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Scientific breakdown 
for physiological blood flow 
inside a tube with multi‑thrombosis
Salman Akhtar1, L. B. McCash2, Sohail Nadeem1 & Anber Saleem3* 

The blood flow inside a tube with multi‑thromboses is mathematically investigated. The existence 
of these multiple thromboses restricts the blood flow in this tube and the flow is revamped by using 
a catheter. This non‑Newtonian blood flow problem is modeled for Jeffrey fluid. The energy equation 
includes a notable effect of viscous dissipation. We have calculated an exact solution for the developed 
mathematical governing equations. These mathematical equations are solved directly by using 
Mathematica software. The graphical outcomes are added to discuss the results in detail. The multiple 
thromboses with increasing heights are evident in streamline graphs. The sinusoidally advancing 
wave revealed in the wall shear stress graphs consists of crest and trough with varying amplitude. 
The existence of multi‑thrombosis in this tube is the reason for this distinct amplitude of crest and 
trough. Further, the viscous dissipation effects come out as a core reason for heat production instead 
of molecular conduction.

List of symbols
(

R,Z
)

  Cylindrical-coordinate system
(

U ,W
)

  Velocities along the radial and axial coordinate
aR0  Radius of catheter
R0  Exterior tube’s radius
b  The amplitude of the sinusoidal wave
�l  Wavelength (l = 1, 2, 3)

γ̇  Rate of shear
�2  Time retardation parameter
Br  Brinkman number
c  Wave characteristic Speed
σl  Maximum thrombus heights (l = 1, 2, 3)

zdl  Thrombus axial translation (l = 1, 2, 3)

ϕ  Amplitude to mean radius ratio
dl  Position of clot’s (l = 1, 2, 3)

�1  Relaxation to retardation times ratio
a  Inner tube to outer tube Radius ratio (0 < a < 1)

The phenomenon that explains the transport of biological fluid inside a tube with sinusoidally moving walls is 
known as Peristalsis.  Barton1 had studied the peristaltic flow with the assumption of long peristaltic wavelength. 
The different peristaltic flow properties and assumptions like creeping movement were discussed in the study of 
 Pozrikidis2. The peristalsis mechanism can also happen within a vessel having a short length, as the diameter of 
such vessels alters systematically due to  vasomotion3. The peristalsis mechanism is a vast study area of interest, 
as it has major applications and uses in engineering and biomedical problems. This phenomenon is mainly used 
in many devices that work as blood pumps, transport of sludge as well as food and different biological  liquids4. 
The non-Newtonian fluid models are used by many of the researchers to study peristaltic blood flow problems. 
 Mekheimer5 had utilized the non-Newtonian study model to examine the unsteady, two-dimensional, peristaltic 
flow of blood. Further, the theoretical work that provides the flow across channels with sinusoidal advancing 
walls, using a non-Newtonian study model is  given6,7.
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In blood vessels, some blood particles that get attached to the wall of a vessel, when these particles detach 
from the wall to again join the stream of blood then such particles may form a blood clot. The flow is refined 
in such conditions with catheter application in such tubes. Mekheimer et al.8 had investigated the blood flow 
inside a catheterized cylindrical geometry with thrombus and peristaltic effects. The mathematical investigation 
of peristaltic flow with clot applications through an annular section was conveyed by Nadeem et al.9.  Bhatti10 
had utilized a non-Newtonian study model to interpret the flow across an annular region with thrombus and 
peristaltic applications. The investigation of the heat transfer phenomenon for annular blood flow problems 
together with combined applications of peristalsis and thrombus at the center of the tube also has remarkable 
importance due to its applications.  Akbar11 had conveyed a mathematical investigation for the heat transport 
mechanism of peristaltic flow through an annular section using a non-Newtonian study model. The flow through 
an annular region having sinusoidally advancing exterior walls with heat transport effects was mathematically 
examined by  Vajravelu12. The heat transport mechanism for concentric cylinders with the outer cylinder having 
a sinusoidal wave, using Jeffrey model of non-Newtonian fluid flow was investigated by Vasudev et al.13. Some 
more recent studies that provide the analysis of heat transfer and blood flow are cited  as14–21.

We have thoroughly investigated the already available research articles and this observation clearly shows 
that the peristaltic flow of blood within a channel having multi-thrombosis is not mathematically investigated 
by anyone. To cover this gap in the literature, the peristaltic blood flow inside a tube with multi-thrombosis is 
mathematically investigated for the first time. The existence of these multiple thromboses restricts the blood 
flow across the tube and the flow is revamped by using a catheter. This non-Newtonian blood flow problem is 
modeled for Jeffrey fluid. We have gained an exact solution for the developed mathematical governing equations. 
The graphical results are added to discuss these exact results in detail.

Mathematical model
The peristaltic blood flow inside a geometry with multi-thrombosis is mathematically investigated. The presence 
of these multiple clots reduces the blood flow through the tube and the flow of blood is revamped by using a 
catheter (See Fig. 1).

The tube’s outer surface η (z) with a traveling sinusoidal wave and the inner surface ǫ(z) having multiple clots 
is provided with their dimensional mathematical expressions

here f1(z) defines the geometry of multi-thrombosis.
The dimensional form of formulated equations is
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Figure 1.  Geometry of the problem.
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The Jeffrey fluid tensor for extra stresses is taken  as22

The fixed and moving frame is correlated by the following equations

The used non-dimensional variables are provided as

Equations (4–6) provides the following dimensionless equation after the application of Eqs. (8) and (9)

The appropriate non-dimensional boundary conditions are

In boundary condition (13), we have w = −1 at r = ǫ(z) and w = −1 at r = η(z). The velocity “w” takes 
the value (minus one) in the dimensionless form. Therefore, in the graphical results of velocity we see negative 
values that exactly approach to minus one. Further, In the dimensional form we have set W = 0 and then by 
using the transformation w = W − c given in Eq. (8), we get w = −c and then by using w = w

c  given in Eq. (9), 
we finally get w = −1.

The exterior surface η(z) and the interior surface ǫ(z) with their dimensionless mathematical expressions are 
provided. The expression for f1(z) is chosen  as23

Exact solution
The velocity profile w(r, z) is exactly solved to get

where log represents the logarithmic function.
The rate for volume flow between these two walls is

Finally, by using volume flow rate calculations, we get pressure gradient as

(5)ρ

(

∂W

∂t
+ U

∂W

∂R
+W

∂W

∂Z

)

= −
∂P

∂Z
+

1

R

∂

∂R

(

RSRZ
)

+
∂

∂Z

(

SZZ
)

,

(6)ρCp

(

∂T

∂t
+ U

∂T

∂R
+W

∂T

∂Z

)

= SRR
∂U

∂R
+SRZ

∂W

∂R
+SZR

∂U

∂Z
+SZZ

∂W

∂Z
+k

(

∂2T

∂R
2
+

1

R

∂T

∂R
+

∂2T

∂Z
2

)

.

(7)S =
µ

1+ �1
(γ̇ + �2γ̈ ),

(8)r = R, z = Z − ct, u = U , w = W − c, p(z, r) = P
(

Z,R, t
)

,

(9)

r =
r

R0
, z =

z

�l
, u =

�lu

R0c
,w =

w

c
, t =

ct

�l
, p =

R2
0p

c�lµf
, θ =

T − T0

T1 − T0

,

ǫ(z) =
ǫ(z)

R0
, η(z) =

η(z)

R0
,φ =

b

R0
,Br =

c2µf
(

T1 − T0

)

kf
, S =

R0

µc
S, hl =

dl

�l
,

(10)
∂p

∂r
= 0,

(11)
dp

dz
=

1

1+ �1

(

∂2w

∂r2
+

1

r

∂w

∂r

)

,

(12)
∂2θ

∂r2
+

1

r

∂θ

∂r
+

(

1

1+ �1

)

Br

(

∂w

∂r

)2

= 0,

(13)w = −1 at r = ǫ(z) and w = −1 at r = η(z),

(14)θ = 1 at r = ǫ(z) and θ = 0 at r = η(z),

(15)η(z) = 1+ φ Sin(2πz),

(16)ǫ(z) =

{

a+ σle
−π2

(

z−zdl−0.5

)2

, hl ≤ z ≤ hl + 1

a otherwise
,

(17)

w(r, z) =
1

4(log(ǫ)− log(η))

[

4
(

log(η)− log(ǫ)
)

+
dp

dz
(1+ �1)

{(

η2 − ǫ2
)

log(r)+
(

r2 − η2
)

log(ǫ)+
(

ǫ2 − r2
)

log(η)
}

]

,

(18)Q = 2π

η
∫

ǫ

rwdr,



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6718  | https://doi.org/10.1038/s41598-021-86051-2

www.nature.com/scientificreports/

The result for τw is calculated as follows

The temperature solution is also solved exactly and the expression is given by

Results and discussion
The interpreted results are discussed in detail with graphical outcomes. The velocity profile graphs are plotted 
and provided in Figs. 2, 3 and 4. Figure 2 represents that the velocity profile gains a higher value almost near the 
central region of two walls, but it shows declining behavior near the peristaltic surface with increasing φ . The 
peristaltic transport is increased automatically with increasing the amplitude of the peristaltic wave, as this flow 
mainly depends on the amplitude of the peristaltic wave. Thus the velocity near the central region increases. There 
is an increment in the value of velocity for increasing the value of Q , given in Fig. 3. The velocity should gain 
magnitude with incrementing Q as it assists the flow. Figure 4 reveals that velocity declines with a multi-thrombus 
wall but remains constant at the peristaltic wall for increasing values of σl . Figures 5 and 6 are provided to discuss 
the shear stress τw that is plotted against the axial coordinate. Figure 5 reveals that τw gains magnitude with an 
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Figure 2.  Velocity for φ.
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increasing value of Q . It is observed that the sinusoidal wave presented in this graph consists of different ampli-
tudes crest and trough. The existence of multi-thrombosis in this tube is the reason for this distinct amplitude 
of crest and trough. The crest with greater amplitude depicts the position of multi-thromboses while the once 
with low amplitude reveal the location having no thrombus. The locations 50 ≤ z ≤ 150 , 200 ≤ z ≤ 300 , and 
350 ≤ z ≤ 450 show the position of multi-thromboses. In Fig. 6, τw is plotted for an increasing value of σl . As the 
values of σl increases, the value of τw gains magnitude exactly at positions of multi-thromboses. Thus, it is also 
evident from this graph that the positions of multi-thrombosis are the segments 50 ≤ z ≤ 150 , 200 ≤ z ≤ 300 , 
and 350 ≤ z ≤ 450 . The graphical outcomes of temperature profile for distinct parameters are displayed in 

Figure 3.  Velocity for Q.

Figure 4.  Velocity for σl.
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Figs. 7, 8, 9, 10 and 11. Figure 7 displays that the temperature shows increasing behavior with increasing value 
of Br . Thus, viscous dissipation is the core reason for heat production instead of molecular conduction. Figure 8 
shows that there is a decline in temperature with incrementing the value of �1 . The temperature attains higher 
values with the multi-thrombus end but declines with the wavy end for enhancing the value of φ , represented 
in Fig. 9. Figure 10 displays that temperature attains increasing values with enhancing Q . There is an increment 
in the temperature for increasing the value of σl , displayed in Fig. 11. Streamline graphical outcomes are plotted 
for increasing the value of Q , as given in Figs. 12, 13, 14 and 15. These graphs convey that the trapping decreases 
in size but increases in the count with increasing Q . A clear picture of the sinusoidal wave is seen at one end 
and multi-thrombosis at another end. These streamline graphical results (Figs. 12, 13, 14 and 15) are plotted 
for fixed height of multiple thrombosis and the fixed height is evident in the graphs. The next given graphical 

Figure 5.  τw for Q.

Figure 6.  τw for σl.
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results (Figs. 16, 17, 18 and 19) are plotted for varying heights of multiple thrombosis and the variation in the 
height of these multiple thrombosis is noted in these graphs. In this way, we have also covered the present topic 
for different heights of multiple thrombosis. Figures 16, 17, 18 and 19 displays a streamlined graph for increas-
ing values of σl . It is interesting to note the increase in height of multi-thrombosis in these streamlines graphs.

Figure 7.  Temperature profile for Br.

Figure 8.  Temperature profile for �1.
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Conclusions
The peristaltic blood flow inside a cylindrical geometry with multi-thrombus is mathematically investigated. 
The presence of these multiple clots reduces the blood flow across the tube and the flow is revamped by catheter 
utilization. The important outcome results are

• the velocity profile gain magnitude almost near the central region of both walls but it shows declining behav-
ior near the peristaltic surface with increasing φ.

Figure 9.  Temperature profile for φ.

Figure 10.  Temperature profile for Q.
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• The velocity profile declines with the multi-thrombus wall but remains constant at the peristaltic wall for 
increasing values of σl.

• The sinusoidally advancing wave observed in the graphs of wall shear stress consists of different amplitude 
crest and trough. The existence of multi-thrombosis in this tube is the reason for this distinct amplitude of 
crest and trough.

• The crest with greater amplitudes depict the position of multi-thrombosis while the once with low amplitude 
reveal the location having no thrombus.

• A clear picture of a sinusoidal wave is seen at one end and multi-thrombosis at another end in the streamlines 
graph.

Figure 11.  Temperature profile for σl.

Figure 12.  Streamlines for Q = 0.5 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5.
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Figure 13.  Streamlines for Q = 0.6 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5.

Figure 14.  Streamlines for Q = 0.7 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5.
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Figure 15.  Streamlines for Q = 0.75 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5.

Figure 16.  Streamlines for σl = 0.01 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5, Q = 0.01.
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Figure 17.  Streamlines for σl = 0.03 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5, Q = 0.01.

Figure 18.  Streamlines for σl = 0.05 with �1 = 0.4, φ = 0.037, a = 0.01, zd1 = 0.5, zd2 = 2, zd3 = 3.5,

h1 = 0.5, h2 = 2, h3 = 3.5, Q = 0.01.
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