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Monitoring the variation in the gut 
microbiota of captive woolly 
monkeys related to changes in diet 
during a reintroduction process
Camilo Quiroga‑González1*, Luis Alberto Chica Cardenas2, Mónica Ramírez1, 
Alejandro Reyes2,3*, Camila González4 & Pablo R. Stevenson1 

Microbiome is known to play an important role in the health of organisms and different factors 
such as diet have been associated with modifications in microbial communities. Differences in the 
microbiota composition of wild and captive animals has been evaluated; however, variation during a 
reintroduction process in primates has never been reported. Our aim was to identify changes in the 
bacterial composition of three individuals of reintroduced woolly monkeys (Lagothrix lagothricha) 
and the variables associated with such changes. Fecal samples were collected and the V4 region 
of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. 
Individual samples from released individuals showed a higher microbial diversity after being released 
compared to before liberation, associated with changes in their diet. Beta diversity and functionality 
analysis showed separation of samples from released and captive conditions and the major factor of 
variation was the moment of liberation. This study shows that intestinal microbiota varies depending 
on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by 
released primates may promote a positive effect on gut microbiota, improving health, and potentially 
increasing success in reintroduction processes.

Gut microbiota is important for animal’s physiological activities and health, influencing aspects such as the 
ability to extract energy and nutrients from some food  components1. It encodes metabolic functions that many 
animals are not able to synthesize by  themselves2. The highly diverse microbiome is composed by microorgan-
isms from all different domains of life and viruses; among them, bacteria play the most important role, since 
many of them have roles in the protection against pathogens and degradation of organic substances facilitating 
the host nutrient  assimilation3,4.

When animals are kept in captivity, there is a rising concern that it may result in an alteration of the stable 
structure of the microbial community and even the loss of microbial diversity that may contribute to failures of 
reintroduction  efforts5. Those changes will be reflected in a reduced health status of individuals. A reduced diver-
sity of gut microbiota can produce dysbiosis, decreasing some microbial functional groups and altering different 
metabolic pathways, which may compromise the host health making it more prone to acquire  diseases6,7. Several 
studies have demonstrated that gut microbial diversity is affected by captive  conditions8–10. Specifically, primates 
show a consistent reduction in bacterial alpha diversity compared to animals in natural conditions, losing their 
native microbial  biodiversity9,11. For most primates, captive environments represent an extreme change compared 
to their environment in the wild, related primarily to the diet composition, but also to other aspects such as 
antibiotic use, stress, and variation in social interactions can lead to changes in gut bacterial  communities12–14.

For instance, diet and phylogeny are the most strongly associated factors shaping the gut  microbiota2,11,15,16. 
Dietary niche plays a major role in determining the gut microbiota structure and composition across diverse host 
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 species2,11,17. It has been found that herbivores have the richest microbiota at the phylum and genus level followed 
by omnivores and  carnivores2. In fact, a more complex and diverse microbiota is necessary to optimally exploit 
the hard to digest lignin and cellulose, and to process the secondary metabolites present in  leaves18,19. Primates 
in the wild eat a vast variety of plants and captivity implies a dramatic change in that diet, which may alter their 
gut  microbiota9,20. Folivorous animals converge in microbial traits, nevertheless, studies have shown that host 
phylogeny has a stronger effect in structuring the microbial community than host dietary  niche2,21,22; however, 
when animals are phylogenetically closely related, the diet has a strong influence in the microbial  community16.

Several studies have focused on comparing differences in gut microbiome communities between captive and 
free ranging individuals in different  species9,10,23–26. In these studies, microbiome alpha diversity was consistently 
higher in samples from wild individuals compared to captive ones, furthermore, beta diversity showed that indi-
viduals in captivity harbor different microbial communities compared to wild ones. However, to our knowledge, 
no studies have compared the gut microbiota during a reintroduction process in primates. From this perspec-
tive, identifying the variation of gut microbiota in reintroduction processes in primates is of great importance 
to infer how they are exploiting their new habitat when released to wild areas. In this study, we aimed to identify 
changes in gut microbiota during the rehabilitation and reintroduction of three woolly monkeys (Lagothrix 
lagothricha) in Colombia. In addition, we investigated if temporal changes in diet after individuals release are 
associated with microbial diversity. We predicted that microbial and functional communities grouped together 
by the different conditions (Captive and Released), with individuals having a higher gut microbiome diversity 
after released to a wild environment. This work will provide valuable information on how the gut microbiota is 
affected during reintroduction processes, and on the resilience and plasticity of bacterial communities under 
different ecological conditions.

Results
We performed a characterization of the gut microbiota for three woolly monkeys (Hodor: Adult Male; Yara: 
Adult Female; Arya: Juvenile Female) during a reintroduction process, for this, we analyzed nineteen samples, 
nine while captive and ten after released.

Shannon diversity index between conditions showed that samples taken from the individuals after the lib-
eration had a significantly higher diversity in bacterial communities when compared to captive ones (ANOVA, 
F1,17 = 9.22, p = 0.017) (Fig. 1).

When analyzing alpha diversity as a function of time, we found that Arya had a higher bacterial Shannon 
diversity compared to the other two individuals while in captivity. Shannon diversity start to increase at the 
moment of the liberation for Hodor and Yara, but Arya appeared not to change. Shannon bacterial diversity start 
to decrease around 50 days after liberation. Samples collected from the recaptured individual showed the same 
tendency, where Shannon diversity started to increase at the moment of liberation but decreased again when the 
individual returned to captivity. Chao bacterial diversity showed the same trend where Arya continued to have 
a higher diversity compared to the other two individuals and in average bacterial diversity increased in two of 
the three animals after the liberation (Fig. S1).

When identifying variables associated to the variation in bacterial composition, we found that the percentage 
of time that individuals engaged in social interactions was higher in captivity compared to the time after being 
released (Table S2). As for the time after the liberation, we found that “days after release” was not associated 
with bacterial diversity for the two indices evaluated (Fig. S2). When we performed a model selection criterion 
(AIC)(Table S1), we found that the percentage of food the individuals were feeding from the forest had a positive 
effect and was the variable that best explained bacterial diversity for Shannon (p = 0.023,  R2 = 0.42, β = 0.008) and 
marginally for Chao 1 (p = 0.069,  R2 = 0.77, β = 0.776) index (Fig. S2).

We found that Shannon diet diversity was significantly different between captive and released conditions 
(ANOVA, F1,17 = 14.86, p < 0.001) being higher in released (Fig. S3a). We also found that the diet diversity seems 
not to change during the time the individuals were in captivity and started to increase after liberation and rapidly 
stabilized. When the adult female was recaptured and returned to captivity, diet diversity decreased (Fig. S3b). 
Additionally, we found that the released individuals shows a shift on diet where they start consuming more fruits 
and vegetables compared to when they were in captivity (Fig. S4).

Figure 1.  Bacterial Shannon diversity index for the different conditions of the individuals, Captive (n = 9) 
and Released (n = 10). Samples from the recaptured individual are considered in the captive condition in this 
analysis. Graphic shows significant differences between the two conditions (ANOVA, F1,17 = 9.22, p = 0.017).
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Our beta-diversity analysis using a weighted-Unifrac distance showed that condition was the only variable 
that was associated with bacterial communities (Fig. S5; F = 4.123,  R2 = 0.20, p = 0.011). These results did not 
change even when we included sex, age, and individual in the same model; neither p-value was significant for 
these categories, nor  R2 was higher than 0.05. When we performed the Unweighted-Unifrac distance analysis, we 
found that condition and individual were the variables explaining the differences in our Adonis model (Fig. 2; 
F = 5.1,  R2 = 0.33, p = 0.001), and individual on its own was the single variable that best explained bacterial com-
munities  (R2 = 0.23).

Regardless of the study site condition, the samples grouped by individual, suggesting that each individual 
harbors a unique bacterial community (Fig. 2). When the individuals were released, their bacterial communi-
ties changes but maintained the differences among them. Based on the PCoA plot, the largest variation among 
consecutive time points was observed between the samples right before and after the liberation. Interestingly, 
we observed that samples of the recaptured individual grouped with samples from the same individual previous 
to liberation, rather than with the samples from the individual after liberation.

Beta diversity group distance analysis confirmed the observations that the average distance of samples, taken 
at closer time points, are more similar to each other than samples taken further apart. When we compared 
weighted distances dividing time in five group categories (see “Methods”), we only found differences when 
comparing groups before and after the liberation (Group 2 vs. Group 4 and Group 2 vs. Group 3), suggesting that 
samples taken in captivity were certainly different from the released ones. In all cases, Group 1 and Group 2 had 
very similar distances supporting the idea that in captivity, individuals have their own differential microbiota 
(Fig. S6). With the unweighted distances we obtained similar results, showing that distances between Group 3 
and Group 4 (released samples) were different from captive ones, also Group 4 was different to all other categories 
supporting the idea that time after liberation has an effect on restructuring the gut microbiota (Fig. 3).

Given the change in bacterial communities between conditions, we evaluated bacterial composition to deter-
mine which phyla and genera were responsible for this variation. We found that Firmicutes (53.3%), Proteobac-
teria (20.6%), and Bacteroidetes (18.7%) were the phyla representing the higher abundance in all the analyzed 
samples (Fig. 4a). All phyla found in this study were present in both conditions, but Proteobacteria was the 
only one with a significant variation, being higher in the captive condition in two of the three study subjects 
(Fig. 4b). Samples from the recaptured individual seemed to have the same tendency, diminishing Proteobacteria 
abundance after liberation, and increasing when sampled back in captivity. T-Test of Bacteroidetes and Firmi-
cutes showed a tendency of higher abundance in released individuals, but no statistical significance was found 
(p = 0.077 and p = 0.191 respectively).

At the genus taxonomic level, we found that 17 genera were different with the p-value we choose to reduce 
the dimension of the heatmap (p < 0.1) (Fig. S7a). The most abundant genus was Faecalibacterium followed 
by Ruminobacter. Interestingly, three bacterial genera (Campylobacter, Acinetobacter, and Lachnospira) were 
present in the captive condition but completely absent in released individuals. When we performed the analysis 
with a p < 0.05 we found that only eight genera of bacteria were different, being Bacteroides, Sutterella, Unclas-
sified Coriobacteriaceae and Succinatimonas higher in released individuals, and Ruminobacter, Campylobacter, 

Figure 2.  Unweighted UniFrac distances of 16S rRNA gene amplicons data grouping by condition and name of 
the individuals. Samples with a black border represent samples from an individual upon return to captivity after 
one month in the wild. Arrows follow the trajectory of samples from each individual over time.
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Figure 3.  Beta group significance analysis of Unweighted distances between five categories based on the time 
period during the reintroduction process. Group (1) Between − 100 and − 52 days prior to liberation, Group (2) 
Between − 52 and 0 days prior to liberation, Group (3) Between 0 and 100 after the liberation, Group (4) From 
100 days until the end of the study for the released individuals and Group (5) From 100 days until the end of 
the study for the recaptured individual. Asterisk represent statistical differences (p < 0.05) between the different 
groups and the group being compared.

Figure 4.  (a) Heatmap showing the logarithm of the abundance of bacterial phylum found in fecal samples 
from different conditions. Samples were sorted by individual, and within individual by time. Colored boxes 
on top of the heatmap indicate the condition when the sample was taken and are grouped by individual. (b) 
Extended error bar plot with a 95% confidence interval organized by the lowest p-value showing the differences 
in mean proportions between captive and released individuals and its associated corrected p-value (Welch’s 
t-test), notice that only proteobacteria had a significant deviation in the mean proportion.
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Unclassified S24_7 and Sharpea, higher in samples from captive individuals (Fig. S7b). From the bacteria show-
ing differences among conditions, we highlight three genera that share an interesting pattern: Campylobacter, is 
present in all samples from captivity and recapture, but completely absent in released individuals samples; Sut-
terela and Bacteroides have the opposite pattern, being consistently higher in samples collected after the liberation 
compared to when individuals were in captivity (including the recaptured individual).

To further analyze whether the difference in bacterial composition might reveal a variation in the functional 
profile of the microbiota, we performed a Bray–Curtis distance analysis with the PICRUSt2 output. We found 
significant differences among conditions (F = 5.91,  R2 = 0.37, p = 0.001) (Fig. 5). PCoA analysis showed that the 
main axis of variation, explaining 72.3% of the variance, showed a separation mainly due to condition.

Lastly, we found that three different functional groups differ between the captive, released, and recaptured 
conditions. Biosynthesis associated pathways were higher in samples from the captive condition, while degra-
dation, utilization, and assimilation pathway and generation of precursor metabolites and energy associated 
pathways were higher in the released condition (Fig. S8). The recaptured condition had a large variation, the first 
sample collected after returning from the wild appear to be more similar to samples from the released condition, 

Figure 5.  PCoA of bray–curtis distances of PICRUSt functional diversity of 16S rRNA gene amplicons 
of bacterial communities in primate feces grouped by individual and condition. Samples from recaptured 
individual are considered as captive in this analysis. Boxplot shows the data dispersion over the first axis of the 
PCA between samples taken from captive and released indiciduals.

Figure 6.  Differences in relative abundance of gut microbiota functional pathways between conditions. Samples 
with dark border represent the first sample collected from the individual back to captivity.
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while the second one collected three months later (300 days after recapture), was more similar to the ones in 
captivity (Fig. 6).

Discussion
We documented for the first time, changes in the gut microbiota of primates during a reintroduction process, 
and, as predicted, we found that bacterial diversity was higher in samples from released individuals compared 
to captive ones. It is known that microbial diversity decreases according to the severity of captivity, with the 
highest diversity observed in primates living under the most natural conditions and the least under less natural 
 conditions9. Additionally, primates show a lower bacterial alpha diversity compared to conspecifics in natural 
 conditions9,11 and this reduction in bacterial diversity may be because they lose their natural microbial diver-
sity as a consequence of diet changes since primates in the wild eat a higher diversity of plants, and captivity 
represents a strong change in their natural  diet10. Another factor that may be associated with changes in gut 
microbiota diversity is that exposure to fecal material from other individuals and species can increase microbial 
diversity in nature, and in captivity this diverse inoculation no longer occurs, so individuals are exposed to fewer 
microorganisms from the  environment24. In this study, individuals in captivity could constantly get reinfected 
by contact with feces of the other conspecifics in the same enclosure, reducing their bacterial gut diversity. Also, 
it has been reported that an increase in social interactions is associated with a higher diversity of gut microbiota 
 communities14, but in our study we found the opposite (Table S2). The reason why we did not found a positive 
relation between social interactions and gut bacterial communities may be due to the fact that in captive condi-
tions, there is a lower microbial diversity in the environment product of a homogenized diet, further suggesting 
that diet is a stronger factor than social interactions affecting the microbial composition.

We did not find any correlation between days after release and bacterial diversity. This is a consequence of an 
increase in diversity immediately after the liberation, which is then stabilized and finally, the curve decreased 
probably because of a regularization of suitable food and feeding sites since individuals shows a shift in diet 
and start consuming more food found in the forest. In addition, diet and patterns of nutrient intake can change 
dramatically between  seasons27,28, and the gut microbiota is expected to adjust or adapt to the host  diet29. In 
this scenario, released individuals experience a shift in diet that drive changes in the gut microbiota, and may 
be the reason why this condition had a higher diversity. Released individuals explore different resources (not 
necessarily eaten by wild primates) but keep also an alternative diet matching captivity, resulting on a mixture 
of bacteria from captivity, and bacteria associated with the liberation site. This is the case of macaques in the 
wild, that when they are given food supplies, they display a greater diversity than those in the traditional wild 
diet allowing them to digest new and different types of  food30.

The weighted beta diversity analysis grouped samples by condition, and the unweighted grouped samples 
by the identity of the individuals, independent of the condition. This suggests that sample clustering was driven 
by the relative abundance of bacterial taxa but also by the presence or absence of some key taxa. Since only in 
the unweighted analysis samples grouped by individuals, we suggest that each primate harbor different patterns 
of bacteria with low abundances. This may also suggest that individuals are grouping by age in which the two 
adults show a higher similarity of gut microbiota composition compared to the juvenile, however, we cannot 
have certainty because we only have one individual per age-sex category. The differences among conditions can 
be explained by the fact that colonization of microbiota occurs mainly by horizontal transference by contact 
with the  environment31,32 and differences in diet between the two sites could derive in differences in microbial 
composition. The differences between individuals may be driven by life history because infants seem to acquire 
microbiota from their mother and colonization continues through social interactions with conspecifics and the 
 environment33. Our results also suggest that time after liberation is associated with changes in bacterial composi-
tion and the more time individuals spend in liberation the less their microbiota resembles the one in captivity.

At a phylum level, we found that the most abundant sequences correspond to phyla Firmicutes, Proteobacte-
ria, and Bacteroidetes, which are the most abundant phyla in mice and  humans34,35. We found that Proteobacteria 
is the only phylum whose relative abundance was different between conditions, being higher in captivity. This 
phylum is commonly found at a higher relative abundance in captive  mammals10 and contains several patho-
genic microorganisms that can alter gut  microbiota36,37. At the genus level, we identified four bacteria that were 
dominant in captivity samples (Ruminobacter, Campylobacter, Unclassified S24-7, and Sharpea) and four in 
released ones (Bacteroides, Sutterella, Unclassified Coriobacteriaceae, and Succinatimonas). Bacteroides and Sut-
terela abundance were higher only in released individuals, and lower in captivity, even in the recaptured indi-
vidual. The genus Bacteroides is associated to plant nutrient intake, mainly leaves that contain high fiber  content38, 
which are more accessible to released individuals. Sutterella is considered a beneficial bacterium being present 
in healthy  boars39 and consider as a marker of healthy gut microbiota in giant pandas and thus suitable for 
reintroduction  processes40. Conversely, Campylobacter was exclusively found in samples from captivity, and is 
constantly associated to unhealthy non-human primates  microbiota41, and in macaques is associated to periods 
of food  scarcity33 suggesting that in the absence of their natural diet or periods of low abundance of diet items, 
animals cannot develop an optimal and healthy microbiota.

We found that the percentage of food the individuals ate from the forest was directly associated with bacterial 
diversity. Various studies have found that dietary niche plays an important role determining gut  microbiota2,11, 
the diversity, richness, and composition in howler monkeys (Alouatta pigra) vary in correlation to diet, where 
howlers occupying suboptimal habitats consume a less diverse diet leading to less microbial  diversity20. In our 
study, the released individuals explored new resources which may have contributed to an increase in their gut 
microbial diversity.

The condition modifies microbial composition as well as microbial function. We found that degradation, 
utilization and assimilation pathway, and generation of precursor metabolites and energy-associated pathways, 
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were higher in samples from released individuals when compared to captive ones. It has been found in folivo-
rous primate Alouatta palliata, a species belonging to the same family (Atelidae) as Lagothrix spp, that captive 
individuals reduce the relative abundance of metabolic pathways associated with degradation mainly because of 
a reduction in their native  diet9. Interestingly, in woodrats (Neotoma albigula), when fed with an artificial diet, 
there was an increase in metabolism pathways associated with biosynthesis, and a reduction in microbial metabo-
lism associated to degradation, specifically of secondary  compounds42. This is the same pattern that we found in 
woolly monkeys, where released individuals can consume different resources with secondary compounds that 
cannot be found in captivity, changing the microbiota functionality. These results suggest that gut microbiota 
may be highly resilient to perturbations at least in a functional way, suggesting that microbiota function may be 
recovered when giving an appropriate diet to captive individuals.

The variation in gut microbiota found in this study was mainly associated to diet and individual, this has to be 
taken into account in reintroduction processes, since despite finding differences in composition, we also found 
differences at the level of functionality that can affect the fitness of individuals, and therefore, the reintroduction 
success. For example, in this study the abundance of bacteria from the phylum Proteobacteria was higher in 
captivity; and as we mentioned before, this genus includes several pathogenic and opportunistic microorganisms 
that may be harmful to the individuals. It is important then to determine at what scale changes or presence of 
some key bacterial taxa in gut microbiota affect the fitness of individuals that are being reintroduced, or if they 
are just diet-driven changes that will not affect the survival of the released individual. Knowing this will allow 
determining if some individuals are more suitable to be reintroduced, so we encourage deeper investigations in 
the gut microbiota during reintroduction processes to raise and determine better conservation strategies or at 
least good maintenance of individuals in captivity providing them with an appropriate diet.

Methods
Study sites. All the project activities were performed by Regional Governmental Institutions (Corpo-
ración Autónoma del Alto Magdalena, Cormacarena, and some others) in collaboration with Universidad de 
los Andes. The project have followed the ARRIVE  guidelines43 and have the legal and ethical permits including 
in Colombia decree 1376 of June 27, 3013 that states “Permit to collect specimens of wild species of biological 
diversity for non-commercial scientific research” and the approval from Universidad de los Andes ethic com-
mittee.

The site where primates were in captivity was the Center of Attention and Valuation of Wild Fauna (Centro 
de Atención y Valoración de Fauna Silvestre, CAV for its acronym in Spanish) located at Teruel, Huila (2° 49′ 
53.93″ N, 75° 50′ 0.775″ O). This site is located at an altitude of 910 m.a.s.l. with a mean annual precipitation of 
1635 mm. Temperature ranges from 19.1 to 30.3 °C.

The site for release was located at El Pensil, Huila (1° 45′ 43.949″ N, 76° 17′ 11.68″ O), at a distance of 129 km 
from the captive site. This liberation site was selected for the reintroduction process because it is a Biological 
Corridor connecting two National Parks (Cueva de los Guacharos and Puracé) that have reported viable popu-
lations of woolly  monkeys44. It is located at a mean altitude of 1850 m.a.s.l. with a mean annual precipitation 
of 2284 mm. Temperature ranges from 12 to 20 °C. It has a forest matrix consisting primarily of secondary and 
primary forest. This liberation site shows high abundance of plant species that have been reported to be important 
in the diet of wild woolly monkeys as are plants belonging to the genus Hedyosmum sp, Miconia sp, Nectandra 
sp, Saurauia sp, Vismia sp, Clusia sp, Tapirira sp, Guatteria sp, Cecropia sp and Ficus sp.44,45.

Study subjects. The three individuals chosen for this study were captured as infants from their native habi-
tat for illegal trafficking and had always lived in captivity. The group consisted of one adult male (Hodor), one 
adult female (Yara), and one juvenile female (Arya). For the taxonomic classification of each individual, we 
consider the geographic ditribution of the species based on Botero et al. (2010)46 and Di Fiore et al. (2014)47 
that states that there are only two subspecies of woolly monkeys in Colombia, Lagothrix lagothricha lugens and 
Lagothrix lagothricha lagothricha. Also, we used characteristics of the coat color based on the descriptions made 
by Fooden (1993)48. The adult male and the adult female shows a gray to blackish color, so we assign them 
to L.l. lugens subspecies. The juvenile female shows a brown hair, so we identify her as L.l. lagothricha. How-
ever, this identification is not entirely precise since these subspecies in Colombia shows high gene flow between 
them carrying with inconsistencies in subspecies differentiation based on coat  color49. Individuals shared a 260 
 m3 enclosure with other 10 individuals. We chose our three study subjects based on various criteria. First, the 
resemblance of their behavior to individuals of wild  populations50, meaning they had similar feeding, resting, 
and moving patterns (Table S2). Second, whether the individuals consistently used the upper area in the enclo-
sure because wild woolly monkeys rarely go down to the ground and by using upper strata, they reduce the risk 
of predation in the liberation site. Third, that individuals showed affiliative social interactions that will suggest 
that they will not disperse from the group after the liberation. The last parameter was that individuals were not 
too attached to people (caretakers and researchers) but neither too aggressive so that the monitoring could be 
done. If individuals met most of these criteria, they were considered good candidates for the process of rehabili-
tation and release.

Behavioral data and fecal sample collection. We collected behavioral data and fecal samples as part 
of a larger study from May 2017 to June 2018. Data collection in captivity started in May 2017 until the released 
date in August 2017. Data collection for the released individuals was taken since the liberation day until March 
2018. The adult female, however, was recaptured one month after the liberation because she continued to dis-
perse away from the other two released individuals. After recapture, the adult female was returned to captivity 
and we continued collecting behavioral data in the enclosure using the methods previously described.
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We conducted focal-animal sampling for five days per  month51. We started recording data at 06:00 h until 
18:00 h, recording each individual activity (moving, feeding, resting, or engaging in social interactions) every 
ten minutes. When the individual was feeding, we recorded the item (fruit, leaves, arthropods, or other) and if it 
was a food item native to the forest, or whether it was provisioned as part of the supplementary diet (Table S3). 
Social interactions were determined by the percentage of times that an individual was in direct contact with 
another individual.

Between May of 2017 and June 2018, we collected six, eight, and five samples from the juvenile female, adult 
male, and adult females, respectively, for a total of 19 samples to be assessed for microbiota composition analysis 
(Table S4). All fecal samples were collected immediately after defecation to avoid environmental contamination. 
With the help of sterile wooden sticks, approximately 2 g of feces with no direct contact to the ground were 
collected in a 2 ml sterile Eppendorf containing 1 ml of RNA later. Samples were homogenized by shaking and 
the individual identity, study site condition, and date, were recorded. Samples were stored at room temperature 
until the transportation to Universidad de los Andes, Colombia, where samples were stored at − 20 °C until 
further analysis.

Primates diet. The individuals in captivity were fed twice a day with a standard diet consisting of a mixture 
of fruits and vegetables, which does not correspond to their diet in natural habitats (Table S5). The daily amount 
of food provisioned to primates (1473 g per individual) was calculated as the 20% of the average weight of each 
individual in the enclosure (Table S5). Two times a week, each individual was given an egg and 225 ml of liq-
uid Pediasure®, a commercially distributed nutritional supplement for human infants, which was administrated 
orally with the help of a syringe. Individuals caught and ate arthropods that enter the enclosure opportunisti-
cally. Since the moment of liberation, we developed a basket system in the canopy to provision the individuals 
with an alternative diet. Three plastic baskets (52 × 35 × 20 cm) were placed randomly in the liberation zone at 
10 m height. The food items we put in the baskets consists of a mixture of the same type of fruits and vegetables 
as were given to the individuals in captivity. This provisioned food was reduced over time as individuals were 
exploring the plants and feeding from the forest. Since the liberation, individuals received supplementary diet 
each day, after two weeks, the supplementary diet was reduced to every other day and after three months only 
100 g of dry kibble for dogs was given to the individuals.

DNA processing and sequencing. DNA was extracted from each sample using QIAamp DNA Stool Mini 
Kit (QIAGEN) according to the manufacturer instructions. PCR, library preparation, and sequencing were per-
formed by the Molecular Biology Laboratory at Universidad del Bosque, Bogotá, Colombia. In brief, the V4 
hypervariable region of the 16S rRNA gene was amplified using the 515F/806R primers following the protocol 
by Caporaso et al52. This region was selected as it has been proven to provide a good taxonomical assignment 
of gut bacteria  communities53–55. PCR products were barcoded and pooled in equimolar concentrations, deter-
mined using a Qubit 2.0 fluorometer (Invitrogen). Next, purification of the pool was performed with AMPure 
XP beads and pair-end sequenced using the V2 chemistry and 2 × 250 reads on an Illumina MiSeq. The resulting 
DNA sequences were deposited in the European Nucleotide Archive (ENA) under the study accession number 
PRJEB39493.

Quality filtering. For each of the pair-end reads from captive and released condition, we removed barcodes 
and primers with cutadapt v.1.1256. Sequence reads were checked for quality using  fastqc57 to establish an opti-
mum quality threshold for the filtering step. We performed a length and quality trimming using Trimmomatic 
v.0.3658 with a sliding window of 4 bp, a quality threshold of 20, and a minimum fragment length of 55. We then 
used FLASH v. 1.2.11 to merge paired-end reads with default parameters except for minimum overlap where 
200 bp was  used59. Lastly, we performed another trimming process of the merged sequences using the same 
parameters mentioned above.

Data processing and analysis. To process sequences between captive and released conditions we used 
 QIIME260 platform. Dereplication and denoising were performed by  deblur61 using a truncation length of 
240 bp. We next filtered the singletons and ASVs with a minimum abundance of 5% in all samples and rarefied 
at 13 134 sequences per sample, being the number of clean sequences for the sample with the minimum number 
of reads. Lastly, we performed the taxonomic assignment by training a Naïve Bayesian classifier with the Green 
Genes database as a  References62. We used the same database to generate a phylogenetic tree by the method of 
insertion placement. To determine functional diversity, we used the  PICRUSt263 algorithm searching for path-
way abundances between the different conditions.

The ASVs table was exported to R where we used the phyloseq package v. 1.24.264 and determined alpha diver-
sity (Shannon index) and beta diversity (weighted and unweighted UniFrac  distances65). We conducted an Adonis 
test to determine statistical differences in beta diversity analysis. We ran linear mixed models in R (lme4 package 
v. 1.1–2366) to assess the influence of time after liberation and diet consumed collected with animal focal-method 
(i.e., percentage of forest vegetables, percentage of forest fruits, percentage of arthropods, percentage of other 
food items, and overall percentage of forest diet (fruits and vegetables combined)), on alpha diversity of bacteria 
(Shannon and Chao 1 index), using the identity of each individual as a random effect variable. To evaluate the 
diet consumed by the individuals, we used a model selection approach based on the Akaike information crite-
rion (MuMIn v. 1.43.1767), selecting the model with the lower AIC score and the higher  weight68. To determine 
differences of bacterial communities over time, we performed a beta group significance analysis. This analysis 
will test if the distance between samples within a group is more similar to each other compared to the samples 
in between groups. We separate samples in five categories based on the variation in bacterial Shannon diversity 
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index over time (Fig. S1): (1) between − 100 and − 52 days prior to liberation, (2) between − 52 and 0 days prior to 
liberation, (3) between 0 and 100 days after liberation, (4) beyond 100 days of liberation until the end of the study 
for the released individuals, (5) beyond 100 days until the end of the study for the recaptured individual. These 
categories were used to determine differences in Shannon diet diversity over time. To visualize the abundance 
of the bacterial community we built heat maps between the different conditions. To reduce the dimensions of 
the heatmap, we decided to use number of phyla and genera with a p-value lower than 0.1 between conditions. 
Differential abundance between conditions was computed using STAMP with a Benjamini–Hochberg correction.
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