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Development of a semi‑automated 
segmentation tool for high 
frequency ultrasound image 
analysis of mouse echocardiograms
Kristi Powers1*, Raymond Chang1, Justin Torello1, Rhonda Silva2, Yannick Cadoret2, 
William Cupelo2, Lori Morton1 & Michael Dunn1 

Echocardiography is a widely used and clinically translatable imaging modality for the evaluation of 
cardiac structure and function in preclinical drug discovery and development. Echocardiograms are 
among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, 
high throughput acquisition, and non‑invasive nature; however lengthy manual image analysis, intra‑ 
and inter‑operator variability, and subjective image analysis presents a challenge for reproducible 
data generation in preclinical research. To combat the image‑processing bottleneck and address 
both variability and reproducibly challenges, we developed a semi‑automated analysis algorithm 
workflow to analyze long‑ and short‑axis murine left ventricle (LV) ultrasound images. The long‑axis 
B‑mode algorithm executes a script protocol that is trained using a reference library of 322 manually 
segmented LV ultrasound images. The short‑axis script was engineered to analyze M‑mode ultrasound 
images in a semi‑automated fashion using a pixel intensity evaluation approach, allowing analysts 
to place two seed‑points to triangulate the local maxima of LV wall boundary annotations. Blinded 
operator evaluation of the semi‑automated analysis tool was performed and compared to the current 
manual segmentation methodology for testing inter‑ and intra‑operator reproducibility at baseline 
and after a pharmacologic challenge. Comparisons between manual and semi‑automatic derivation 
of LV ejection fraction resulted in a relative difference of 1% for long‑axis (B‑mode) images and 2.7% 
for short‑axis (M‑mode) images. Our semi‑automatic workflow approach reduces image analysis 
time and subjective bias, as well as decreases inter‑ and intra‑operator variability, thereby enhancing 
throughput and improving data quality for pre‑clinical in vivo studies that incorporate cardiac 
structure and function endpoints.

Echocardiography is a non-invasive, cost effective and reliable imaging modality used extensively for the clinical 
assessment of cardiovascular function and medical  diagnosis1,2. In addition to its clinical utility, echocardiography 
is widely used in preclinical basic and applied research for the evaluation of myocardial structure and function 
in the drug discovery and development  arenas3. Applications in normal and diseased preclinical animal models 
have gained a significant foothold in both drug development and academic  research4. With the advent of high 
frequency micro-ultrasound systems, (in the order of 10 to 40 MHz frequency transducers) routine assessment 
of cardiac structure and function of murine models has proven valuable in interrogating the pathophysiology 
associated with cardiovascular diseases, allowing for enhanced understanding of mechanisms of action that 
occur in disease  processes5,6.

The appeal surrounding preclinical micro-ultrasound as a technology in the drug development space stems 
from its relative affordability, widespread availability, translatability and rapid real-time image acquisition sup-
porting high throughput  imaging4. Nevertheless, the technology presents with challenges that include requiring 
significant technical expertise for data acquisition and analysis. This complexity contributes to intra- and inter-
operator and between-institution variability that impacts data interpretation. Moreover, analysis of echocardio-
graphic data is highly subjective and creates a lengthy manual image analysis process that results in a workflow 
 bottleneck7. Internal audit of time required from murine echocardiography acquisition to complete data analysis 
and peer review shows that it requires a minimum of thirty minutes per mouse. This limitation surrounding 
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ultrasound analysis throughput is amplified at pharmaceutical/biotechnology companies and contract research 
organizations where analysis of large sample sizes routinely creates a data bottleneck and results in the slowing 
down of research efforts aimed at developing novel therapeutics.

Although routinely used clinically, the acquisition and analysis of human echocardiograms is typically not 
conducted at the scale performed in the drug development space. Despite lower overall throughput, clinical 
image analysis has seen recent and substantial advancements in quantitative ultrasound image analysis with the 
development of model-based 2D echocardiographic image  tracking8. When comparing the clinical advances 
to the current state of preclinical micro-ultrasound image analysis, the discrepancy leaves an unmet need to 
innovate methods that enhance data processing in a high throughput fashion, permitting rapid interpretation 
of data and quick decision-making.

To address this need, our goal was to develop a software-based analysis algorithm for the semi-automated 
segmentation of murine left ventricle (LV) long- and short-axis ultrasound images. Described herein, a semi-
automated method for LV segmentation and derivation of volumetric and functional parameters for mice was 
developed. Our micro-ultrasound analysis tool performs favorably relative to a manual analysis approach, and 
reduces the time required for image analysis. In addition, we demonstrate that our tool reduces subjective bias 
as well as inter- and intra-operator variability, the main current limitations of ultrasound image analysis.

Methods
All animal procedures and protocols described in this work were approved by Regeneron Pharmaceuticals, are 
carried out in compliance with ARRIVE guidelines, in accordance with state and federal guidelines and aligned 
with regulations set forth by Regeneron Pharmaceutical’s Institutional Animal Care and Use Committee.

Animals and materials. Male C57BL/6N mice (n = 6), aged ~ 20 weeks and weighing 27.2–31.1 g (Charles 
River Laboratories, Wilmington, MA, 01887) were acclimated for a minimum of 7 days prior to experimen-
tation. Mice were co-housed in polycarbonate, solid-bottom cages in a temperature-controlled environment 
(22 ± 2 °C), an approximate 12-h light–dark cycle, with access to research diets standard pellet chow and reverse 
osmosis filtered water. Isoproterenol hydrochloride powder was purchased from Sigma Aldrich and was diluted 
with saline to achieve an injected dose concentration of 5 mg/kg (100 mg; lot#: SLBC2168V; St. Louis, MO).

In vivo imaging procedure. Each mouse was placed inside a warm (~ 37 °C) induction chamber (warmed 
by electrical blanket and/or a warm water circulating blanket) containing a gas mixture of 2% isoflurane in 100% 
oxygen for 2 to 3 min. Upon confirmation of appropriate anesthetic plane via a negative toe or tail pinch, the 
chest area (from the collarbone to slightly below the diaphragm) was shaved and depilatory cream (Nair) was 
applied to ensure that any hair in the imaging region of interest was removed. The animal was then transferred 
to the animal imaging platform, positioned supine, and their paws were secured with medical tape to gold plated 
ECG leads coated with conduction cream. A rectal probe was then inserted and taped down to monitor the 
animals’ body temperature during the time of acquisition. All scans were conducted on mice that had a targeted 
core body temperature of 37 ± 1 °C and a heart rate of 400–500 beats per minute.

Mouse left ventricle echocardiograms were acquired using the Vevo2100 (Visualsonics/FujiFilm, Toronto, 
Canada) high frequency ultrasound machine and the 18–38 MHz transducer (MS400). Images were acquired 
on a warmed (37.5 °C) imaging platform, oriented to approximately 40°–50° so that the lower left-hand corner 
of the platform was pulled down. Utilizing a probe holder, the transducer was pivoted outward roughly 10°–15° 
toward the right side of each animal, ensuring that the scanning head would be placed parallel to the axis of 
the left ventricle and the sternum. Ultrasonic transmission gel was placed on the chest of the animal to obtain 
a parasternal long axis (PLAX) B-mode cine loop ensuring a clear image containing both the apex and aortic 
valve. A cine loop of 300 frames (6.67 ms/per frame) was acquired and the transducer was then rotated clockwise 
90°. The M-mode curser was placed in the center of the left ventricle chamber to acquire a 5-second cine-loop 
short axis (SAX) M-mode image at the level of the papillary muscle as a landmark for reproducible slice location.

Reference library for parasternal long axis B‑mode analysis. The underlying concept behind the 
development of the semi-automated segmentation algorithm for analysis of PLAX B-mode ultrasound images 
was derived from the multi-atlas or reference library approach used in clinical ECG wave pattern recognition 
 analysis9. Following cine loop acquisition, images were exported and stored on a data server for import into 
both the Visualsonics analysis software suite (Version 3.1.1) and the Image Study Data Management Software 
Platform (ISDMP) (iPACS-a research PACS [picture archival and communication system] Invicro, LLC/Konica 
Minolta, Boston. MA). PLAX B-mode ultrasound images containing a distribution of both healthy and various 
murine models of cardiovascular disease were manually traced by highly trained and validated sonographers 
(within analyst coefficient of variation at or below 10–20%—data not shown) as well as put through an internal 
blinded peer review process. This specific workflow ensured a high level of analysis accuracy and agreement 
before images were incorporated into the reference library for the computer learning development of the semi-
automated segmentation algorithm. Exploiting the presence of characteristic anatomical patterns seen in LV 
ultrasound images functioned to train the computer algorithm to recognize these patterns within unanalyzed 
or newly acquired ultrasound  images10. To obtain functional, clinically relevant endpoints, the left ventricle 
B-mode images were traced at end-diastole and end-systole. An adequate number of points were manually 
placed along the endocardial wall of the left ventricle at each phase to capture an entire cardiac cycle, with accu-
rate tracking between phases. A package of manually analyzed murine echocardiograms containing a range of 
images of baseline scans, post-pharmacologic challenge, post-surgically induced disease state models, and gen-
eral genetic phenotyping models were aggregated to create a working library. This library contained roughly 322 
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manually traced mouse PLAX ultrasound images from transgenic mice of mixed C57BL/6 and 129SV genetic 
background (ranging from 75 to 87% C57BL/6). The analyzed images contained a broad selection of echocardio-
grams representative of the expected variability often seen in animal models.

Creation of semi‑automated segmentation algorithm for LV long‑axis B‑mode and short‑axis 
M‑mode echocardiograms. For B-mode segmentation, the VivoQuant Whole-body Multi-Atlas Segmen-
tation tool (Invicro, LLC/Konica Minolta, Boston, MA) was used with the reference library described  above10. 
Following denoising (including image down-sampling by a factor of 2), for each systolic and diastolic frame, the 
manually traced region of interest (ROI) of the reference library were affinely-registered to the selected image 
with normalized mutual information (NMI) as the objective function. Following co-registration, the labels of 
the five registrations with the highest NMI were mapped and averaged to create a probability map (based on 
pixel-by-pixel mapping of images) that a threshold was then applied to generate the final segmentation used 
for analysis. Prior to overall deployment, the method described above was tested and validated on a subset of 
echocardiograms acquired from control and post-surgically induced disease mouse models containing a total 
of 90 images (30 per model). For each set of echocardiograms, a working reference library was created from 
approximately 25 randomly selected images amongst the group of interest, with the remaining 5 images defined 
as test subjects. Following analysis using the developed tool, the resulting test subject segmentations were com-
pared to manual peer reviewed segmentations performed by blinded independent operators. Dice coefficients 
from comparisons of semi-automated and manual segmentations ranged from 0.85 to 0.98 with an average 
overlap ratio of 0.93 ± 0.03 (data not shown).

The short axis M-mode algorithm works in a fashion similar to the concept of statistical parametric map-
ping used to evaluate differences within brain activity during functional neuroimaging  experiments11. Instead 
of assessing images on a voxel-by-voxel basis, the algorithm works by evaluating 2D echocardiography in a 
pixel-by-pixel manor. More specifically, it works by using a two seed-point approach to triangulate the local 
maxima of the anterior and posterior endocardium and epicardium, from which it automatically populates a 
best fit line for each. The M-mode segmentation algorithm is based on user selection of two points that define a 
search region around two walls of interest. The steps required for the manual selection of the search regions are 
further described in section “Semi-automated segmentation tool workflow implementation” Once two points 
have been selected, noise reduction and gradient filtering are applied to the selected region. A gradient-based 
cost function is applied to every pixel of the region to derive a cost function image. The cost function image 
is used as the input to a dynamic programming routine that computes an optimal path, thus defining the wall 
boundary in the defined  region12. The same process is repeated for each of the four walls (8 seed points). After 
all the walls have been processed, each segmentation is filtered in the spectral domain to keep only the highest 
frequency. The peaks of the filtered signal are used across the four walls to compute the wall measurements over 
systolic and diastolic sections (including wall-thicknesses and functional dimensions). In addition to perform-
ing left ventricle segmentation and volumetric analysis, the semi-automated segmentation algorithm includes 
automatic calculation of clinically relevant parameters used to assess left ventricle structure and function in 
preclinical species incorporated from both PLAX B-mode and SAX M-mode images.

Validation study. A pilot study was conducted to test the validity and reproducibility of the semi-auto-
mated segmentation algorithm within a routine drug development workflow. Echocardiograms were acquired 
from C57BL/6 mice (n = 6) at baseline and again fifteen minutes after a single 5 mg/kg subcutaneous dose of the 
beta agonist, isoproterenol, (Isoproterenol hydrochloride powder; 100 mg; Sigma Aldrich; lot#: SLBC2168V). 
Each individual mouse was considered the experimental unit and served as its own control. The investigator 
assisting the sonographer was the only one aware of the treatment group allocation. The sample size of six 
per group was selected to ensure adequately powered statistical analyses while minimizing the total number of 
animals. No animals were excluded from analysis. Following acquisition, the images were manually analyzed 
via the Vevolabs analysis software (Visualsonics/FujiFilm, Toronto, Canada) by three independent, skilled and 
blinded operators using the protocol previously described. The same images were then analyzed by the same 
operators using the semi-automated segmentation algorithm. Bi-variate regression analyses of manual and semi-
automated segmented images were performed to assess variation between sonographers using the tool. To assess 
the level of variation with a single sonographer using the semi-automated segmentation tool, a coefficient of 
variation analysis was performed by running the semi-automated segmentation tool in triplicate fashion on the 
same data set. This protocol was followed to assess the variation of both B-mode and M-mode imaging segmen-
tations. Similar coefficient of variation analysis was also performed on manually traced ultrasound images in the 
same triplicate fashion for a head-to-head comparison with the algorithm. Objectivity was achieved during the 
coefficient of variation quantification for the semi-automatic segmentation tool by ensuring that images were 
devoid of any peer review processes. Removal of the peer review process was essential to mimic the procedures 
of the manual coefficient of variation analysis for a proper comparison.

Semi‑automated segmentation tool workflow implementation. The algorithm was developed 
and deployed to Regeneron pharmaceuticals via a commercial image viewing and analysis  software10. This soft-
ware provides a graphical user interface-driven workflow tool for incorporation of the semi-automated analysis 
algorithms, with the added capability of integrating into a central ISDMP. Once echocardiograms are acquired, 
they can be stored into the ISDMP using a data transfer application from source to the ISDMP content  store13. 
Image data were then managed by the ISDMP and made available within the analysis software for execution of 
the semi-automated algorithm workflows.
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Data transfer and storage. An Invicro developed rsync wrapper desktop application, iPACSSync, auto-
matically copies data from the Vevo2100 scanner workstation to a study specific repository in the iPACS. Once 
the sync is complete, designated users with the appropriate permissions can access the data on any computer 
through a web browser, without the need to download it locally. Within the iPACS, ultrasound data are viewed 
in a Windows-like directory file structure, or in a database-like view that displays important metadata such as 
subject identification, acquisition time, image type, etc.

Segmentation and analysis. The post-processing suite can flexibly utilize a proprietary JavaScript-based 
programming language, Vivoscript, that can execute various tasks by leveraging the ISDMP in an automated 
fashion. The created analysis workflow enables open communication between the post-processing suite and data 
management system, allowing for users to batch process data and automatically store results back to the reposi-
tory. Separate scripts for each imaging orientation were created. Each script executes the imaging mode-specific 
processing pipeline described in the following sections. The processing script executes each analysis protocol 
individually based off the different concepts related to each imaging mode. Each script executes the following:

For B‑mode. 

(a) Queries the iPACS for data to process using user-defined study and patient filters;
(b) Downloads the queried images as raw data (locates PLAX images by identifying “B-mode” in the header 

file);
(c) Launches the VivoQuant B-mode importing tool;
(d) Prompts user to first select the frame at which the heart is in end-systole, followed by selecting the frame 

at which the heart is in end-diastole;
(e) Imports each selected frame as 2D images in VivoQuant and uploads them in a different study repository 

on the iPACS;
(f) Repeats this step for all animals in the study;
(g) Automatically starts running the selected 2D frames through the Multi-Atlas Segmentation tool in Vivo-

Quant using the manually segmented reference library and a set of fixed parameters;
(h) Automatically generates a region of best fit;
(i) Automatically calculates functional measures of ejection fraction, stroke volume, fractional shortening, 

fractional area change, end-diastolic volume, end-systolic volume, end-diastolic area, end-systolic area, 
end-diastolic dimension, and end-systolic dimension;

(j) Submits the generated region of interest, screenshots of the segmentations, and measurements to the 
appropriate study repository on the iPACS.

For M‑mode. 

(a) Queries the iPACS for data to process using user-defined study and patient filters;
(b) Downloads the queried images as raw data;
(c) Launches the VivoQuant M-mode importing tool;
(d) Automatically imports a pre-defined portion of the scan as new data in VivoQuant and uploads it in a dif-

ferent study repository on the iPACS;
(e) Launches the VivoQuant M-mode processing tool;
(f) Pauses to allow users to select upper and lower boundary points of each of the four walls;
(g) Automatically segments the four walls;
(h) Automatically calculates and displays LV inner diameter at systole, LV inner diameter at diastole, end 

systolic volume, end diastolic volume, stroke volume, ejection fraction, fractional shortening, LV mass, 
LV mass corrected to body surface area, LV anterior wall dimension at systole, LV anterior wall dimension 
at diastole, LV posterior wall dimension at systole and LV posterior wall dimension at diastole;

(i) Pauses to allow users to make any manual modifications to the segmentations and updates the measure-
ments real time;

(j) Submits the processed data, screenshots of the segmentations, and measurements to the appropriate study 
repository on the iPACS;

(k) Repeats steps (b) through (i) for all data identified in (a) (Fig. 1).

Results, aggregation and reporting. After analyzing all PLAX B-mode and SAX M-mode images in a 
study, users then navigate to the iPACS, select the data of interest, and generate reports. Two reports are available 
with each processing module, an excel file that contains quantification data and a QC PowerPoint with segmen-
tation images for each subject. After reviewing the segmentations and output measures, users can load data into 
VivoQuant and make further changes or adjustments if neccessary. Updates to the segmentations at any point in 
time automatically update the reports so that only the most recently analyzed data are reviewed.

Statistical analysis. The focus of the present analyses was largely centered around the goodness of fit of 
two different methods of image segmentation (algorithm-based versus manual-based) and three different ultra-
sound analysts (Analyst 1, Analyst 2, and Analyst 3). Bivariate linear regressions were made on the combinations 
between segmentation methods and different analysts. Coefficients of determination (r2), a measure of propor-
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tional accountability or goodness of fit between two measures were derived from Pearson’s regression analyses. 
Statistical significance for both r and r2 was set at an alpha (p) of less than or equal to 0.05 (p ≤ 0.05).

To determine reliability of image segmentation methods, coefficients of variation (mean/standard devia-
tion) of the segmentation methods were calculated based on image segmentations performed in triplicate. For 
both assessments, a proper peer review and post-review image analysis processing were excluded to facilitate 
assessment of the performance of the algorithm alone. The resultant outcomes of the segmentations were used 
to calculate the coefficients of variation. To simplify the analyses of the coefficients of variation, student’s within-
subjects t-tests were performed on the calculated coefficients of variation. Statistical significance was set at an 
alpha (p) of less than or equal to 0.05 (p ≤ 0.05). Our alternative hypothesis (H1) predicted that the coefficients 
of variation should not be different between methods and treatment conditions (saline versus isoproterenol). 
We also determined that a reliable segmentation outcome should produce coefficients of variation less than or 
equal to 20% of the standard deviation (≤ 20%). All statistical analyses were performed using Prism—GraphPad 
(version 7.0) and Microsoft Excel.

Results
B‑mode segmentation. The average coefficient of determination for dimension and volume estimations 
from long-axis B-mode images among the three independent sonographers analyzing one set of acquired data 
(Analyst 1, Analyst 2, and Analyst 3) using the algorithm for analysis compared to using the manual segmenta-
tion technique were 98.5% for end systolic area (ESA), 91.1% for end diastolic area (EDA), 98.4% for end systolic 
volume (ESV), and 92.7% for end diastolic volume (EDV) (Table 1a). Clinically relevant long axis functional 
endpoints produced average regression coefficients among the three analysts of 43.4% for fractional shorten-
ing (FS), 50.5% for stroke volume (SV), 93.3% for ejection fraction (EF), and 49.4% for cardiac output (CO) 
(Table 1a and Fig. 2a). Inter-user variation while using the semi-automated analysis algorithm was assessed by 
comparing the data sets produced from the same three individuals and performing linear regressions between 
each combination of users (Analyst 1 vs. Analyst 2, Analyst 3 vs. Analyst 2, and Analyst 3 vs. Analyst 1) (Table 1b 
and Fig. 2b). When comparing the variation in data obtained from using the algorithm between the three ana-
lysts to the variation of data obtained by manual segmentation between all three analysts, the average coeffi-
cients of determination for, ESA, EDA, ESV and EDV were 95.4%, 85.6%, 97.2%, and 91.2%, respectively, while 
manual segmentation produced average correlation coefficients of 96.6%, 95.4%, 96.8%, and 95.9%, respectively 
(Table 1b, c and Fig. 2b,c). The functional endpoints comparing between-user variation among the three ana-
lysts while using the algorithm for segmentation produced a range of coefficients of determination from 8.1% 
for FS, 40.5% for SV, 43.4% for CO and 92.1% for EF. In comparison, manual between-user variation produced 
coefficients of determination of 55.3% for FS, 71.3% for SV, 44.3% for CO and 90.8% for EF (Table 1b, c and 
Fig. 2b,c). Validation testing revealed that the semi-automated analysis algorithm for PLAX B-mode LV assess-
ment correlated well to the current standard of manually tracing ultrasound images and produced comparable 
segmentations (Fig. 3a,b).  

Figure 1.  Semi-automated segmentation tool flowchart: pictorial representation of the semi-automated 
segmentation workflow for analyzing B-mode and M-mode echocardiograms.
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M‑mode segmentation. Head-to-head comparisons of manual- to algorithm-based data produced linear 
relationships with average coefficients of determination  (r2) of 63.4% and 32.2% for systolic and diastolic pos-
terior wall thickness measurements, and 76.0% for systolic and 75.8% for diastolic anterior wall thicknesses, 
respectively (Table 2a and Fig. 4a). End systolic and end diastolic dimensions and volumes produced average 
covariance of 98.0% for end systolic dimension, 97.4% for end diastolic dimension, 98.5% for end systolic vol-
ume, and 97.8% for end diastolic volume (Table  2a and Fig.  4a). Cardiac function measurements were also 
tightly correlated between both methods of analysis, with an average  r2 of 92.3% for fractional shortening, 82.1% 
for stroke volume, 94.2% for ejection fraction and 77.4% for cardiac output (Table 2a and Fig. 4a). Left ventricle 
mass was the least concordant when comparing the two methods, with an average coefficient of determination 
of 25.2% (Table 2a and Fig. 4a). The between-user variation among the three analysts employing the algorithm 
was less than that of manual segmentation as evidenced by stronger regressions for end diastolic dimension 
98.9%, end diastolic volume 99.0%, stroke volume 91.4%, cardiac output 83.1%, LV mass and LV mass corrected 
for body surface area 69.8%, and posterior wall thicknesses in systole 74.5% and diastole 69.8% (Table 2b and 
Fig. 4b) compared to the between user variation produced with manual segmentation; end diastolic dimension 
96.9%, end diastolic volume 97.1%, stroke volume 80.9%, cardiac output 66.3%, LV mass corrected 39.2%, pos-
terior wall thickness in systole 63.2% and in diastole 29.4% (Table 2c and Fig. 4c). The semi-automated analysis 
algorithm for SAX M-mode LV assessment produced comparable segmentations to those obtained from manual 
segmentation (Fig. 5a,b).  

Coefficients of variation. Coefficient of variation analysis was also performed using one sonographer to 
measure the same set of images in triplicate. These procedures were followed for manual segmentation as well as 

Table 1.  Data tables of coefficient of determination averages (r2) among the three independent analysts for 
long axis B-mode left ventricle functional and structural end-points. (a) Compares average coefficient of 
determination for each analyst using the semi-automated segmentation algorithm related to using the manual 
segmentation technique; (b) compares within analyst coefficient of determination averages while using the 
semi-automated analysis algorithm; and (c) compares within analyst coefficient of determination averages 
when using manual segmentation. P-values were set at < 0.05.

(a) B-mode_algorithm vs. manual: coefficient of determination averages among three independent analysts

LV end point Analyst 1 Analyst 2 Analyst 3
Average  r2-value of three 
analysts (%)

End systolic area  (mm2) 99.34 97.94 98.18 98.5

End diastolic area  (mm2) 96.19 81.42 95.55 91.1

End systolic volume (μL) 99.51 97.80 97.89 98.4

End diastolic volume (μL) 96.97 85.68 95.42 92.7

Fractional shortening (%) 40.20 35.07 54.89 43.4

Stroke volume (μL) 81.21 7.34 63.02 50.5

Ejection fraction (%) 97.96 95.35 86.48 93.3

Cardiac output (mL/min) 71.51 32.35 44.24 49.4

(b) B-mode_algorithm vs. algorithm: coefficient of determination averages among three independent analysts

LV end point Analyst 1 vs. analyst 2 Analyst 3 vs. analyst 1 Analyst 3 vs. analyst 2
Average  r2-value between 
three analysts (%)

End Systolic Area  (mm2) 94.04 95.37 96.93 95.4

End diastolic area  (mm2) 78.48 82.09 96.16 85.6

End systolic volume (μL) 96.61 96.82 98.04 97.2

End diastolic volume (μL) 86.48 90.26 96.77 91.2

Fractional shortening (%) 0.10 15.01 9.22 8.1

Stroke volume (μL) 23.82 19.86 77.86 40.5

Ejection FRACTION (%) 94.48 91.22 90.68 92.1

Cardiac output (mL/min) 45.10 22.74 62.50 43.4

(c) B-mode_manual vs. manual: coefficient of determination averages among three independent analysts

LV end point Analyst 1 vs. analyst 2 Analyst 3 vs. analyst 1 Analyst 3 vs. analyst 2
Average  r2-value between 
three analysts (%)

End systolic area  (mm2) 94.56 99.55 95.74 96.6

End diastolic area  (mm2) 94.62 97.45 94.10 95.4

End systolic volume (μL) 94.92 98.76 96.68 96.8

End diastolic volume (μL) 95.75 96.89 95.15 95.9

Fractional shortening (%) 78.08 57.06 30.69 55.3

Stroke volume (μL) 79.33 62.22 72.27 71.3

Ejection fraction (%) 91.62 94.52 86.40 90.8

Cardiac output (mL/min) 68.41 28.91 35.68 44.3
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Figure 2.  B-mode Segmentation Comparisons: Graphical representations of B-mode coefficient of 
determination  (r2) among three analysts, with  r2 values on the y-axis, and long axis LV structure and function 
end-points on the x-axis. (a) Displays the within analyst comparison of left ventricle B-mode echocardiograms 
segmented using the semi-automated algorithm compared to manual segmentation; (b) shows the between 
analyst comparison while employing the algorithm for segmentation; and (c) shows the between analyst 
comparison when manual segmentation is performed; p values set at p < 0.05.
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for segmentation with the semi-automated algorithm for both long- and short-axis. This was done to assess the 
reproducibility of the method and to evaluate how it compares to the standard manual segmentation approach. 
Variation of long-axis B-mode structural and functional endpoints improved by ~ 2–11% in the data set analyzed 
using the semi-automated segmentation tool (Table 3a and Fig. 6a). Repeated analysis of short-axis M-mode 
measurements of left ventricular structure and function displayed ~ 1–6% less variation employing the semi-
automated segmentation tool as compared to manual analysis (Table 3b and Fig. 6b).

Discussion
A key advantage of echocardiography is that it presents as a non-invasive, in vivo imaging modality allowing for 
the longitudinal characterization of cardiovascular disease progression, in both preclinical and clinical practice. 
For murine pharmacology studies, serial micro-ultrasound acquisition produces an extraordinary amount of 
data and requires many hours of analysis and data processing from a highly trained sonographer to generate 
decision making data. The primary objective of this work was to develop a software-based analysis algorithm 
to address the data bottleneck that preclinical murine ultrasound image analysis presents in the drug discovery 
and development arena. The tool that was described herein addressed the inherent limitations experienced 
with ultrasound data analysis industry wide. As demonstrated by the high degree of reproducibility and noted 
reduction in user time required to analyze, we successfully created and deployed a semi-automated analysis 
algorithm for the derivation of LV PLAX B-mode and SAX M-mode volumetric and functional parameters for 
murine echocardiograms.

The tool was rigorously validated and measured against the current method of manual segmentation. Isopro-
terenol is a synthetic and potent beta-adrenergic agonist with known cardiac stimulating properties including 
inducing LV hyper-contractility14. The robust, measurable response observed with Isoproterenol facilitated testing 
of the functionality and boundaries of the semi-automated segmentation tool under pharmacologic challenge, 
with the intent of identifying any limitations. The tightly correlated values seen in ESA, EDA, ESV and EDV 
(Table 1a and Fig. 2a) were expected when you consider the principles behind the PLAX B-mode algorithm 
and that it functions mainly on shape and size of the region of interest. Functional data point correlations are 
not as tight between methods due to slight variations within the equation used to calculate them and these 

Figure 3.  B-mode ROI’s: 2-dimensional left ventricle long axis B-mode echocardiograms from C57BL/6 mice. 
Visual comparison of manually segmented ROI (left) vs. ROI generated from the semi-automated segmentation 
algorithm of the same images (right). (a) shows a representative baseline long axis LV B-mode echocardiogram 
from a C57BL/6 mouse that was traced manually (top is the LV in end-diastole, bottom is the LV in end-systole). 
(b) Shows the same baseline LV B-mode echocardiogram, but with segmentation conducted using the semi-
automated algorithm for analysis (top is LV in end-diastole, bottom is LV in end-systole).
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Table 2.  Data tables of coefficient of determination averages amongst the three independent analysts for 
short axis M-mode left ventricle functional and structural end points. (a) Compares average coefficient of 
determination for each analyst using the semi-automated segmentation algorithm compared to using the 
manual segmentation technique. (b) Compares within analyst coefficient of determination averages while 
using the semi-automated analysis algorithm. (c) Compares within analyst coefficient of determination 
averages when using manual segmentation.

(a) M-mode_algorithm vs. manual: coefficient of determination averages among three independent analysts

LV end point Analyst 1 Analyst 2 Analyst 3
Average  r2-value of three 
analysts (%)

End systolic dimension (mm) 98.82 96.97 98.23 98.0

End diastolic dimension 
(mm) 97.05 98.19 96.92 97.4

End systolic volume (μL) 98.44 97.92 99.12 98.5

End diastolic volume (μL) 97.69 98.29 97.34 97.8

Fractional shortening (%) 97.16 88.66 91.09 92.3

Stroke volume (μL) 80.98 83.86 81.38 82.1

Ejection fraction (%) 97.29 92.37 92.83 94.2

Cardiac output (mL/min) 77.88 77.58 76.64 77.4

LV mass (mg) 7.488 13.49 54.77 25.2

LV mass corr (mg) 7.488 13.49 54.77 25.2

LVAW; d (mm) 67.38 71.62 88.45 75.8

LVAW; s (mm) 75.03 64.46 88.43 76.0

LVPW; d (mm) 12.16 21.33 63.13 32.2

LVPW; s (mm) 55.88 64.91 69.26 63.4

(b) M-mode_algorithm vs. algorithm: coefficient of determination averages among three independent analysts

LV end point Analyst 1 vs. analyst 2 Analyst 3 vs. analyst 1 Analyst 3 vs. analyst 2
Average  r2-value between 
three analysts (%)

End systolic dimension (mm) 96.11 96.91 96.77 96.6

End diastolic dimension 
(mm) 98.51 99.15 99.01 98.9

End systolic volume (μL) 97.99 97.31 97.49 97.6

End diastolic volume (μL) 98.61 99.28 99.24 99.0

Fractional shortening (%) 88.63 94.95 90.37 91.3

Stroke volume (μL) 90.46 90.36 93.37 91.4

Ejection fraction (%) 92.45 95.37 93.02 93.6

Cardiac output (mL/min) 76.97 85.33 86.89 83.1

LV mass (mg) 87.00 60.89 61.58 69.8

LV mass corr (mg) 87.00 60.89 61.58 69.8

LVAW; d (mm) 74.96 83.61 78.91 79.2

LVAW; s (mm) 81.62 80.65 76.65 79.6

LVPW; d (mm) 87.00 60.89 61.58 69.8

LVPW; s (mm) 91.86 67.12 64.66 74.5

(c) M-mode_manual vs. manual: coefficient of determination averages among three independent analysts

LV end point Analyst 1 vs. analyst 2 Analyst 3 vs. analyst 1 Analyst 3 vs. analyst 2
Average  r2-value between 
three analysts (%)

End systolic dimension (mm) 99.4 97.84 97.75 98.3

End diastolic dimension 
(mm) 97.82 96.17 96.62 96.9

End systolic volume (μL) 99.24 98.61 98.62 98.8

End diastolic volume (μL) 98.17 96.58 96.52 97.1

Fractional shortening (%) 96.06 93.59 92.63 94.1

Stroke volume (μL) 84.45 78.58 79.65 80.9

Ejection fraction (%) 96.01 94.12 91.79 94.0

Cardiac output (mL/min) 71.13 68.71 59.08 66.3

LV mass (mg) 61.19 39.75 16.6 39.2

LV mass corr (mg) 61.19 39.75 16.6 39.2

LVAW; d (mm) 96.62 88.19 92.2 92.3

LVAW; s (mm) 88.41 91.29 83.52 87.7

LVPW; d (mm) 56.85 22.16 9.3 29.4

LVPW; s (mm) 78.32 66.96 44.21 63.2
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Figure 4.  M-mode Segmentation Comparisons: Graphical representations of M-mode coefficient of determination 
among three analysts, with  r2 values on the y-axis and short axis LV structure and function end-points on the x-axis. (a) 
Displays the within analyst comparison of left ventricle M-mode echocardiograms segmented using the semi-automated 
algorithm compared to manual segmentation. (b) Shows the between analyst comparison while employing the algorithm for 
segmentation. (c) Shows the between analyst comparison when manual segmentation is performed; p values set at p < 0.05. 
Red brackets highlight variation in structural end-points resulting in a variable goodness of fit.
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Figure 5.  M-mode ROI’s: 2-dimensional short axis images of the left ventricle of C57BL/6 mice. Visual 
comparison of manually segmented ROI (left) vs. ROI generated from the semi-automated segmentation 
algorithm of the same images (right). (a) Shows a representative baseline LV M-mode echocardiogram from a 
mouse that was traced manually. (b) Shows the same baseline LV M-mode echocardiogram segmented using the 
semi-automated algorithm for analysis.

Table 3.  Data tables displaying coefficient of variation analysis percentages between manual segmentation and 
semi-automated algorithm segmentation. (a) details long axis B-mode COV averages and (b) details short axis 
M-mode COV averages from analyzing the same data set of echocardiograms in triplicate using the manual 
analysis method compared to using the semi-automated segmentation algorithm.

(a): B-mode coefficient of variation manual vs. algorithm

LV end point Manual (%) Algorithm (%)

End systolic area  (mm2) 8.2 3.2

End diastolic area  (mm2) 5.2 1.5

End systolic volume (μL) 17.1 5.9

End diastolic volume (μL) 10.5 2.8

Fractional shortening (%) 13.0 10.3

Stroke volume (μL) 13.7 8.0

Ejection fraction (%) 4.6 5.8

Cardiac output (mL/min) 13.8 8.0

(b): M-mode coefficient of variation manual vs. algorithm

LV end point Manual (%) Algorithm (%)

End systolic dimension (mm) 5.6 3.5

End diastolic dimension (mm) 1.5 1.5

End systolic volume (μL) 13.1 8.9

End diastolic volume (μL) 3.8 3.7

Fractional shortening (%) 9.1 4.8

Stroke volume (μL) 6.7 3.6

Ejection fraction (%) 6.3 3.6

Cardiac output (mL/min) 6.4 4.4

LV mass (mg) 8.3 7.0

LV mass corr (mg) 8.3 7.0

LVAW; d (mm) 2.8 5.0

LVAW; s (mm) 6.1 5.6

LVPW; d (mm) 11.7 4.5

LVPW; s (mm) 9.1 3.5
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differences in calculated volumetric endpoints become amplified once further manipulated to obtain values of 
ejection fraction and stroke volume. The modified Simpson’s rule, also known as the biplane method of disks, 
is the recommended method of choice by the American Society of Echocardiography (ASE) committee for 2D 
LV volumetric  measurements15–17.

The underlying concept is that total LV volume is calculated from the aggregate of a predetermined number 
of elliptical disks of segmented volumes along the longitudinal axis of the LV  chamber15.
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Figure 6.  Analysis of variation: coefficient of variation analysis displaying coefficient of variation percentage 
on the y-axis and LV structural and functional end-points on the x-axis. Dark gray bars represent analysis 
performed using the semi-automated algorithm and black bars represent use of manual segmentation. Red 
dotted line shows internally set limit of variation percentages. (a) Details variation observed with long axis 
B-mode evaluation. (b) Details variation observed with short axis M-mode evaluation. Student within-subject 
t-tests were done on each cardiac end-point; *p < 0.05; **p < 0.01.
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This method is advantageous because it corrects for shape distortions within the LV and has less geometric 
assumptions compared to other methods that rely heavily on linear  dimensions16. The B-mode semi-automated 
segmentation algorithm and the Visualsonics software for manual segmentation both employ the modified Simp-
son’s rule in relation to their mathematical assumptions of volume, but may differ in the number of disks used 
within the  equation15. ASE recommends the number of predetermined segmented disks to be between one and 
twenty, with twenty being what is typically  used17. For that reason, the semi-automated algorithm was developed 
to calculate total LV volume based on the summation of twenty disks, whereas the number of disks used within 
the software for manual segmentation is unknown. Therefore, variation in the number of disks used for calcula-
tions of ESV and EDV could be contributing to the larger differences seen in functional endpoints between the 
two segmentation methods. Consequently, the semi-automated algorithm did not reduce the intra-user variation 
among the three sonographers for PLAX assessments when compared to manual intra-user variation except for 
endpoints of ESV and EF (Table 1b, c and Fig. 2b,c). Coefficient of variation analysis displayed that one can obtain 
more consistent data with a single user employing the algorithm than with manual segmentation (Table 3a, b 
and Fig. 6a,b). To validate that the system is reproducible within itself, further testing was performed. The same 
data set was run three separate times, while picking the exact same diastolic and systolic frames for long axis 
B-mode images. No variation in ROI’s was observed when comparing the system against itself in a repeat-analysis 
fashion (data not shown). The consistency observed in ROI’s generated by the algorithm when selecting the same 
frames throughout each iteration of measurements verifies that there are no underlying discrepancies within the 
algorithm script that would cause erroneous ROI annotation.

When comparing short-axis M-mode data obtained from the three sonographers using both methods of 
segmentation, the results were generally tightly correlated, suggesting good agreement between manual- and 
algorithm-based analyses of left ventricle echocardiograms (Fig. 4a). The low  r2 values represented in the struc-
tural endpoints of LV Mass and LV Mass corrected for body surface area (Fig. 4a) likely are the result of variations 
observed in manual LV wall thickness analysis, as is evident in the manual vs. manual comparison (Fig. 4c). The 
algorithm approach also worked to decrease the intra- user variation which is a major concern surrounding 
the utility of ultrasound technology. The algorithm automatically populates dimension lines for anterior and 
posterior wall thicknesses within the short-axis M-mode segmentation. This eliminates the subjective variation 
of individual analysts determining line placements by eye. Therefore, this approach can be used by multiple 
analysts and produce similar results among them, compared to the current standard of manual segmentation. 
Coefficient of variation analysis showed that the algorithm performed better at decreasing data variation than 
manual analysis in almost every long- and short-axis endpoint and statistically better for end points of systolic 
area, systolic volume, diastolic area and diastolic volume (Fig. 6a,b). The semi-automated algorithm is reproduc-
ible between different analysts as well as within one analyst (Figs. 4b, 6a,b).

The algorithm also showed great accuracy in its ability to point out the same outliers that were seen with 
manual segmentation. Being able to detect these differences are essential in phenotypic characterization and 
preclinical drug development. The inherent low signal to noise that accompanies ultrasound images compared 
to other imaging modalities makes manual analysis a tedious, repetitive behavior often accompanied by physical 
eye strain of the analyzer (personal experience and anecdotal evidence shared by peers). In contrast to manually 
placing individual points along the endo- and epicardium for diastolic and systolic phases for every animal within 
a study, the semi-automated algorithm approach allows for hands-free initial segmentation and overnight batch 
processing. In turn, this permits an analyst to multi-task and even analyze multiple studies at the same time, 
substantially cutting down analysis time and expediting data processing. After validation testing was complete, 
a second internal audit of time required to analyze murine echocardiograms was performed and proved that the 
semi-automated analysis algorithm reduces the time required for PLAX and SAX image analysis by 28% (Fig. 7). 
Reducing image analysis time in combination with the capability to work on multiple studies at once will greatly 
decrease the bottleneck associated with micro-ultrasound data processing.

The semi-automated segmentation algorithm performs very well in comparison to manual analysis but does 
present with several limitations. Images that are acquired without clear visualization of essential landmarks and 
with less defined endocardial walls for PLAX are difficult for a trained human to analyze, and therefore pose the 
same challenge for a trained computer, culminating in a less accurate ROI annotation. Another challenge we 
encountered was seen in the reporting of endpoints such as heart rate, temperature and cardiac output. In order 
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to have the algorithm report temperature and heart rate, the latter being an essential component for calculation of 
cardiac output, the sonographer needs to specify the acquisition protocol within the ultrasound scanning system 
itself before the time of acquisition. If the heart rate data is not populated within the header of the dicom files, 
the algorithm and iPACS will not be able to generate these endpoints in the subsequent data sheet. We hope to 
develop the algorithm further to incorporate automatic calculations of heart rate and cardiac output from the 
chamber dimensions of each cardiac phase in the M-mode images as an alternative. A final limitation is that 
although the tool is straight forward in functionality and generates high quality, reliable and reproducible data, it 
still requires training and human intervention. Future work will continue to develop this segmentation method, 
incorporating aspects of artificial intelligence and machine learning to further make the tool more accurate for 
long-axis measurements, as well as remove the manual intervention of selecting end systolic and end diastolic 
frames for each animal. Producing more accurate long-axis ROI’s will also work to decrease the variability seen 
with long-axis functional endpoints.

Machine learning and algorithm-based automation is well-suited for the concept of pattern recognition 
present in preclinical echocardiogram image  analysis18. Preclinical cardiovascular ultrasound studies produce 
very large volumes of data. The manually intensive process of storing, transferring, analyzing, and aggregating 
this data is time consuming and costly. Reducing many of these repetitive tasks through workflow automa-
tion improves productivity, reduces both image analysis time and subjective bias, facilitating rapid progression 
through studies. These streamlined methods can be applied to not only other ultrasound modalities used in 
cardiovascular research such as pulse-wave Doppler for vascular blood flow assessments but other preclinical 
applications including tumor volume measurements for oncology research.

Conclusion
Clinical ultrasound technology is critical for diagnosis of cardiovascular disease, monitoring disease progression, 
and assessment of therapeutic interventions. The quantitative endpoints used in clinical practice can similarly be 
assessed in rodents, making these data vitally important for go/no-go decisions in the preclinical drug develop-
ment process. The inherent challenges of the time required for ultrasound image analysis and the inter-observer 
data reproducibility experienced industry wide were the motivation behind the creation of this semi-automated 
segmentation workflow. The data we have presented demonstrate that a semi-automated segmentation tool can 
provide the ability to rapidly analyze data with a degree of accuracy between multiple observers that is superior 
to current manual approaches. Creating a semi-automated workflow eliminates the time consuming and repeti-
tive characteristics of ultrasound analysis, decreases overall image analysis time, produces reproducible data 
and reduces the inter- and intra-operator variability by limiting subjective biases. This promises to facilitate the 
generation of data and expedite critical decisions facilitating appropriate movement of therapeutic programs.
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