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Regional environmental controllers 
influence continental scale soil 
carbon stocks and future carbon 
dynamics
Daniel Ruiz Potma Gonçalves 1*, Umakant Mishra 2, Skye Wills 3 & Sagar Gautam 2 

Understanding the influence of environmental factors on soil organic carbon (SOC) is critical for 
quantifying and reducing the uncertainty in carbon climate feedback projections under changing 
environmental conditions. We explored the effect of climatic variables, land cover types, topographic 
attributes, soil types and bedrock geology on SOC stocks of top 1 m depth across conterminous United 
States (US) ecoregions. Using 4559 soil profile observations and high-resolution data of environmental 
factors, we identified dominant environmental controllers of SOC stocks in 21 US ecoregions using 
geographically weighted regression. We used projected climatic data of SSP126 and SSP585 scenarios 
from GFDL-ESM 4 Earth System Model of Coupled Model Intercomparison Project phase 6 to predict 
SOC stock changes across continental US between 2030 and 2100. Both baseline and predicted 
changes in SOC stocks were compared with SOC stocks represented in GFDL-ESM4 projections. 
Among 56 environmental predictors, we found 12 as dominant controllers across all ecoregions. The 
adjusted geospatial model with the 12 environmental controllers showed an  R2 of 0.48 in testing 
dataset. Higher precipitation and lower temperatures were associated with higher levels of SOC stocks 
in majority of ecoregions. Changes in land cover types (vegetation properties) was important in drier 
ecosystem as North American deserts, whereas soil types and topography were more important in 
American prairies. Wetlands of the Everglades was highly sensitive to projected temperature changes. 
The SOC stocks did not change under SSP126 until 2100, however SOC stocks decreased up to 21% 
under SSP585. Our results, based on environmental controllers of SOC stocks, help to predict impacts 
of changing environmental conditions on SOC stocks more reliably and may reduce uncertainties 
found in both, geospatial and Earth System Models. In addition, the description of different 
environmental controllers for US ecoregions can help to describe the scope and importance of global 
and local models.

Soils store the largest amount of carbon in terrestrial ecosystems containing around 1500 Pg C (Pg; 1 Pg =  1015 g) 
soil organic carbon (SOC) in top 1 m  depth1,2. Understanding the relationship between SOC and its environ-
mental controllers is key for accurately predicting climate and land use change impacts on SOC and reducing 
uncertainties in large scale carbon climate feedback projections.

Earth System Models (ESMs)3 are used to predict the global carbon climate feedbacks and simulate the future 
state of soils and ecology. Despite their key roles in determining the spatial heterogeneity of SOC and regulat-
ing the rate of SOC decomposition, many environmental factors that regulate soil formation are not adequately 
represented in current land surface  models4. As a result, current land surface models poorly represent baseline 
SOC spatial  heterogeneity4,5 and show large uncertainties in predicting future carbon climate  feedbacks6. Burke, 
et al.7 reported that the quantity, spatial distribution, and decomposability of SOC stocks accounted for half of 
the overall uncertainty in predicting future carbon climate feedbacks and associated climate changes. Therefore, 
to reduce the uncertainty in future carbon climate feedback projections, it is critical to appropriately represent 
environmental controllers and the spatial heterogeneity of SOC in land surface models. One way to improve 
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the spatial heterogeneity of SOC stocks in land surface models is to quantify and represent the environmental 
controls on SOC stocks consistent with field observations.

Statistical geospatial modeling can be used to quantify the heterogeneity of environmental controllers on SOC 
stocks from regional to national and global scales. Also, environmental controllers’ spatial gradient can be used in 
a space-for-time substitution approach to predict the spatiotemporal variation in SOC  stocks8. O’Rourke, et al.9 
stated that linking specific environmental controllers to SOC functions can be a way to toward more realistic 
projections in ESMs. Examples of this approach were applied for  Australian10,  Brazilian11 and other soils using 
geospatial modelling. The same way Weintraub, et al.12 highlighted the potential of soil observation networks to 
accelerate process representation in SOC models and improve our current capacity to make predictions.

In this study we used a database composed of 4559 soil profile observations in conterminous US and 56 
environmental predictors representing climate, topography, soil type, geology, land use and water dynamics to 
fit a geographically weighted regression model. We used the model to predict and generate maps of current and 
future SOC in 21 US ecoregions. The maps were generated considering current and two shared socioeconomic 
pathways SSP126 and SSP585 from GFDL-EMS4 of Coupled Model Intercomparison Project phase 6 (CMIP6), 
corresponding of IPCC RCP 2.6 and 8.5 scenarios. To produce the SSP126 and SSP585 pathways maps, we used 
future temperature and precipitation regimes from GFDL-EMS4 predictions in conterminous US. Finally, the 
results were compared with total SOC stocks from GFDL-ESM4 model predictions.

Results
The chosen model included 12 individual variables from the original 56 (Table 1) as yearly averages: Temperature, 
Precipitation, Atmosphere Net Radiation, Net Primary Productivity, (Normalized difference vegetation index) 
NDVI, Forest and Pastureland cover classes, Inceptisols, Vertisols, Ultisols, Spodosols, and Mollisols soil classes. 
The obtained SOC stocks map for all ecoregions (Figs. 1, 2) showed higher values in the north east and pacific 
north west, forested mountainous areas, south Florida, and central US prairies. The regions with highest mean 
SOC stocks were Everglades (777 Mg/ha), Mixed Wood Shield (660 Mg/ha), Mississippi Alluvial and Southeast-
ern USA Plains (519 Mg/ha), Atlantic Highlands (456 Mg/ha) and Mixed Wood Plains (352 Mg/ha) (Table 2). 
The lowest values were found in Warm Deserts and Texas-Louisiana Coastal Plain, less than 65 Mg  ha−1 C.

Predicted SOC stocks using geographically weighted regression (GWR) showed coefficient of variation  (R2) 
of 0.48 (quasi-global). The GWR approach consistently underestimated the SOC stocks, bias is higher in the 
ecoregion with higher observed SOC stocks (Table 2). The bias was 83 and 71% in the Everglades and Ozark-
Ouachita-Appalachian Forests; all other regions had bias less than 43%. Six Ecoregions presented model bias 
lower than 15. The model residual was not distributed homogeneously inside ecoregions, but some regions 
presented higher model bias than others (e.g., Mississippi delta and Warm Deserts SOC stocks were under and 
overestimated respectively) (Fig. 2).

SOC stocks were controlled by different environmental factors across US ecoregions (Fig. 3). The ecoregions, 
Mediterranean California, Cold Desert, Upper Gila Mountain, Warm Desert, Western Cordillera, and South-
Central Semiarid Prairies were closely related to net primary production and vegetation types. In the Southern 
plains ecosystems, precipitation and net solar radiation were good predictors, and Everglades showed a different 
dynamics, presenting mean temperature and NDVI as good predictors. There was not a group of predictors high-
lighted for the other Ecoregions (Fig. 3). Mean temperature was positively related with SOC stocks in Everglades, 
Texas-Louisiana Costal Plains, Mediterranean California and Mississippi Alluvial and Southeastern USA Plains, 
on the other Ecoregions temperature increases resulted in reduction of SOC stocks. In Texas-Louisiana Coastal 
Plains and Mediterranean California SOC stocks were more sensitive to precipitation amount, which indicated 
it is a major diver of SOC stocks in warm and dry conditions. In the Everglades, Central USA Plains, Upper Gila 
Mountains and Mixed Wood Shield precipitation was negatively related on SOC stocks.

The prediction for SSP126 and SSP585 scenarios using GFDL-ESM4 projection of temperature and pre-
cipitation showed a decrease in SOC stocks. The magnitude was about 4% to 7% (3252 and 5470 Tg) (Tg; 1 
Tg =  1012 g) respectively (Table 2, Fig. 4). Both prediction maps (Fig. 4) showed an increase in SOC for northern 
prairies and Florida ecoregions. Other ecoregions showed decrease in SOC stocks indicating sensitivity of those 
ecosystems to future climatic changes. However, uncertainties related to sea level  rise13,14, especially on SSP585 
scenario, which predicts a raise between 60 and 110 cm util 2100, make it difficult to precisely determine SOC 
decreases in Florida Lowlands as this region is expected to lose land mass. Four ecoregions showed an increase 
in SOC stocks, Everglades, Mixed Wood Shield, Mississippi Alluvial and Southeastern USA Plains and Warm 
Deserts, it was most pronounced in the Everglades with a 192% increase in SOC. Model projections showed a 
reduction in SOC stocks for both lower and higher emission scenarios (SSP126 and SSP585) (Table 3, Fig. 5). 
The changes were not significant for SSP126 with approximately ~ 2% change. In contrast, for the SSP585 sce-
nario, the reduction ranged between 5% in 2030 to 21% in 2100. Although the highest value of SOC observed 
in SSP585 (4507 Mg  ha−1) was almost double the SSP126 (2506 Mg  ha−1), total SOC stocks (the sum of all pixels 
in the maps) was lower (Fig. 4). We also compared our SOC results with the GFDL-ESM4 projections. Despite 
differences in the model’s resolution (800 m for geospatial model and 0.5° for GFDL-ESM4) and particularities 
of process representation (e.g., GFDL-ESM4 does not simulate for wetlands and peatlands); it also showed a 
decrease in SOC for SSP585 pathway, being more pronounced in northwest part of US (Supplementary Fig. 1). 
The lowest emission scenario (SSP126) maintained the current SOC stocks.

Discussion
Our baseline SOC stock distribution showed similar spatial distribution as the published RaCA map produced 
using an ordinary kriging spatial interpolation  approach15. The high values of SOC stocks in coastal environ-
ments showed the high capacity of wetlands like the Everglades to store SOC. Wetlands potential for store SOC 
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was also highlighted in other studies, Hinson, et al.16 estimated 1153–1359 Tg of SOC in the 0–100 cm in US 
peatlands, or about 19% of US SOC stocks. Similarly, the model bias in the SOC estimation for ecoregions with 
higher SOC stock were also documented in earlier  studies16. Net primary production importance as predictor for 
SOC stocks in driest ecosystems like the North American deserts (Fig. 3) may be related to its sparse vegetation. 
Thereby, probably as the carbon input to soil is low compared to other ecosystems, the net primary production 
impact was captured as a limiting factor.

In this study, climatic variables were important predictors of SOC stocks in some ecoregions such as the 
Southeastern USA Plains and Everglades, showing the sensitivity of these ecosystems to projected climate change 
estimates. The higher influence of temperature and precipitation on SOC of wetlands indicate vulnerability of 
these system to future climate  changes17,18. Although climate factor has been reported in this and other studies 
as important predictors for SOC stocks, it may be a proxy for geochemical factors that affect SOC directly like 
soil texture and microbial activity. Geochemical factors were also reported as important predictors for SOC stock 
in other  studies19. Yang, et al.20 found soil moisture and texture as major drivers to explain SOC distribution in 
Tibetan plateau and Giardina, et al.21 suggested the change in soil respiration due to increased temperature and 
precipitation as major factor to determine the change in SOC stocks.

Some other factors used to predict SOC stocks are also expected to change in the future (e.g., the location 
of wetlands is expected to change with the change in hydrologic regime and wildfires may increase in some 
regions due to temperature raise and reduced precipitation). According to the fifth IPCC  report18, the Southern 
US ecoregions are expected to get drier, opposite to the Everglades and the central region that are expected to 

Table 1.  Environmental predictors used for the geospatial modelling process. *The United States ecoregions 
were not used as environmental predictors, but for organize the various ecosystems prediction dynamics.

Environmental predictor Brief description Data source Resolution

Climate predictors

Precipitation 30-yr (1981 to 2010) annual average precipita-
tion http:// www. prism. orego nstate. edu/ norma ls 800 m

Minimum temperature 30-yr (1981–2010) annual average minimum 
temperature http:// www. prism. orego nstate. edu/ norma ls 800 m

Mean temperature 30-yr (1981–2010) annual average tempera-
ture http:// www. prism. orego nstate. edu/ norma ls 800 m

Maximum temperature 30-yr (1981–2010) annual average maximum 
temperature http:// www. prism. orego nstate. edu/ norma ls 800 m

Dew point temperature 30-yr (1981–2010) annual average dew point 
temperature http:// www. prism. orego nstate. edu/ norma ls 800 m

Minimum vapor pressure deficit 30-yr (1981–2010) minimum vapor pressure 
deficit http:// www. prism. orego nstate. edu/ norma ls 800 m

Maximum vapor pressure deficit 30-yr (1981–2010) maximum vapor pressure 
deficit http:// www. prism. orego nstate. edu/ norma ls 800 m

Potential evapotranspiration 30-yr (1970–2000) potencial evapotranspora-
tion https:// cgiar csi. commu nity/ 0.25 ○

Net radiation 2017 yearly average net radiation https:// neo. sci. gsfc. nasa. gov/ 30 arc-seconds (≈ 1 km at equator)

Land use and land cover predictors

Ecological region* Ecological zone map at level II https:// www. epa. gov/ eco- resea rch/ ecore gions- 
north- ameri ca 100 m

Net primary production Annual terrestrial primary production https:// neo. sci. gsfc. nasa. gov/ 0.25○

Normalized difference vegetation index 
(NDVI)

Annual Normalized difference veg-
etation index (Calculated as (NIR—RED)/
(NIR + RED), where, NIR is near-infrared 
band)

https:// neo. sci. gsfc. nasa. gov/ 0.25○

National land cover database (6 classes) Land cover of the United States for 2011 https:// www. mrlc. gov/ nlcd2 011. php 30 m

Topographic predictors

Elevation (DEM) Land surface elevation https:// www. usgs. gov/ core- scien ce- syste ms/ 
natio nal- geosp atial- progr am/ 30 m

Aspect Compass direction that the slope faces Derived from DEM 30 m

Slope Raise or fall of land surface Derived from DEM 30 m

Plan curvature Terrain curvature that is perpendicular to 
maximum slope direction Derived from DEM 30 m

Profile curvature Terrain curvature that is parallel to maximum 
slope direction Derived from DEM 30 m

Total curvature Combination of plan and profile curvature Derived from DEM 30 m

Soil and bedrock predictors

Soil orders (10 orders) Taxonomy soil order https:// www. nrcs. usda. gov/ wps/ portal/ nrcs/ 
detail/ soils/ home/ 100 m

Bedrock geology (23 classes) Taxomony of bedrock geology https:// www. usgs. gov/ produ cts/ maps/ geolo 
gic- maps 1000 m

http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
http://www.prism.oregonstate.edu/normals
https://cgiarcsi.community/
https://neo.sci.gsfc.nasa.gov/
https://www.epa.gov/eco-research/ecoregions-north-america
https://www.epa.gov/eco-research/ecoregions-north-america
https://neo.sci.gsfc.nasa.gov/
https://neo.sci.gsfc.nasa.gov/
https://www.mrlc.gov/nlcd2011.php
https://www.usgs.gov/core-science-systems/national-geospatial-program/
https://www.usgs.gov/core-science-systems/national-geospatial-program/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/
https://www.usgs.gov/products/maps/geologic-maps
https://www.usgs.gov/products/maps/geologic-maps
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Figure 1.  United States of America level II ecoregions, and the RaCA datapoints distribution, the red and green 
points were chosen for calibration and validation of the geographically weighted regression model respectively.

Figure 2.  Maps of soil organic carbon stocks distribution over continental United States of America obtained 
from the geographically weighted regression model (a) and model residuals (b). The black lines represent the 
borders of level II ecoregions described in Fig. 1.
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Table 2.  Soil carbon stocks and model residue for US main ecoregions.

Ecoregion
Soil carbon stock (Mg 
 ha−1) Soil carbon stock (Tg)

Soil carbon stock 
SSP126 (Tg)

Soil carbon stock 
SSP585 (Tg)

Model residue (Mg 
 ha−1) Model residue (%)

Everglades 776.6 304.9 627.3 970.0 − 643.2 82.8

Mixed Wood Shield 661.1 2539.5 2603.5 2663.5 − 265.5 40.2

Mississippi Alluvial and 
Southeast USA Coastal 
Plains

519.3 3584.5 4220.1 4613.8 − 210.0 40.4

Atlantic Highlands 457.0 2949.8 2652.5 2405.5 − 132.4 29.0

Marine West Coast 
Forest 403.5 2101.9 2002.5 1939.6 − 104.7 25.9

Mixed Wood Plains 352.4 5266.9 5000.3 4772.7 − 151.1 42.9

Central Usa Plains 207.9 2481.3 2344.1 2241.3 − 74.2 35.7

Temperate Prairies 191.6 7289.2 7147.4 7012.0 − 21.9 11.4

Western Cordillera 170.5 9557.8 8751.5 8177.0 − 56.2 33.0

Texas-Louisiana Coastal 
Plain 163.7 631.2 633.4 625.2 − 41.2 25.2

Ozark/Ouachita-Appala-
chian Forests 123.5 4617.0 3881.1 3488.3 − 87.8 71.1

West-Central Semiarid 
Prairies 102.8 5637.8 5603.5 5566.6 − 7.3 7.1

Upper Gila Mountains 100.4 708.7 683.5 664.0 − 34.2 34.0

Cold Deserts 97.8 6927.5 6447.2 6106.8 − 27.4 28.0

Southeastern Usa Plains 97.5 8359.9 8115.0 7892.2 − 11.6 11.9

Mediterranean Cali-
fornia 91.2 1134.4 1120.3 1129.2 − 22.9 25.1

South Central Semiarid 
Prairies 87.0 8184.3 7283.2 6703.1 − 24.7 28.4

Western Sierra Madre 
Piedmont 76.5 2339.7 2262.6 2215.0 − 6.1 8.0

Tamaulipas-Texas Semi-
arid Plain 61.7 368.9 332.5 300.0 − 2.0 3.3

Warm Deserts 48.0 223.1 244.9 264.0 0.6 1.2

Total (Pg) 75,208.2 71,956.2 69,749.7

Figure 3.  Principal component analysis relating the selected environmental predictors and the United States of 
America level II ecoregions.
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experience higher precipitation. Although wetlands are expected to change due to increased  CO2 concentration, 
precipitation change, frequent extreme events (e.g., floods, storms), sea level rise, frequent wildfires, increase 
methane emissions and temperature, the effect of climate change on SOC stocks is still not well  known22. The 
complexity of the water cycle makes it difficult to capture all the feedbacks and peatlands/wetlands may emit 
more carbon than  sequester17. It’s not clear whether climate change will increase or decrease wetland area over 
continental US, but the net primary production should  increase23. Primary vegetation is expected to move South 
to North in continental US due to increase in temperature in higher  latitude23,24. Isolated events like wildfires 
has increase in the last years in west conterminous US, resulting in tree  mortality25. Although carbon emission 
from wildfires is certain, its effect is still not well understood because of vegetation  regeneration26. On the other 
hand, US deserts may increase biomass  production18.

Figure 4.  Soil organic carbon stocks prediction for 2100 in SSP585 (a) and SSP126 (b) scenarios using GFDL-
ESM4 model of couple model intercomparison project phase 6 (CMIP6) climate projections data and the 
calculated difference compared with 2017 soil organic carbon stocks for SSP585 (c) and SSP126 (d). The black 
lines represent the borders of level II ecoregions described in Fig. 1.

Table 3.  Soil carbon stocks predictions for every 10 years between 2030 and 2100.

Year

SSP126 SSP585 Current scenario

Min Max Mean Total C Min Max Mean Total C Min Max Mean Total C

Soil C stocks (Mg/ha) (Pg) Soil C stocks (Mg/ha) (Pg) Soil C stocks (Mg/ha) (Pg)

2017 0.2 24.3 96.3 74.5

2030 11.3 2895.3 90.0 69.6 11.3 4106.4 91.8 71.0

2040 11.6 3920.2 95.1 73.6 11.4 4409.1 91.4 70.8

2050 11.4 3074.9 92.8 71.8 11.3 8896.7 88.3 68.4

2060 11.4 5626.1 92.0 71.2 11.2 6959.9 86.9 67.3

2070 11.5 3776.5 92.0 71.2 11.4 6106.7 85.2 66.0

2080 11.3 4445.1 92.1 71.3 11.4 11,526.6 83.4 64.6

2090 11.4 2437.2 91.2 70.6 11.3 18,452.6 81.8 63.3

2100 11.4 2149.4 94.5 73.2 11.3 13,047.4 76.0 58.8
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The extreme SOC values showed no difference for record low between SSP126 and 585, but the record high 
was 41 to 500% higher in SSP585 compared to 126. Soil organic carbon stocks reduction accounting for conter-
minous US for SSP585 was highly pronounced compared to 126, highlighting SOC sensitivity to climatic factors. 
The main exception, Florida, showed an increase in SOC stocks (Table 2), that can be explained by the high 
sensitivity of this region to mean temperature (Fig. 3). Temperature and precipitation changing are expected to 
influence other factors such as vegetation and sea level, influencing SOC stocks. These changes, as well its effect 
over SOC stocks, takes time, since SOC stabilization in soils is a dynamic process that reaches a new equilibrium 
stage on ecosystems after years or even decades from perturbation. These factors can add uncertainties when 
using a spatial based approach instead of  temporal8. Although, when comparing our results with GFDL-ESM4 
model simulations that accounted for carbon climate feedbacks, the same pattern was observed, considering 
total SOC stocks reduction for SSP126 and SSP585.

Although SOC dynamics may be similarly affected by the explored predictors in all the studied region, our 
results indicated relative importance, since SOC stocks were limited for different predictors across different 
ecoregions. This way, changes in SOC stocks inside the same ecoregion was related to variation on the specific 
limiting factors. This is especially important for improve soil process representations in Earth System Models, 
where treat specific important factors more accurately in different ecoregions can be a strategy for improve mod-
els’ predictions. Higher precipitation and lower temperatures were associated with higher levels of SOC stocks in 
majority of ecoregions. Changes in land cover types (vegetation properties) was important in drier ecosystem as 
North American deserts, whereas soil types and topography were more important in American prairies. Wetlands 
of the Everglades was highly sensitive to projected temperature changes. Although represent these behaviors in 
Earth System Models can be a way to produce more accurate global predictions, interaction among factors can 
result in emergent complex interactions, difficult to derive especially when data is a limiting  factor12. This shows 
the importance of local models as an alternative to produce more accurate predictions on its represented region. 
The development of appropriate observation networks may provide data for the development, benchmarking, and 
validation of statistical and process-based models, increasing our understanding of SOC cycle at different scales 
and improving the predictive  accuracy12,27. In addition, the description of different environmental controllers 
for US ecoregions can help to describe the scope and importance of global and local models.

Methods
Study area and soil carbon profiles and observations. We performed this study in the continental 
US using 4559 georeferenced soil profile observations obtained from the Rapid Carbon  Assessment28 project 
(Fig. 1). The soil profiles were distributed across the conterminous US covering 21 existing ecoregions described 
by the United States Environmental Protection Agency (EPA, https:// www. epa. gov/ eco- resea rch/ ecore gions)29, 
land cover and soil types. A total of 31,472 samples describe the soil profiles, 77% (24,192) were distributed 
between 0 and 100 cm, which was used for this study. Thus, approximately five samples per soil profile were used 
for calculating soil carbon stocks at 0–100 cm depth. SOC was measured by dry combustion and bulk density 
was  modelled30. For calculating SOC stocks for each pedon/profile, a fixed depth approach was used. A more 
complete description of the methods used to analyze the samples can be obtained in the Rapid Carbon Assess-
ment: Methodology, Sampling and  Summary15. The measured SOC ranged from 1.37 to 11,981.0 Mg C  ha−1 and 
with a mean of 209.6 Mg C  ha−1. The lowest stocks were measured in desert biomes and highest in wetlands. The 
SOC stocks showed a unimodal positively skewed distribution to normalize the data for the modelling activities 
we applied a box-cox transformation.

Figure 5.  Soil organic carbon stocks predictions in continental United States of America for every ten years 
between 2020 and 2100 for SSP126 in blue and SSP585 in red.

https://www.epa.gov/eco-research/ecoregions)
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Environmental variables. Soil orders were obtained from the conterminous United States digital soil map 
derived from the gridded Soil Survey Geographic Database (gSSURGO) in 30 m resolution (https:// data. nal. 
usda. gov/ datas et/ gridd ed- soil- survey- geogr aphic- datab ase- gssur go) and aggregated into 10 soil orders: Alfisols, 
Andisols, Aridisols, Entisols, Histosols, Inceptisols, Mollisols, Spodosols, Ultisols, Vertisols. We obtained the 
bedrock geology types  information31 from the United States Geological Survey (https:// www. usgs. gov/ produ 
cts/ maps/ geolo gic- maps) map with 1 km resolution and aggregated the main geological features into 23 groups.

We obtained 30 years (1981–2010) mean annual average data of precipitation, maximum, minimum and 
mean temperature, mean dew point temperature and minimum and maximum vapor pressure deficit at 800 m 
resolution from PRISM website (http:// www. prism. orego nstate. edu/ norma ls/). Monthly mean net radiation was 
derived from NASA (https:// neo. sci. gsfc. nasa. gov/) with 0.25 degrees resolution and compiled into average 
annual net radiation datasets. The potential evapotranspiration maps were acquired from Consultative Group 
on International Agricultural Research—Consortium for Spatial Information (https:// cgiar csi. commu nity/) with 
spatial resolution of 30 arc-seconds (≈ 1 km at equator). The mean annual NDVI and net primary productivity 
datasets were obtained from NASA Earth observations at 10 km resolution (https:// neo. sci. gsfc. nasa. gov/). We 
obtained US land cover data of 30 m resolution from multi resolution land characteristics (https:// www. mrlc. gov/ 
nlcd2 011. php) and aggregated land cover types into 6 major categories, briefly: Open Water and Perennial Ice/
Snow were grouped as Water, Developed Open Space, Low, Medium and High Intensity were grouped as Urban, 
Deciduous, Evergreen and Mixed Forest were grouped as Forest, Woody and Emergent Herbaceous Wetlands 
were grouped as Wetlands and the other classes were Rock, Cropland, Grassland, Pasture and Scrub. The Water, 
Urban and Bare Rock Land cover types were excluded from the analysis. All the chosen categorical variables were 
treated as individual predictors (e.g., We considered Alfisols, Andisols, Forest and Croplands as four predictors).

We obtained a digital elevation model (DEM) with 30 m  resolution32 from US Geological Survey Database 
(https:// www. usgs. gov/ core- scien ce- syste ms/ natio nal- geosp atial- progr am/) and derived the following terrain 
attributes: Elevation, aspect, slope, plan curvature, profile curvature and total curvature in GIS environment 
using ArcGIS v  1033. The environmental predictors used are described in Table 1 and the ecoregion used for group 
the observations in Fig. 1. All the environmental dataset raster maps were resampled to 800 m, the climatic data 
resolution, and the values were extracted at SOC sample points and used in further analysis.

Data pre-processing and geospatial model fit. The SOC data in the same ecoregion that were outside 
of 1.5*IQR where removed as outliers. First, we used plots to identify non-linear relationships that could not be 
captured by linear modelling. Further, to avoid including unnecessary environmental predictors in the model we 
generated Pearson correlation coefficients for all numerical predictors paired in a correlation matrix. When the 
pair showed a high correlation coefficient (r > 0.70) one of the predictors was removed, we choose keeping the 
one which its effect over SOC dynamics is better known according to current theory. To measure the model fit, 
we divided the database into training (75%; 3419 samples) and testing (25%; 1140 samples) datasets. The train-
ing dataset was used to fit the model and testing set to measure the model prediction capacity. We treated the 
nominal/categorical variables as dummy variables (e.g., 0 or 1).

After pre-processing, we fitted multiple regression models and used three selection criteria to choose the 
optimum set of linear predictors, variable significance according to F test at p < 0.05, best  subset34, and  R2. Using 
the significant environmental predictors, we fitted a GWR model, the adaptative bandwidth was chosen based on 
Akaike Information Criterion  minimization35. Briefly, GWR works as a multiple linear regression that fits unique 
parameters for every feature in the dataset. Consequently, the result is a model with the same predictors for SOC 
stocks and different coefficients (β values) for each local and ecoregion. The spatial variation of the coefficients 
can be used to explore local ecoregion specific controllers for SOC stocks. A more complete description of GWR 
approach can be found in Fotheringham  book36,37. The model was then applied to the test dataset which had an 
 R2 of 0.48. We then used the GWR model to generate a SOC stocks map in in Mg  ha−1 33. Using the coefficients 
adjusted for the predictor variables in the GWR model, we calculated a correlation matrix and performed a 
principal component analysis to visualize the relationship between environmental predictors and ecoregions.

Future climate change scenarios. We investigated the changes in SOC stocks until 2100 under SSP126 
and SSP585 climate change scenarios of  CMIP618,38. The increase in atmospheric  CO2 is expected to increase 
temperature and change precipitation averages. We obtained maps of mean air temperature and precipitation 
from National Climate Assessment (https:// nca20 14. globa lchan ge. gov/ highl ights/ report- findi ngs/ future- clima 
te) and GFDL-ESM4 models (NOAA, National Oceanic and Atmospheric Administration) for every 10 years 
from 2030 to 2100 and used the GWR model to explore the effect of these changes on SOC stocks. Briefly, all 
the model predictors were kept constant with exception of temperature and precipitation (obtained from GFDL-
ESM4 predictions), then the model was run to produce SOC maps. The generated SOC stock maps were also 
compared with GFDL-ESM4 model SOC stock maps for current and future climate change scenarios (CMIP6, 
https:// esgf- node. llnl. gov/ proje cts/ cmip6/). This model was chosen because produced better predictions of SOC 
stocks in American biomes compared to other Earth System  Models4. The maps were subtracted (e.g., 2100 SOC 
map for SSP126 scenario—current SOC map) for generate SOC stocks difference maps and those were used for 
comparing the differences between scenarios. All modelling processes were performed using R v. 3.6.139.

Data availability
The data that support the findings is available on request and the R code used in this study is on GitHub (https:// 
github. com/ D9989/ Geosp model).

https://data.nal.usda.gov/dataset/gridded-soil-survey-geographic-database-gssurgo
https://data.nal.usda.gov/dataset/gridded-soil-survey-geographic-database-gssurgo
https://www.usgs.gov/products/maps/geologic-maps
https://www.usgs.gov/products/maps/geologic-maps
http://www.prism.oregonstate.edu/normals/
https://neo.sci.gsfc.nasa.gov/
https://cgiarcsi.community/
https://neo.sci.gsfc.nasa.gov/
https://www.mrlc.gov/nlcd2011.php
https://www.mrlc.gov/nlcd2011.php
https://www.usgs.gov/core-science-systems/national-geospatial-program/
https://nca2014.globalchange.gov/highlights/report-findings/future-climate
https://nca2014.globalchange.gov/highlights/report-findings/future-climate
https://esgf-node.llnl.gov/projects/cmip6/
https://github.com/D9989/Geospmodel
https://github.com/D9989/Geospmodel
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