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Serum testosterone levels are 
positively associated with serum 
anti‑mullerian hormone levels 
in infertile women
Li‑Te Lin1,2,3*, Chia‑Jung Li1,2 & Kuan‑Hao Tsui1,2,3,4 

Anti‑Mullerian hormone (AMH) and testosterone (T) both play distinct roles in the early stages of 
folliculogenesis. However, the relationship between serum T and AMH levels is poorly understood. 
This study aimed to investigate the association between serum T and AMH levels in infertile women. 
A total of 1935 infertile women aged 20–46 years were included in the cross‑sectional study and 
divided into four quartile groups (Q1 to Q4) based on serum T levels. Compared to the subjects in the 
highest T quartile (Q4), those in the lowest T quartile (Q1) showed significantly lower AMH levels. After 
adjustment for age, body weight, body mass index and FSH, increasing T quartile categories were 
associated with higher AMH levels. Binary logistic regression analyses revealed that the odds for the 
risk of diminished ovarian reserve (DOR) were 11.44‑fold higher in Q1 than in Q4 and the odds for the 
risk of excess ovarian reserve (EOR) were 10.41‑fold higher in Q4 than in Q1. Our data show that serum 
T levels are positively associated with serum AMH levels and suggest that androgen insufficiency may 
be a potential risk factor for DOR; androgen excess may lead to EOR in infertile women.

Anti-Mullerian hormone (AMH), a glycoprotein belonging to the transforming growth factor β superfamily, is 
generated by granulosa cells (GCs) of growing follicles from the primary to the small antral follicles in the  ovary1. 
The expression of AMH increases prior to follicle-stimulating hormone (FSH)-dependent selection (follicles up 
to 8 mm) and rapidly decreases after FSH-dependent selection (follicles > 8 mm)2. Serum AMH levels reflect 
the pool of growing follicles and thus are currently well known as a reliable biomarker for functional ovarian 
 reserve3. Serum AMH levels gradually decline with age from the age of 25 years  onward4,5. Serum AMH levels 
aid in the prediction of ovarian responses to controlled ovarian  hyperstimulation6,7 and may be used in the 
individualization of starting doses of  gonadotropin8,9. However, little is known about possible factors that affect 
serum AMH concentrations.

Androgens have been described to be involved in follicle recruitment and promotion of follicle  growth10,11. 
The major circulating androgens in women include dehydroepiandrosterone sulfate (DHEA-S), dehydroepian-
drosterone (DHEA), androstenedione, testosterone (T) and dihydrotestosterone (DHT). T and DHT, which are 
generated equally from the ovary and adrenals, are the only bioactive androgens that directly bind to the andro-
gen receptor (AR)12. Similar to AMH, the action of T primarily occurs during the early stages of folliculogenesis 
because AR is the most abundant in the GCs of small  follicles13. Peak serum T levels are achieved in early adult-
hood and show a decline with age as  AMH14. Furthermore, studies have revealed that T supplementation may 
have a positive effect on antral follicle count (AFC) in poor ovarian responders (PORs)15,16 and T suppression 
by oral contraceptives might decrease the number of antral follicles and even serum AMH levels in polycystic 
ovary syndrome (PCOS)  patients17,18.

Based on the abovementioned findings, we hypothesized that serum levels of T had a positive association 
with serum AMH levels. However, few large-scale studies have examined the relationship between serum T and 
AMH levels. Therefore, we conducted a large cross-sectional study in infertile women to clarify the association 
between serum T and AMH concentrations.
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Results
The characteristics of the 1935 infertile women included in the study are shown in Table 1. The average age was 
35.1 ± 4.7 years (range 21–46 years); the average body mass index (BMI) was 22.4 ± 3.8 kg/m2 (range 14.7–40.8 kg/
m2). The mean serum T level was 0.33 ± 0.35 ng/mL (range 0.05–4.81 ng/mL) and the mean serum AMH level was 
3.6 ± 2.8 ng/mL (range 0.03–22.08 ng/mL). Infertility causes included tubal factor (12.1%), male factor (11.6%), 
diminished ovarian reserve (13.0%), PCOS (9.6%), endometriosis (13.8%), uterine factor (8.0%), multiple factors 
(21.7%) and unexplained infertility (10.1%). In the group of women < 35 years (n = 887), the mean serum T level 
was 0.35 ± 0.31 ng/mL and the mean serum AMH level was 4.7 ± 3.1 ng/mL. In women ≥ 35 years (n = 1048), the 
average serum T level was 0.31 ± 0.38 ng/mL, and the average serum AMH level was 2.6 ± 2.0 ng/mL.

The subjects were then categorized into four quartile groups (Q1 to Q4) based on serum T concentrations 
(Table 2). AMH, DHEA-S, body weight and BMI were positively associated with the T quartile category, whereas 
age linearly decreased as the T quartile category rose from Q1 to Q4 (all p for tend < 0.001). Body height, TSH, 
prolactin, 25-OH-vitamin D and FSH were not significantly different among the T quartile categories. Further-
more, compared to the AMH levels in the subjects in the highest T quartile (Q4), those in the lower T quartile 
(Q1, Q2 and Q3) demonstrated significantly lower AMH levels (p < 0.05).

Generalized linear models were used to assess the independent association of serum T quartile categories 
with AMH levels after adjusting for potential confounding factors, including age, body weight, BMI and FSH. 
Regardless of all women or different age groups (< 35 or ≥ 35 years) or different AMH groups (< 1.2, 1.2–5.0, 
or ≥ 5.0 ng/mL), AMH levels significantly increased in a dose-dependent fashion across increasing T quartile 
categories in the multivariate adjustment model as shown in Fig. 1.

The overall proportions of subjects who met the criteria for diminished ovarian reserve (DOR, AMH < 1.2 ng/
mL) and excess ovarian reserve (EOR, AMH ≥ 5.0 ng/mL) were 16.3% (242/1485) and 24.2% (359/1485), respec-
tively. The prevalence of DOR among subjects in Q1, Q2, Q3 and Q4 was 33.9% (128/378), 16.3% (65/398), 10.5% 
(41/392) and 2.5% (8/317), respectively (Fig. 2a). Multiple logistic regression analyses revealed that the ORs for 
the risk of DOR dose-dependently increased across decreasing T quartile categories, and the odds for the risk 
of DOR were 11.44-fold higher in subjects in Q1 than in those in Q4 after adjustment for potential confounders 
(Table 3). The prevalence of EOR among subjects in Q1, Q2, Q3 and Q4 was 5.6% (21/378), 19.6% (78/398), 
30.1% (118/392) and 44.8% (142/317), respectively (Fig. 2b). Multiple logistic regression analyses revealed that 
the ORs for the risk of EOR dose-dependently increased across increasing T quartile categories, and the odds 
for the risk of EOR were 10.41-fold higher in subjects in Q4 than in those in Q1 after adjustment for potential 
confounders (Table 3).

The age-dependent distribution of serum T levels in all patients (n = 1885) is shown in Table 4. The median 
serum T level in all patients was 0.27 ng/mL; the median serum T levels in the 20–25, 26–30, 31–35, 36–40 and 
41–46 age groups were 0.36, 0.32, 0.28, 0.26 and 0.23 ng/mL, respectively.

Table 1.  The characteristics of the study population. Data are presented as the mean ± standard deviation. 
BMI body mass index, TSH thyroid-stimulating hormone, FSH follicle stimulation hormone, DHEA-S 
dehydroepiandrosterone sulfate, AMH anti-Müllerian hormone. *DOR, diminished ovarian reserve, was 
defined as AMH < 1.2 ng/mL based on POSEIDON criteria. *PCOS, polycystic ovarian syndrome, was 
determined by Rotterdam criteria.

Variables All population (n = 1935) Age < 35 years (n = 887) Age ≥ 35 years (n = 1048)

Age (years) 35.1 ± 4.7 30.9 ± 2.7 38.6 ± 2.8

Body height (cm) 160.5 ± 5.8 160.8 ± 5.8 160.3 ± 5.7

Body weight (kg) 57.7 ± 10.5 56.8 ± 10.6 58.5 ± 10.3

BMI (kg/m2) 22.4 ± 3.8 22.0 ± 3.9 22.7 ± 3.8

TSH (μIU/mL) 1.7 ± 1.4 1.7 ± 1.8 1.7 ± 1.1

Prolactin (ng/mL) 15.6 ± 15.3 15.4 ± 12.0 15.7 ± 17.7

25-OH-vitamin D (ng/mL) 21.8 ± 6.8 21.1 ± 6.2 22.2 ± 7.2

FSH (mIU/mL) 5.2 ± 3.3 4.8 ± 2.5 5.6 ± 3.8

Testosterone (ng/mL) 0.33 ± 0.35 0.35 ± 0.31 0.31 ± 0.38

DHEA-S (μg/dL) 239.5 ± 114.2 262.0 ± 107.7 220.1 ± 116.1

AMH (ng/mL) 3.6 ± 2.8 4.7 ± 3.1 2.6 ± 2.0

Causes of infertility

Tubal factor 12.1%(235/1,935) 15.1%(134/887) 9.6%(101/1,048)

Male factor 11.6%(225/1,935) 11.2%(99/887) 12.0%(126/1,048)

DOR* 13.0%(252/1,935) 4.5%(40/887) 20.2%(212/1,048)

PCOS* 9.6%(186/1,935) 12.1%(107/887) 7.5%(79/1,048)

Endometriosis 13.8%(267/1,935) 15.3%(136/887) 12.5%(131/1,048)

Uterine factor 8.0%(155/1,935) 9.9%(88/887) 6.4%(67/1,048)

Multiple factors 21.7%(420/1,935) 16.5%(146/887) 26.1%(274/1,048)

Unexplained infertility 10.1%(195/1,935) 15.4%(137/887) 5.5%(58/1,048)
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Table 2.  Clinical characteristics according to serum testosterone quartile categories. Data are presented as 
the mean ± standard deviation. p values for trends were generated by linear regression analysis. *Statistically 
significantly different from the highest quartile category (Q4) using Bonferroni’s method in an analysis of 
variance (ANOVA) test. BMI body mass index, TSH thyroid-stimulating hormone, Vitamin D 25-OH-vitamin 
D, FSH follicle stimulation hormone, DHEA-S dehydroepiandrosterone sulfate, AMH anti-Müllerian hormone.

Variables

Quartile of serum testosterone

Q1 (n = 481) Q2 (n = 491) Q3 (n = 478) Q4 (n = 435) p for tend

Testosterone (ng/mL)  ≤ 0.21 0.22 ~ 0.27 0.28 ~ 0.35  ≥ 0.36

Age (years) 36.9 ± 4.5* 35.4 ± 4.6* 34.6 ± 4.5* 33.3 ± 4.5  < 0.001

Body height (cm) 160.5 ± 5.7 160.4 ± 5.6 160.4 ± 5.7 160.7 ± 6.0 0.723

Body weight (kg) 56.9 ± 9.2* 56.4 ± 9.5* 57.2 ± 10.2* 60.9 ± 12.5  < 0.001

BMI (kg/m2) 22.1 ± 3.3* 21.9 ± 3.4* 22.2 ± 3.9* 23.6 ± 4.6  < 0.001

TSH (μIU/mL) 1.7 ± 1.0 1.7 ± 1.9 1.6 ± 1.0 1.7 ± 1.6 0.743

Prolactin (ng/mL) 14.4 ± 11.1 16.5 ± 21.8 15.3 ± 10.2 16.0 ± 15.2 0.248

Vitamin D (ng/mL) 21.5 ± 7.5 21.5 ± 6.8 21.7 ± 6.2 22.4 ± 6.5 0.141

FSH (mIU/mL) 5.4 ± 3.6 5.1 ± 3.1 5.1 ± 3.1 5.2 ± 3.3 0.344

DHEA-S (μg/dL) 170.3 ± 70.1* 221.4 ± 76.0* 260.3 ± 96.9* 319.1 ± 151.0  < 0.001

AMH (ng/mL) 2.1 ± 1.5* 3.3 ± 2.1* 3.9 ± 2.7* 5.6 ± 3.7  < 0.001

Figure 1.  Serum AMH levels according to serum testosterone quartile categories in different groups. (a) 
all women, (b) age < 35 years, (c) age ≥ 35 years, (d) AMH < 1.2 ng/mL, (e) 1.2 ≤ AMH < 5.0 ng/mL and (f) 
AMH ≥ 5.0 ng/mL. The p values for the trends were generated using generalized linear models after adjustment 
for multivariate confounders. Multivariable confounders included age, weight, body mass index, and FSH. Error 
bar represented 95% confidence interval of AMH. AMH anti-Mullerian hormone, Q quartile.
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Discussion
To the best of our knowledge, the present study is the largest clinical study to investigate the association between 
serum T and AMH levels in infertile women. In this large retrospective cross-sectional study of 1935 infertile 
women, higher serum T concentrations were associated with higher serum AMH levels after adjustment for 
potential confounders. Consistently, infertile women in the lowest T quartile had a 11.44-fold higher odds for 
the risk of DOR than those in the highest T quartile. The odds for the risk of EOR were 10.41-fold higher in 
infertile women in the highest T quartile than in those in in the lowest T quartile.

Androgens play important roles in the regulation of ovarian function. AR, expressed in oocytes, GCs and 
theca cells, is pivotal for normal follicular  development10,11. AR is most highly expressed in the GCs of preantral 
and early antral follicles, and its expression decreases as the follicles  grow13. Via the AR, androgens increase the 
FSH receptor and synergize with FSH to enhance follicle  growth19–21. Moreover, androgens support follicle health 

Figure 2.  Prevalence of (a) diminished ovarian reserve (DOR) and (b) excess ovarian reserve (EOR) according 
to serum T quartile categories. DOR was defined as serum AMH levels < 1.2 ng/mL; serum AMH levels ≥ 5.0 ng/
mL were defined as EOR. Q quartile.

Table 3.  Risk for diminished ovarian reserve (DOR) or excess ovarian reserve (EOR) according to serum 
testosterone quartile categories. ORs (95% CI) for DOR or EOR according to serum testosterone quartile 
categories after adjustment for multivariate confounders in infertile women (n = 1,935). Binary logistic 
regression analysis was performed. Multivariate confounders included age, weight, body mass index, and FSH. 
T testosterone, AMH anti-Müllerian hormone, OR odds ratio, CI confidence interval, Q quartile, Ref. reference.

Variables

Risk for DOR (AMH < 1.2 ng/mL) Risk for EOR (AMH ≥ 5.0 ng/mL)

Adjusted OR (95% CI) p value Adjusted OR (95% CI) p value

T quartile categories

Q1 (0.05 ~ 0.21 ng/mL) 11.44 (4.75–27.53)  < 0.001 1.00 (Ref.)

Q2 (0.22 ~ 0.27 ng/mL) 5.45 (2.23–13.33)  < 0.001 3.74 (2.09–6.71)  < 0.001

Q3 (0.28 ~ 0.35 ng/mL) 3.12 (1.23–7.88) 0.016 6.54 (3.70–11.54)  < 0.001

Q4 (0.36 ~ 4.81 ng/mL) 1.00 (Ref.) 10.41 (5.84–18.55)  < 0.001

Table 4.  Serum testosterone level distribution (ng/mL) based on age.

Age (years) Mean

Percentile

n5th 10th Median 90th 95th

20 ~ 25 0.38 0.20 0.21 0.36 0.63 0.76 35

26 ~ 30 0.40 0.17 0.21 0.32 0.56 0.89 288

31 ~ 35 0.34 0.16 0.18 0.28 0.47 0.54 688

36 ~ 40 0.32 0.15 0.17 0.26 0.42 0.51 627

41 ~ 46 0.27 0.13 0.15 0.23 0.37 0.45 247

All 0.33 0.15 0.17 0.27 0.46 0.55 1,885
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by decreasing follicle atresia and GC apoptosis, and stimulating the proliferation and differentiation of  GC20,22,23. 
Although AR is not expressed in primordial follicles, androgens promote primordial follicle  initiation24,25 via 
indirect mechanisms, such as upregulation of insulin-like growth factor 1  expression25. The above information 
supports our results that lower T levels were associated with a higher risk of DOR. Studies have shown that 
women with DOR or POI demonstrated significantly lower serum T levels than  controls26,27. On the other hand, 
androgen excess may lead to impaired ovarian function and dysregulated follicle development, displaying irregu-
lar cycles, oligo-ovulation and polycystic  ovaries28,29. These findings agree with our results that infertile women 
with higher T levels had a higher risk of EOR. Thus, an optimal balance in androgenic actions is necessary for 
maintaining normal ovarian function. Serum T concentrations decline with  age14. Thus, our study demonstrated 
an age-specific normal reference range for serum T levels to aid in identifying women who suffer from androgen 
insufficiency or excess (Table 4).

As mentioned above, androgens enhance FSH activity through increased FSH receptor  expression20,21. FSH 
stimulates AMH  expression30,31, which could inhibit the sensitivity of preantral follicles to FSH to avoid pre-
mature selection by FSH in the gonadotrophin-independent  stage32,33. Therefore, Dewailly et al. proposed that 
androgens may promote AMH generation via enhancement of FSH-stimulated AMH  expression34. Elevated 
AMH could attenuate FSH-induced aromatase activity, leading to an increase in androgen  levels33. Moreover, 
via AMH receptor type 2 on the hypothalamus and pituitary, elevated AMH may boost GnRH-dependent LH 
pulsatility and secretion which stimulates androgen production in theca  cells35,36. Taken together, it seems that 
androgens and AMH mutually stimulate each other. These results support our results that serum T concentrations 
positively correlated with serum AMH levels. Some studies also showed a positive correlation between serum 
androgens and  AMH37–39. However, some studies revealed contradictory results, which indicated that androgens 
or FSH may have an inhibitory effect on AMH  expression40–42. Thus, the accurate relationship between androgens 
and AMH remains unclear. Further studies with ideal experimental models are needed to clarify the relationship.

Serum T levels have been suggested to be positively associated with ovarian  response43,44 and even pregnancy 
 outcomes44,45 in women undergoing IVF cycles. Although some conflicting studies have shown that serum T lev-
els do not predict IVF  outcomes43,46, available data have indicated that T supplementation may improve ovarian 
response and IVF outcomes in  PORs47,48. In a randomized controlled trial of 110 PORs undergoing IVF cycles, 
Kim et al. reported that pretreatment with transdermal T gel significantly increased AFC and reduced the day 
of stimulation and total dosage of gonadotropins. In addition, the numbers of oocytes retrieved, mature oocytes, 
fertilized oocytes, and good-quality embryos were significantly higher in the T pretreatment group than in the 
control  group16. A meta-analysis of 7 randomized controlled trials conducted by Noventa and colleagues revealed 
that PORs receiving T therapy demonstrated higher numbers of total oocytes, MII oocytes and total embryos, 
as well as a higher clinical pregnancy rate and live birth rate than  controls47. On the other hand, the addition 
of insulin sensitizing agents to suppress insulin resistance and excess androgen may ameliorate the results of 
ovulation induction in PCOS  patients49,50. In the present study, we provided an age-specific normal reference 
range for serum T levels to help determine whether infertile women require agents for androgen enhancement 
or suppression (Table 4). Further large-scale, well-defined randomized controlled trials are still mandatory to 
confirm the effectiveness of androgen supplementation and androgen suppression by agents.

Several potential limitations should be taken into consideration when interpreting the data. First, the ret-
rospective design of this study presented the major limitation. Second, since this is a cross-sectional study, a 
causal relationship could not be determined between serum T and AMH levels. Third, our study population only 
consisted of infertile women. We cannot be sure that our results would be applicable to the general population. 
Fourth, direct testosterone immunoassays have limitations for clinical use, particularly for low concentrations 
found in women and  children51. This would be a relevant source of bias. Although high correlation (r ≥ 0.95) of 
serum T levels was observed between the ARCHITECT 2nd Generation Testosterone assay and the LCMS, the 
bias could not be totally excluded. Fifth, serum concentrations of free T, androstenedione, and sex hormone-
binding globulin (SHBG) were not measured in our routine infertility evaluation. Thus, accurate androgen status 
would be uncertain in this study.

In conclusion, our data reveal an obvious positive association between serum T and AMH levels in infertile 
women. Additionally, the risk of DOR was significantly increased in a dose-dependent manner across decreas-
ing T quartile categories; the risk of EOR dose-dependently increased across increasing T quartile categories. 
Long-term longitudinal studies are required to confirm our results.

Methods
Study design and participants. This was a retrospective cross-sectional study. Infertile women were first 
identified based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-
9-CM), code 628, from the clinical database in Kaohsiung Veterans General Hospital. To avoid any potential 
misclassifications, among the infertile women identified by the ICD-9-CM code, only subjects who received a 
complete infertility survey in the reproductive center of Kaohsiung Veterans General Hospital were selected. A 
total of 2476 infertile women were identified from May 2013 through March 2020. Then, we performed the chart 
review of these 2476 infertile women and selected the women who truly met the definition of infertility among 
them. Infertility was defined by the failure to achieve a successful pregnancy after 12 months or more of regu-
lar, unprotected sexual  intercourse52. Moreover, we excluded the following subjects based on chart review: (1) 
subjected who experienced repeated surveys; (2) subjects who had extreme age (< 20 or > 46 years) (3) subjected 
who was diagnosed as primary ovarian insufficiency; (4) subjects who ever underwent ovarian surgery; (5) sub-
jected who had a history of exposure to cytotoxic agents or pelvic irradiation for malignancy; (6) subjected who 
had androgen-secreting tumors; (7) subjected who was diagnosed as congenital adrenal hyperplasia (8) subjects 
who had androgen supplementation or hormonal therapy during the previous 3 months. A total of 1935 infertile 
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women were finally included in the study. The study protocol was approved by the institutional review board in 
Kaohsiung Veterans General Hospital, with the identifier KSVGH20-CT11-03, and conformed to the “Declara-
tion of Helsinki for Medical Research involving Human Subjects.” Need of informed consent was waived by the 
institutional review board in Kaohsiung Veterans General Hospital due to the retrospective design.

Biochemical measurements. For the infertility survey, we checked blood examinations including AMH, 
T, DHEA-S, FSH, luteinizing hormone (LH), estradiol, thyroid-stimulating hormone (TSH), prolactin and 
25-OH-vitamin D levels. Serum AMH levels were measured by chemiluminescent immunoassay using the 
Access Immunoassay Systems, the Beckman Coulter enzyme-linked immunoassay (Beckman Coulter, Marseille, 
France). The analytical range of the lower limit of detection was 0.02 ng/mL. The intra-assay coefficient of varia-
tion (CV) was 3.0%, and the interassay CV was 7.0%. DOR was defined as serum AMH levels < 1.2 ng/mL based 
on the POSEIDON  criteria53; serum AMH levels ≥ 5.0 ng/mL, modified from the revised Rotterdam  criteria54, 
were considered EOR in this study.

Serum T was measured by chemiluminescent microparticle immunoassay using the ARCHITECT 2nd Gen-
eration Testosterone assay (Abbott GmbH, Max-Planck-Ring 2, Wiesbaden, Germany). The range was 0.04 ng/mL 
to 18.62 ng/mL. The assay had a limit of quantitation of ≤ 0.04 ng/mL and had a within-laboratory imprecision 
of ≤ 10% CV. Potential interference in the ARCHITECT 2nd Generation Testosterone assay from hemoglobin, 
bilirubin, triglycerides, protein and biotin was evaluated to be ≤ 10%. This assay had a correlation coefficient (r) 
of ≥ 0.95 for samples with testosterone concentrations ranging from 0.04 ng/mL to 10.09 ng/mL when compared 
to Liquid Chromatography-Tandem Mass Spectrometry (LCMS).

Serum DHEA-S, FSH, LH, estradiol, TSH, prolactin and 25-OH-vitamin D concentrations were measured 
by a chemiluminescent microparticle immunoassay on the ARCHITECT iSystem (Abbott, Longford, Ireland 
or Abbott, Wiesbaden, Germany). The total CV of these analyses were consistently < 3–10%. The specificity 
of these assays was determined by studying the cross-reactivity of structurally similar compounds. The cross-
reactivity was calculated as a percent cross-reactivity. DHEA-S assay was shown to be 0% for testosterone, 0.003% 
for androstenedione, 0.025% for 19-hydroxyandrostenedione, 0.006% for DHEA glucuronide and 0.001% for 
estradiol. FSH assay was shown to be 0.002% for LH, 0.043% for TSH and 0.001% for hCG. LH assay was shown 
to be 0.01% for FSH, 0% for TSH and 0.01% for hCG. Estradiol assay was shown to be 0.1% for 17β-estradiol 
3-sulfate and 0.7% for estrone. Prolactin assay was shown to be 0% for FSH, hCG, TSH and 0.001% for LH. TSH 
assay had an analytical specificity of < 10% cross reactivity with FSH, LH and hCG. 25-OH Vitamin D assay was 
shown to be 0.8% for vitamin D3 (Cholecalciferol), 0.4% for vitamin D2 (Ergocalciferol), 0.1% for 1,25-(OH)2-
vitamin D3 and 0% for 1,25-(OH)2-vitamin D2. Blood samples were collected on the 2nd or 3rd day of the 
menstrual cycle. The reference intervals in the follicular phase were as follows: T, 0.14–0.53 ng/mL; DHEA-S, 
35.0–430.0 µg/dL; FSH, 4–13 mIU/mL; LH, 1–18 mIU/mL; estradiol, 39–189 pg/mL; TSH, 0.35–4.94 μIU/mL; 
prolactin, 1.39–24.20 ng/mL; and 25-OH-vitamin D, 30 ~ 100 ng/mL.

Statistical analysis. The normality of the distribution was tested using the Kolmogorov–Smirnov test. 
Continuous variables were presented as the mean ± standard deviation. The subjects were categorized into four 
quartile groups (Q1 to Q4) based on serum T concentrations. Quantitative variables were evaluated using the 
analysis of variance (ANOVA) and linear regression analysis among T quartile categories. Bonferroni’s method 
was used for post hoc pairwise comparison in the ANOVA test. Generalized linear model was performed to 
examine the correlation between serum AMH levels and T quartile categories after adjusting for potential con-
founders including age, weight, BMI and FSH. Odds ratios (ORs) and 95% confidence intervals (CIs) for DOR 
and EOR among T quartile categories were assessed using binary logistic regression after adjustment for poten-
tial confounders (age, weight, BMI and FSH). All analyses were conducted using statistical software, Statistical 
Package for Social Sciences (SPSS) version 20.0 (Chicago, IL, USA). All statistical tests used a two-tailed α of 
0.05, and statistical significance was defined as p < 0.05.

Ethics declarations. The study conformed to the ‘‘Declaration of Helsinki for Medical Research involv-
ing Human Subjects’’. Additionally, approval was obtained from the institutional review board at Kaohsiung 
Veterans General Hospital, with the identifier KSVGH20-CT11-03. The study was  performed in accordance 
with approved guidelines. Need of informed consent was waived by the institutional review board in Kaohsiung 
Veterans General Hospital.

Data availability
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