically observed  as a unitary frontocentral effect. Here, the MMN and N2 effects 
have distinguishable topographical activations, with the second being more centrally distributed, relative to the 
first one (see Fig. 3). The later component is thus more likely to reflect later and higher-order deviance detec-
tion processes that only seem to be engaged when higher-order predictions based on specific action-effects are 
available for the system. While the N2 belongs to the same family of processes related to deviance processing 
and error detection as the MMN, by contrast to the MMN, it presumably represents a marker of higher cognitive 
control and conscious detection of the deviant  sounds40. While this explanation seems theoretically satisfactory, 
a functional distinction between the MMN and N2 components should be further supported by polarity inver-
sion at the mastoid sites for the MMN, but not for the N2  component63. This indeed seems to be the case also in 
the present data (see Supplementary Information).

The lower vs. higher cognitive control of the mismatch detection mechanisms as indexed by the MMN and N2 
components respectively is further congruent with the assumed architecture of the predictive brain. Specifically, 
different generative models are built up, either in a bottom-up fashion, where prediction error is propagated 
from peripheral to sensory processing areas as in the case of sensory regularity-based predictions, or in a top-
down fashion, where predictions regarding the expected input are sent from central to sensory levels. In this 
context, cognitive control and attentional engagement represent an inherent property of the top-down, but not 
necessarily of the bottom-up system. Note that we do not suggest that generative models adjusted by bottom-up 
means cannot draw on attentional resources, as we know this is not true from studies where, for instance, strong 
regularity-based MMN responses are followed by P3  components64, which presumably index the attentional 
switch to motivationally significant  stimuli65. What we point out instead is that higher-order processes are only 

Figure 3.  MMN and N2 components. The MMN (a) peaks at 150 ms and is largest over a frontocentral 
region of interest (ROI) composed of the Fz, FC1, FC2, and Cz electrodes, while the N2 (b) peaks at 196 ms 
and is largest over a central ROI composed of the FC1, FC2, Cz, CP1, and CP2 electrodes, the displayed waves 
representing an average of these. For each component and each condition (specific associations—left; unspecific 
associations—right), the component-specific activity (solid lines) is displayed along with the reconstruction 
waves representing the sum of the 14 retained components (dashed,  transparent lines) for the standard, deviant, 
and difference waves. The component- and condition-specific topographical maps illustrate the deviant—
standard activation and have been calculated based on spherical spline interpolation. The electrodes marked on 
the topographical maps represent the component-specific ROIs which were further included in the statistical 
analyses. Figure generated in MATLAB, version R2017a (http:// www. mathw orks. com/).
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involved if the early detection of regularity violations reach a certain  threshold64. In the context of our results, 
this means that in the UNSPEC condition, the stochastic regularities were not encoded sufficiently strongly 
without the additional top-down mechanism based on expected action-effects—therefore, the subsequent N2 
component was not reliably elicited.

Stochastic regularity detection or learned unspecific actions‑effects? Based on previous  results15, 
we did not expect to find a MMN effect in the UNSPEC condition. Yet, the active nature of the task (i.e., involving 
increased attentional resources) and the longer SOA (i.e., variable around one second as a function of partici-
pants’ self-pacing, by contrast to fixed at 500 ms in the original  study15) might have afforded the necessary con-
ditions for improved perceptual categorization of the tones, and thus the encoding of the stochastic regularity. 
Indeed, our ability to distinguish objects between themselves seems to depend on timing. This appears to be true 
for both low-level perceptual categories as for instance in auditory  streaming66, as well as for high-level cogni-
tive categories as for instance in dual-task studies showing that participants’ categorizing performance decreases 
with shorter  SOAs67.

The results from the additionally recorded passive listening task (see Supplementary Information) are of 
further relevance here. In short, we found similar MMN responses following stochastic regularities in which 

Figure 4.  Difference scores. Violin plots display the condition-specific distributions for the difference scores 
(deviant—standard, top) and for the differences between conditions regarding the observed mismatching effects 
(deviant—standard differences between conditions, bottom) for the N1 (a), MMN (b), and N2 (c) components. 
The estimated density distributions are shown along with boxplots indicating the medians, interquartile ranges, 
and confidence intervals, whereas the means are displayed by the red dots. The black dots represent individual 
data points falling outside the confidence intervals. Figure generated in R, version 3.5.1 (https:// cran.r- proje ct. 
org/), in combination with the “ggplot2” package (https:// ggplo t2. tidyv erse. org/).

Table 1.  Results of Statistical Analyses. For each of the three components of interest, a 2 × 2 frequentist 
ANOVA with factors Condition (SPEC vs. UNSPEC) and Stimulus type (standard vs. deviant) was computed. 
Corresponding Bayesian pairwise comparisons tested the magnitude (or the lack) of the evidence regarding the 
frequentist main effects and interactions (for a detailed description, see “Statistical analyses”). Note that these 
complementary analyses insure optimal correspondence between the Bayesian and frequentist results, while 
allowing evaluating support provided by the data for the null hypothesis as well. Significant frequentist effects 
and BF10 supporting the alternative hypothesis are highlighted in bold.

Component Frequentist main effects and interactions and corresponding Bayesian pairwise comparisons

F p η2p BF10

N1

Condition (SPEC vs. UNSPEC) 1.49 .244 .103 0.50

Stimulus type (Std vs. Dev) 6.41 .025 .330 2.70

Condition × Stimulus type 0.16 .691 .013 0.29

MMN

Condition (SPEC vs. UNSPEC) 1.20 .292 .085 0.45

Stimulus type (Std vs. Dev) 19.79  < .001 .604 56.27

Condition × Stimulus type 11.79 .004 .476 11.10

N2

Condition (SPEC vs. UNSPEC) 11.24 .005 .464 9.75

Stimulus type (Std vs. Dev) 15.23 .002 .540 23.59

Condition × Stimulus type 7.54 .017 .367 3.75

https://cran.r-project.org/
https://cran.r-project.org/
https://ggplot2.tidyverse.org/
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participants listened to the sequences generated in the active part and deterministic regularities in which they lis-
tened to sequences of alternating standards with random deviants in between. Thus, the argument that stochastic 
regularity encoding as reflected by the MMN component might be explained due to longer SOA and improved 
perceptual categorization seems to hold true, also in the passive listening task. Additionally, the passive listen-
ing task was always run after the active task, to ensure similar timing across conditions (given by participants’ 
self-pacing). This means that participants had extensive training regarding the active perceptual discrimination 
of the tones (in addition to longer timing), which is in turn likely to have contributed to the observed effects, as 
it has been shown  that familiarity modulates the processing of early auditory  components68,69, also outside the 
focus of  attention70. It could finally be argued that the improved attention and perceptual categorization in the 
present active task might limit the generalization of our results. However, note that in the original  study15, an 
additional active condition in which participants had to pay attention to the tones and press a key when detecting 
the deviant did still not lead to improved detection of the stochastic regularity. Therefore, the explanation is more 
likely to lie in “true” tone predictability differences (here, based on action), rather than on attentional differences.

Alternatively, recent results coming from omission designs indicate that unspecific action-effects in which 
the action choice does not accurately determine the tone identity, lead to predictive effects  too37,54. The flexibil-
ity of the predictive system is further demonstrated by its ability to hold  concurrent71 and even contradictory 
 predictions58,72. Thus, in the UNSPEC condition, more flexible, binary expectations could have been established 
for each action-effect, rather than no action-effect expectations at all. Such a binary prediction would in fact 
represent an action-effect stochastic rule. Yet, regardless of whether the results in the UNSPEC condition are 
considered from a bottom-up (overall tone probability) or top-down (binary action-effects) perspective, the 
rule remains probabilistic and thus uncertain. By contrast, in the SPEC condition, the heard sequences can be 
regarded as both stochastic from a bottom-up perspective, and more importantly, deterministic from a top-
down perspective as on every trial, the identity of the forthcoming tone could be precisely determined based on 
the action choice. In turn, this leads to an increased prediction confidence and thus larger observed mismatch 
responses. Note that here, the bottom-up vs. top-down distinction refers to the manner in which the generative 
models come to be formed and adjusted, rather than how predictions unfold over time once expectations based 
on the incoming stimulation or established action-effects (or both) exist. Finally, it remains for future studies to 
determine the precise conditions under which stochastic regularities can be successfully encoded (in active as 
well as in passive task settings).

Conclusion
In line with the implication of the predictive coding theory that predictions based on higher-order generative 
models are fed top-down in the hierarchy to sensory levels, our results demonstrate that intention and learned 
action-effects enhanced the detection of stochastic regularities in which a rare deviant of medium pitch was 
enclosed between frequent high and low pitch standards. This was evident at early auditory processing levels 
as indexed by the MMN component; further congruent with the assumed architecture of the predictive brain, 
later and higher-order deviance detection processes indexed by the N2 component were reliably engaged only 
following specific action-effect predictions. These findings therefore add to the literature on the (functional) role 
of action predictions at sensory levels and point towards new directions on the common mechanisms through 
which intention and (stochastic) regularities modulate the auditory processing hierarchy. Finally, an explora-
tory analysis revealed larger and earlier pre-stimulus preparatory activity in the case of specific action-effect 

Figure 5.  (L)RP results. Grand-average ERPs incl. 95% confidence intervals (shown in transparent colours) 
display the pre-stimulus activity in the SPEC and UNSPEC conditions, as well as the SPEC—UNSPEC 
differences, for the Readiness Potential (RP; a) referring to an average of C3 and C4 electrodes, and the 
Lateralized Readiness Potential (LRP; b) referring to the contralateral–ipsilateral condition differences. Figure 
generated in MATLAB, version R2017a (http:// www. mathw orks. com/).
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predictions, as reflected in the Lateralized Readiness Potential (LRP). Pending further corroboration, the positive 
relationship between sound predictability and action preparation additionally provides important insights for 
future action-effect prediction studies.

Data availability
The raw EEG datasets generated and analysed during the current study are available in the Zenodo reposi-
tory, http:// doi. org/ 10. 5281/ zenodo. 42648 54, along with the PCA solutions for the active and passive tasks, 
respectively.
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