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Scattering‑lens based quantum 
imaging beyond shot noise
Dong Li1,2 & Yao Yao1,2* 

The scheme of optical imaging using scattering lens can provide a resolution beyond the classical 
optical diffraction limit with a coherent‑state input. Nevertheless, due to the shot noise of the 
coherent state, the corresponding signal‑to‑noise ratio and resolution are both still shot‑noise‑
limited. In order to circumvent this problem, we theoretically propose an alternative scheme where 
the squeezed state (with a sub‑shot noise) is considered as input and the quantum noise is then 
suppressed below the shot‑noise level. Consequently, when comparing with the previous imaging 
scheme (using combination of coherent state and scattering lens), our proposal is able to achieve an 
enhanced signal‑to‑noise ratio for a given scattering lens. Meanwhile, it is demonstrated that the 
resolution is also improved. We believe that this method may afford a new way of using squeezed 
states and enable a higher performance than that of using coherent state and scattering lens.

A significant fraction of the research activities in the field of high-resolution imaging involves the scattering 
 lens1–10. This is due to the fact that the optical imaging system using scattering lens could provide a better resolu-
tion than that of the conventional lens. Different from the conventional lens consisting of an ordered structure, 
the scattering lens is indeed a disordered  medium11,12 which generally comprises randomly distributed small 
particles for light scattering. Previously, the disordered medium was deemed not suitable for the optical imag-
ing. Since after a beam propagates through a disordered medium, it generally produces a speckle pattern owing 
to the multiple scattering, which was supposed to deteriorate the original information carried by the incident 
light. However, in recent years, it has been found that the disordered medium has the ability to overcome the 
classical diffraction  limit1,2 and can be used for the optical  imaging3,4, even with a better performance than that 
of the conventional lens. In order to promote a more profound imagery, the disordered medium, utilized in the 
high-resolution imaging system, is usually called a scattering lens.

In a traditional imaging configuration, it is mainly formed by a set of optical elements, in order from the 
object side: an input object, two conventional lenses, and a CCD camera. In contrast to the traditional scheme, 
many other methods with an extra scattering  lens1–4 have been proposed for the high-resolution imaging in 
the past decades. According to the location of the scattering lens in the optical circuit, these schemes can be 
roughly divided into two categories: (I) behind the  object2,3 (i.e. between the object and the conventional lens, 
corresponding to the wide-field imaging) and (II) in front of the  object1 (in respect of the narrow-field imag-
ing). It is worth pointing out that in case (I), the light behind the object would transport through the scattering 
lens while in case (II), the light illuminating the object is generated from the scattering lens. Although these 
two kinds of schemes show optical circuits with the different structures, both of them can realize an image with 
the enhanced resolution. This is because the scattering lens made of randomly distributed nanoparticles could 
increase the effective numerical  aperture1,2.

Particularly, we will concentrate on the case (II) in this work. In 2011, a high-resolution scheme of optical 
imaging using a scattering  lens1 is proposed and experimentally realized as depicted in Fig. 1. In this scheme, 
the setup can be briefly described as follows: one wavefront-shaped coherent-state beam transports through a 
scattering lens and then produces a nanosized focus to illuminate a small object in the object plane. By scanning 
the nanosized focus and collecting the corresponding light behind the small object, the image of the object can 
be obtained. Importantly, this experiment yields some fantastic outcomes that the scattering lens with a coherent-
state input can achieve a sub-100 nm resolution at visible wavelength, better than that of the conventional lens 
(an optimal resolution of order of around 200 nm at visible  wavelength1).

Although this method provides a high resolution with a coherent-state input, the performance of imaging is 
still shot-noise-limited due to the shot noise of the coherent state (in fact, the performance of imaging is related to 
the quantum noise of the focused beam illuminating the object. When the coherent states are considered as input, 
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the focused beam is still a coherent  state13). To circumvent this problem, one possible way is to reduce the shot 
noise. Fortunately, the shot noise is actually a classical limit which can be beaten by the quantum  technique14–16.

As a typical nonclassical state, the squeezed  state17–19 is of significant importance since it possesses a quantum 
noise which can be below the shot noise level (note that a coherent state corresponds to the shot noise)20–22. As 
a consequence, the squeezed state can improve the signal-to-noise ratio (SNR)14,23,24 and has been utilized in 
numerous applications, such as, quantum-enhanced  magnetometer25,26, gravitational wave  detection27–29, and 
quantum imaging using only conventional lenses (without any scattering lens)30–36.

In order to achieve high performance, we propose an alternative scheme where the input is the squeezed 
state instead of the coherent state, as shown in Fig. 1. In the presence of the squeezed-state input, the SNR of the 
optical imaging system is analyzed and the related resolution is also investigated. In addition, the comparison is 
performed between the squeezed and coherent states. It is found that the squeezed-state input leads to both an 
improved SNR and an enhanced resolution due to the suppressed quantum noise.

Results
Propagation of the quantized light through a scattering lens. Unlike the case of the conventional 
lens, the light focusing via a scattering  lens37–42 actually contains two indispensable processes: (I) multiple scat-
tering of light inside the scattering lens and (II) shaping the wavefront of light before the light transporting 
through the scattering lens. As a matter of fact, wavefront shaping is an emerging technology for optical imag-
ing and focusing through disordered  media41–43, by modulating the incident wavefront, which paves a way for 
manipulating the scattered light in an expected pattern. Generally, wavefront shaping can be performed by a 
spatial light modulator in experiment as shown in Fig. 1. The spatial light modulator acting as a reprogrammable 
matrix of pixels imprints desired phase values on the coherent wavefront.

Let us first review the process (I). Figure 2a depicts the propagation of quantized light through a scattering 
 lens44–48, which comprises randomly distributed small particles for light scattering. To characterize the scat-
tering lens, two primary factors are introduced: the transport mean free path l and the thickness L. If l ≪ L , 
the multiple scattering events would occur and result in a speckle  pattern49. Hereafter we define s ≡ L/l which 
determines the degree of disorder.

After multiple scattering, the scattered mode b48 can be written as

where âina′  ( ̂ainb′  ) denote the annihilation operator of the incident modes a′ ( b′ ) and obey the commutation rela-
tion [Ô, Ô†] = 1 ( ̂O = âina′ , â

in
b′  ). The transmission and reflection coefficients ta′b and rb′b , subject to a  constraint13 

∑

a′ |ta′b|2 +
∑

b′ |rb′b|2 = 1 , can be approximately regarded as complex Gaussian random  variables50. Accord-
ingly, ta′b =

√
Ta′be

iφa′b and rb′b =
√
Rb′be

iφb′b where φa′b ( φb′b ) is indeed uniformly distributed in the interval 
[ 0, 2π ] while Ta′b and Rb′b are the variables of Rayleigh distribution. In addition, the ensemble-averaged trans-
mission and reflection coefficients are given by Ta′b = 1/(Ms) and Rb′b = (1− 1/s)/M48,51, where M represents 
the number of transmission channels and the overline indicates the average over ensembles. It is easily seen that 
as the disorder strength s increases, the average transmission coefficient Ta′b decreases. It is worth noting that 
Eq. (1) quantifies the very general input-output relation. The specific characteristics of the multiple scattering 
disordered medium are represented by the reflection and transmission coefficients. For instance, ta′b describes 
the coupling between the output mode b and the input mode a′.

Second, consider process (II) wavefront shaping as depicted in Fig. 2b. In the presence of wavefront shaping, 
the scattered light can be directed towards a focus in any desired output mode with a scattering  lens37. Math-
ematically, the related input-output  relation13 can be characterized as

(1)âb =
∑

a′
ta′bâ

in
a′ +

∑

b′
rb′bâ

in
b′ ,

Figure 1.  Sketch of optical imaging scheme utilizing a scattering lens with the squeezed-state input. A 
scattering lens focuses a wavefront-shaped beam [modulated by the spatial light modulator (SLM)] on a small 
volume. The focus precisely illuminates a small object in the object plane. By scanning the focus and collecting 
the light behind the object, the image of the object can be obtained.
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where the superscript w denotes wavefront shaping. In contrast to Eq.  (1), the complex transmission coefficient 
ta′b is replaced by |ta′b| in Eq. (2), which results from the fact that the phase modulator exactly compensates the 
phase retardation of each transmission channel in the scattering lens.

In experiment, it can be realized for focusing light with a scattering lens via wavefront shaping under the cur-
rent condition in laboratory nowadays, since the setting of phase modulation has been intensively investigated in 
theory and experiments over recent  decades52–56. However, comparing with previous works concentrating mainly 
on the enhanced intensity of the focused beam, we will focus on the quantum fluctuation of the focused beam.

According to Eq. (2), the expectation value of photon number operator of the focused beam correspondingly 
arrives at

where �n̂ink � = �âin†k âink � ( k = a′, b′ ) and this expectation value is universal for any input state.

Signal‑to‑noise ratio. Variance of the photon number of the focused beam. Consider the squeezed states 
as input, |� in� = [D̂(α)Ŝ(ζ )|0�]⊗N , with N being the number of input modes, D̂(α) = eαâ

†−α∗â the displace-
ment operator, and Ŝ(ζ ) = e(−ζ â†2+ζ ∗ â2)/2 the squeezing operator (the complex number α = |α|eiφα and the 
complex number ζ = geiφs with the real number g denoting the squeezing strength). For simplicity, we assume 
that the number of transmission channels is equal to the number of input modes M = N . Note that in our 
scheme, the input beam on the left-hand side of the scattering lens is the squeezed state whereas the one on the 
right-hand side is actually the vacuum state (i.e. �n̂inb′ � = 0).

The variance of operator Ô is defined as

where Ô = n̂wb  . That is to say, to obtain the variance, it requires to compute �n̂wb � and �(n̂wb )2�.
The expectation value �n̂wb � , according to Eq. (3), can be obtained

where we present the derivation in “Methods” section. Consider that |α|2 ≫ sinh
2 g , the second term in Eq. (5) 

dominates (To the best of our knowledge, the maximum achievable value for the squeezing parameter is around 
g ≈ 1.5 in  experiment57 and correspondingly sinh2 g ≈ 4.53 . In contrast, the order of magnitude of |α|2 can be 

(2)âwb =
∑

a′
|ta′b|âina′ +

∑

b′
rb′bâ

in
b′ ,

(3)

�n̂wb � = �âw†b âwb �
=

∑

a′a′′
|ta′b||ta′′b|�âin†a′ â

in
a′′ � +

∑

b′b′′
r∗b′brb′′b�âin†b′ â

in
b′′ �

+
∑

a′b′
(|ta′b|rb′b�âin†a′ â

in
b′ � + h.c.),

(4)�(�Ô)2� ≡ �Ô2� − �Ô�2,

(5)�n̂wb � =
M
∑

a′=1

Ta′b sinh
2 g +

M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b||α|2,

Figure 2.  Quantized light propagating through a scattering lens (a) in the absence of wavefront shaping, (b) 
in the presence of wavefront shaping. âina′ ( ̂ainb′ ) represents the annihilation operator of the input mode and âa 
( ̂ab ) the output mode. When the beams are injected, without the wavefront shaping in (a), the scattering lens 
separates the light into different optical channels randomly. As a result, the output presents a speckle pattern. 
In (b), with the wavefront shaping, the scattering lens couples the beams into the desired optical paths. Hence 
the output presents an ordered pattern. The wavefront shaping, performed by a spatial light modulator in (b), 
controls the phase of incident light.
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easily greater than that of sinh2 g for a bright squeezed state in  experiment58. Therefore, it is reasonable to assume 
that |α|2 ≫ sinh

2 g.). As a result, Eq. (5) is roughly equal to

According to the definition of variance, one can write the variance of operator n̂wb  as

The corresponding variance of photon number is found to be

where we have set φα = φs = 0 and the detailed derivation is shown in “Methods” section. Particularly, if |α|2 is 
sufficiently large for the third term of Eq. (8) to dominate, the variance can be simplified to

From Eq. (9), it is easy to find that the variance of photon number depends upon the value of the squeezing 
parameter g. Thus it pays to consider the two opposing limits g = 0 and g ≈ 1.5 > 0 (in experiment, g ≈ 1.5 has 
been  reported57). First, consider g = 0 (i.e. the coherent-state input), one can rewrite Eq. (9) as

which is exactly as expected. Note that when the input is a coherent state, the focused mode is still a coherent 
state due to the linear optical process in the scattering lens (the variance of photon number of a coherent state is 
equal to its mean photon number). Next, we consider the opposing limit g ≈ 1.5 (i.e. the squeezed-state input 
and e−2g → 0 ). In this situation, Eq. (9) can be then approximately reduced to

Comparing Eqs. (10) and (11), one can find that the squeezed-state input leads to the reduction of quantum 
fluctuation of the focused beam. Moreover, from Eq. (11), it is easily seen that the degree of this reduction is 
related to a specific set of transmission coefficients of the scattering lens.

For convenience, the Fano factor is introduced and defined as

When the input is a coherent state (i.e. g = 0 ), by plugging Eq. (11) into Eq. (12), the Fano factor is found to 
be F = 1 . In contrast to the coherent-state input, we consider that the squeezed state is injected (with a large g, 
i.e. e−2g → 0 ). By inserting Eq. (11) into Eq. (12), it is easy to verify that the Fano factor of the focused beam 
is roughly equal to

which is smaller than that of the coherent state. This result reveals that the squeezed-state input can achieve a 
focused beam with the lower quantum noise than that of the coherent state.

By averaging over all disorder ensembles, according to Eq. (13), the average Fano factor is found to be

where the overline means the average and 
∑

a′ Ta′b = NTa′b = 1/s is  used48. From Eq. (14), one can see that 
with the increase of s, the average Fano factor increases monotonically which indicates that the output quantum 
noise increases. It is worth pointing out that this conclusion is suitable for the regime of the strong squeezing 
strength ( e−2g → 0).

(6)�n̂wb � ≃|α|2
(

∑

a′a′′
|ta′b||ta′′b|

)

.

(7)�(�n̂wb )
2� ≡ �(n̂wb )2� − �n̂wb �2.

(8)

�(�n̂wb )
2� =

M
∑

a′=1

M
∑

a′′=1

Ta′bTa′′b2 sinh
2 g cosh2 g

+
M
∑

a′=1

M
∑

b′=1

Ta′bRb′b sinh
2 g

+ |α|2
(

M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|
)[

1−
M
∑

a′=1

Ta′b(1− e−2g )

]

,

(9)�(�n̂wb )
2� ≃ �n̂wb �

[

1−
M
∑

a′=1

Ta′b(1− e−2g )

]

.

(10)�(�n̂wb )
2� = �n̂wb �,

(11)�(�n̂wb )
2� ≃ �n̂wb �

[

1−
M
∑

a′=1

Ta′b

]

.

(12)F ≡ �(�n̂wb )
2�/�n̂wb �.

(13)F ≃ 1−
M
∑

a′=1

Ta′b,

(14)F ≃ 1− 1

s
,
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Signal-to-noise ratio. In our scheme, The light illuminating the object for imaging is the focused beam as shown 
in Fig. 1. Accordingly, the focused beam determines the SNR of the imaging  system35 which can be defined as

where n̂wb  represents the photon number operator of the focused mode, F denotes the corresponding Fano fac-
tor and Ta′b characterizes the coupling between the output mode b and the input mode a′ . When g = 0 (i.e. the 
coherent-state input and F = 1 ), the SNR is naturally given by

and the corresponding average SNR can be written as R = �n̂wb �. When e−2g → 0 (i.e. the squeezed-state input), 
the SNR can be written as

By averaging over all the disorder ensembles, the ensemble-averaged SNR is obtained

where 
∑

a′ Ta′b = 1/s has been used and s denotes the disorder parameter. From Eq. (18), it is easy to check that 
the average SNR is improved as the decrease of disorder strength s for a given �n̂wb �.

Based on Eq. (15), one can obtain the universal average SNR as R = �n̂wb �/[1− (1− e−2g )/s] . Figures 3a, b 
plot the average SNRs as a function of the squeezing parameter g and the disorder strength s, respectively. It is 
obvious that the squeezed state always has a better average SNR than that of the coherent state. In other words, 
the squeezed state can improve the SNR. In Fig. 3a, with the increase of g, the average SNR increases which yields 
that the larger the squeezing parameter is, the better the average SNR is. However, in Fig. 3b, with the increase of 
s, this advantage resulting from the squeezed states would weaken due to the increased quantum noise induced 
from reflected modes (the vacuum state with the shot noise). It is worth noting that although the average SNR 
becomes worse, it is still better than that of the coherent state. To be more clear, we plot the numerical results of 
Fano factor for four cases ((g = 1.5, s = 2 ), ( g = 1.5, s = 6 ), ( g = 1, s = 2 ), and ( g = 1, s = 6 )) in Fig. 4. It is 
easily seen that in Fig. 4 the Fano factors are always smaller than one, which indicates the focused modes with 
a sub-shot noise under these four situations.

Resolution. In addition to the SNR, the resolution is another significant criterion of performance evaluation 
for an optical imaging system. In this section, we would like to investigate how the squeezed states affect the res-
olution of imaging system. As a matter of fact, in 2005, Beskrovnyy and  Kolobov35 developed a model that allows 
for analysis of the effects of squeezed state on the resolution. This model could be adopted in our circumstance.

In essence, the analysis model is composed by two core parts: (i) the first step is to express the point spread 
function (PSF)35 in terms of prolate spheroidal  functions59 within a quantum mechanical framework; (ii) the 
second one is to work out the “cutoff ” PSF limited by the quantum noise (under the critical condition of the 
SNR decaying to one). Once the “cutoff ” PSF is obtained, it is easy to find the corresponding  resolution35 since 
the resolution is determined by the half-width of the “cutoff ” PSF.

(15)R ≡ �n̂wb �2
�(�n̂wb )

2� = �n̂wb �
F

= �n̂wb �
1−

∑M
a′=1 Ta′b(1− e−2g )

,

(16)R = �n̂wb �,

(17)R = �n̂wb �
F

≃ �n̂wb �
1−

∑M
a′=1 Ta′b

.

(18)R = �n̂wb �
F

≃ �n̂wb �
1− 1/s

,

Figure 3.  The ratio of the average SNR R to the mean photon number �n̂wb � as a function of (a) the squeezing 
parameter g and (b) the disorder strength s of the scattering lens. The input is the product state of N squeezed 
states. Parameters: |α|2 = 10000.
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For the sake of clarity, we will not present the analysis model in this manuscript, since the detailed deriva-
tion is of extreme complexity involving a huge number of mathematical expressions (i.e. prolate spheroidal 
 functions59). Readers who are interested in more details about this model may refer to the Beskrovnyy and 
Kolobov  paper35. Based on this analysis model, the quantity that we consider is the super-resolution factor J35 
which will be briefly introduced in the following section.

Definition of the super-resolution factor. In this section, we briefly introduce the definition of the super-resolu-
tion  factor35. The super-resolution factor, proposed by Beskrovnyy and  Kolobov35, is the ratio of the half width 
of PSF in quantum optics theory to the one in classical optics theory.

In classical optics theory, the PSF of the traditional imaging  system35 is given by

where c denotes the spatial transmission  bandwidth60 and z ( z′ ) is the spatial coordinate.
By contrast, within the quantum mechanical framework, the PSF of the modified imaging  system35 is found 

to be

where the detailed derivation is shown in “Methods” section, the real number Q is determined by the SNR R 
and φk(z) is the prolate spheroidal  function35. In fact, the set of functions φk(z) [ k = 1, 2, 3 . . . ] constitutes a 
complete orthonormal  basis59.

To evaluate the resolution, the super-resolution factor J35 is introduced and defined as

where we present the numerical analysis method to obtain J in “Methods” section, for brevity. W [ WQ ] is the 
half-width of the PSF h(z − z′) [ h(r)(z, z′)].

(19)h(z − z′) = sin[c(z − z′)]
π(z − z′)

,

(20)h(r)(z, z′) =
Q−1
∑

k=0

φk(z)φk(z
′),

(21)J = W

WQ
,

Figure 4.  Numerical simulation of Fano factor of the focused mode. Each point corresponds to one Fano 
factor. The numerical experiments have been repeated for 1000 times. In each simulation circle, the scattering 
matrix is generated randomly. The input beam is the photon-number squeezed state |� in� = [D̂(α)Ŝ(ζ )|0�]⊗N . 
Parameters: |α|2 = 10000 , N = 50.
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Resolution. Let us consider a typical condition for estimating the value of mean photon number in the focused 
beam illuminating the object in experiment. For instance, if it is given an incident beam with � = 694 nm, 
optical power of 1 mW and observation time of 1 ms, the focused beam then has an optical power of 0.01 mW 
(where it has been assumed that there is 1/100 of total incident power in the focused  mode37). Finally, the mean 
photon number of the focused beam can be worked out as �n̂wb � ≃ 3.47× 1010.

Based on the order of value of �n̂wb � discussed above, we plot the super-resolution factors J as a function of 
mean photon number �n̂wb � as shown in Fig. 5. In particular, the comparison between the squeezed-state input and 
the coherent-state one is performed. From Fig. 5, one can easily see that the squeezed state has a better resolution 
than that of the coherent state for a given intensity of the focused mode. In other words, the squeezed states could 
enhance the resolution owing to the sub-shot noise. We also investigate the effects of disorder strength s on the 
resolution in Fig. 5. It can be seen that with the decrease of s, the resolution with squeezed state is improved for 
a fixed intensity �n̂wb � . This is due to the fact that the decrease of s leads to the decrease of the average noise of 
the focused mode (Eq. (14)).

It is worth noting that the increase of the super-resolution factor is not dramatic as depicted in Fig. 5. Nev-
ertheless, the squeezed state is still deserved to consider as input since any tiny improvement in high-precision 
measurement is very valuable.

Discussion
Comparison between our proposal and the previous imaging scheme. Our proposal is inspired 
by the scheme using coherent state with a scattering lens in the previous  work1. Therefore it is important to 
compare our proposal with the one in the  reference1. To be fair, we would like to consider the same situation 
(such as, same disorder parameter s). Before comparing these two schemes, let us estimate the value of s in the 
former  work1. From the  reference1, the length of disordered medium is given by L = 2.88 µm . The mean free 
path is found to be l = 0.47± 0.05 µm according to the previous  paper61 of A. Lagendijk (one of the authors of 
the  reference1). As a result, s = L/l ≈ 6 in the former  work1. Accordingly, we also consider s = 6 in our imaging 
scheme (see Figs. 3 and 5).

In Fig. 3, it is easily found that the scheme using squeezed state (dashed-blue curve, s = 6 ) has an enhanced 
SNR than that with coherent state (solid-gray curve), which results in an improved resolution as depicted in 
Fig. 5. That is to say, our scheme has a resolution beyond that in the  reference1 when s = 6 are same. Actually, 
this conclusion can be extended to the case of almost any value of s (including not only weak scattering lens but 
also strong scattering lens).

It is worth noting that our claim on the improvement of imaging resolution is valid when comparing our 
proposal and the one in the  reference1 under the same conditions (same parameter s). In fact, our analysis 
model does not involve the effect of s on the increase of angular bandwidth of scattering lens or the spatial size 
of the focused spot when analyzing the super-resolution factor J. This is still an open question. We would like 
to investigate this effect in the future.

SNR in the case of N < M. Since the number of input squeezed-state modes N may not be exactly equal to 
the number of transmission channels M in experiment, it is worth discussing how this affects the SNR in imag-
ing. In the situation of N < M , one can calculate the mean photon number

Figure 5.  Super-resolution factor J as a function of the mean number of photon in the object plane. The 
red-solid, green-dashed, blue-dashed, orange-dotted curves denote the squeezed state ( s = 2 ), squeezed state 
( s = 4 ), squeezed state ( s = 6 ), squeezed state ( s = 8 ), and coherent state, respectively. Parameters: g = 1.5.
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Note that Eqs. (5) and (22) are different where N < M . Similar to Eq. (8), the corresponding variance arrives at

where we have set φα = φs = 0 . Compared to Eq. (8), (23) possesses an additional term of 
∑N

a′=1

∑M
a′′=N+1 Ta′bTa′′b sinh

2 g . This term results from the interference between the squeezed state and the 
vacuum state from the empty input port.

By combining Eqs. (15), (22), and (23), one can obtain the signal-to-noise ratio RN<M . The ratio RN<M/�n̂wb � 
could be numerically analyzed. Figure (6) plots the RN<M/�n̂wb � as a function of N/M. From Fig. (6), it is easily 
found that the ratio RN<M/�n̂wb � increases as the increasing of N/M. The maximum RN<M/�n̂wb � can be achieved 
if N/M = 1.

The output noise in the presence of |α|2 in various regimes. In contrast to the regime of large 
|α|2 in the previous section, we take into account a full range of |α|2 . From Eqs. (5), (8) and (12), it is easy to 
compute the universal Fano factor Funiv . Accordingly, the average Funiv  could be obtained by numerical simu-
lation. Figure 7 presents the Fano factor Funiv  as a function of |α|2/(|α|2 + sinh

2 g) . It can be seen that with 
the increase of |α|2/(|α|2 + sinh

2 g) , the Fano factor Funiv  decreases. One can obtain the optimal Funiv  when 
|α|2/(|α|2 + sinh

2 g) ≃ 1.

(22)

�n̂wb �N<M = �âw†b âwb �

=
N
∑

a′=1

Ta′b sinh
2 g +

N
∑

a′=1

N
∑

a′′=1

|ta′b||ta′′b||α|2.

(23)

�(�n̂wb )
2�N<M =

N
∑

a′=1

N
∑

a′′=1

Ta′bTa′′b2 cosh
2 g sinh2 g +

N
∑

a′=1

M
∑

b′=1

Ta′bRb′b sinh
2 g

+
N
∑

a′=1

M
∑

a′′=N+1

Ta′bTa′′b sinh
2 g

+ |α|2
N
∑

a′=1

N
∑

a′′=1

|ta′b||ta′′b|[1−
N
∑

a′=1

Ta′b(1− e−2g ),

Figure 6.  The ratio of the average signal-to-noise ratio to the mean photon number RN<M/�n̂wb � as a function 
of N/M. N: number of input modes, M: number of transmission channels. It is found that the increasing of N/M 
leads to the increase in the ratio RN<M/�n̂wb � . Parameters: |α|2 = 10000,M = 50.
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It is worth pointing out that when |α|2 = 450 , the ratio |α|2/(|α|2 + sinh
2 g) ≃ 0.99 with g = 1.5 

( sinh2 g ≃ 4.53 ) which corresponds roughly to the optimal Funiv  . Therefore, |α|2 = 450 could be considered as 
a strong coherent intensity when g = 1.5 , although it is not a strong intensity in experiment. Since |α|2 > 450 is 
easily achieved in experiment, it is reasonable to assume that |α|2 is in the regime of large value.

Effect of photon loss on the SNR. In practical experiment, the photon loss is inevitable. Therefore, we 
consider the effect of photon loss of focused mode on the performance of imaging (SNR, particularly). To mimic 
the photon loss, we assume that the focused mode passes through a fictional two-port beam splitter with vacuum 
state injected in the other port. After propagating though the fictional beam splitter, the final output state can 
be characterized by

where complex number p and q denotes transmission and reflection coefficients ( |q|2 indicates the photon-loss 
rate) and âV represents the annihilation operator of vacuum state. The mean photon number of focus state with 
loss is found to be

The average SNR is given by

where FL  can be expressed as

with F  being the Fano factor without loss (For clarity, the detailed derivation is present in “Methods” section). 
Figure 8 depicts the average SNR as a function of loss |q|2 with various g. It is shown that although the averaged 
SNR degrades gradually as the increase of loss, the average SNR is still beyond the shot-noise level with small 
or moderate loss.

(24)
âw†b,L = p∗âw†b + q∗âV†,

âwb,L = pâwb + qâV,

(25)�n̂wb,L� = |p|2�n̂wb �.

(26)RL = �n̂wb,L�/FL,

(27)FL = |p|2F + |q|2,

Figure 7.  The average Fano factor Funiv  of the focused mode as a function of |α|2/(|α|2 + sinh
2 g) , where |α|2 

means the “coherent” intensity of input beam and |α|2 + sinh
2 g indicates the corresponding total intensity.
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Conclusions
Prior studies have shown that a high-resolution imaging can be achieved with a scattering lens via coherent states. 
This is owing to the fact that the scattering lens has a large numerical aperture and is able to focus the coherent-
state light to a tighter spot than the diffraction limit of that conventional lens. Nevertheless, this is a pure classical 
technique without the help of any quantum technique. In the point of view of quantum optics, the squeezed state, 
as a nonclassical state, can enable a high-precision measurement. Therefore, in the current literature, we propose 
an alternative imaging scheme in which the squeezed states are considered as input instead of the coherent states.

Compared with the previous scheme, this new method takes advantage of not only the large numerical 
aperture of the scattering lens but also the sub-shot noise of the squeezed states. Consequently, our scheme with 
squeezed states has a better performance than that of the traditional imaging scheme. On the other hand, our 
scheme establishes a superiority that maintaining the same performance (i.e. resolution) requires a reduced 
photon number of the input states. This can eliminate the disadvantages due to the strong coherent-state input.

In summary, the effect of the squeezed-state input on the performance of imaging in the optical system with 
a scattering lens is investigated. It is clarified that the squeezed state leads to an improved signal-to-noise ratio in 
imaging compared with the coherent state due to the suppressed quantum noise. Moreover, it is found that the 
squeezed state also achieves an enhanced resolution in contrast to the coherent state. Therefore, our results may 
pave a new way to realize an image with a high resolution using scattering lens with the squeezed-state input.

Methods
Variance of photon number of the focused mode. Consider the squeezed states as input, 
|� in� = [D̂(α)Ŝ(ζ )|0�]⊗N , with N being the number of input modes, D̂(α) = eαâ

†−α∗â the displacement opera-
tor, and Ŝ(ζ ) = e(−ζ â†2+ζ ∗ â2)/2 the squeezing operator (the complex number α = |α|eiφα is the amplitude of the 
beam and the complex number ζ = geiφs denotes the squeezing parameter, real number g being the squeezing 
strength). The number of transmission channels is denoted by M. For simplicity, we assume that M = N.

For the convenience of calculation, one can rewrite the input-output relation of a disordered medium as

where the complex number α denotes the coherent amplitude of the input field and the operator âSVa′  accounts for 
the quantum fluctuation ( �âSVa′ � = 0 , �0|Ŝ†(α)D̂†(α)âina′ D̂(α)Ŝ(ζ )|0� → �0|Ŝ†(α)(âSVa′ + α)Ŝ(ζ )|0�).

From Eq. (28), it is easy to obtain the photon number operator

(28)âwb =
∑

a′
|ta′b|(âSVa′ + α)+

∑

b′
rb′bâ

in
b′ ,

Figure 8.  The effect of photon loss on the average signal-to-noise ratio. Parameters: |α|2 = 10000 , (a) s = 2 , (b) 
s = 4 , (c) s = 6 , (d) s = 8.
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The expectation value of n̂wb  is then obtained

where �n̂SVa′ � = �âSV†a′ âSVa′ � = sinh
2 g and we have used �âSVa′ � = 0 and �âb′ � = 0 . Consider that |α|2 ≫ sinh

2 g , the 
second term in Eq. (30) dominates. As a result, Eq. (30) is roughly equal to

According to the definition of variance �(�n̂wb )
2� ≡ �(n̂wb )2� − �n̂wb �2 , one can obtain the variance of photon 

number

where �(�n̂SVa′ )
2� = �(n̂SVa′ )2� − �n̂SVa′ �2 and we have set φα = 0 . Eq. (32) could be further simplified to

where we have ut i l ized 
∑

b′ Rb′b = 1−
∑

a′ Ta′b  ,  �n̂SVa′ � = sinh
2 g  ,  �(�n̂SVa′ )

2� = 2 cosh
2 g sinh2 g  , 

�âSV†a′ âSVa′ â
SV†
a′′ âSVa′′ + âSV†a′ âSVa′ � = �âSV†a′ âSV†a′ âSVa′′ â

SV
a′′ � = cosh

2 g sinh2 g  , 
2�âSV†a′ âSVa′ � + 1+ �(âSVa′ )2� + �(âSV†a′ )2� = e−2g , and set φs = 0 . Particularly, if |α|2 is sufficiently large for the 
fourth term of Eq. (33) to dominate, the variance could be reduced to

where �n̂wb � ≃ |α|2
∑M

a′=1

∑M
a′′=1 |ta′b||ta′′b| is used.

Quantum theory of optical imaging. Input-output relation corresponding to a spatial Fourier trans-
form. Recall that in our imaging scheme, with the help of the squeezed states, the focused beam has a sub-shot 
noise. To uncover the role of the suppressed quantum fluctuation in the resolution of Fourier microscopy, it 
requires to analyze the configuration by using the quantum mechanical language.

In quantum optics, the object field in Fig. 9 is described by the operator â(z) [ ̂a†(z) ] instead of the complex 
amplitude a(z) in classical optics. Similarly, the field in the pupil plane is characterized by the operator f̂ (ξ) . The 
operators satisfy the standard commutation relation, [â(z), â†(z′)] = δ(z − z′) and [f̂ (ξ), f̂ †(ξ ′)] = δ(ξ − ξ ′) . 

(29)

n̂wb =
M
∑

a′=1

Ta′bâ
SV†
a′ âSVa′ +

M
∑

b′=1

Ra′bâ
in†
b′ â

in
b′ +

[

M
∑

a′=1

M
∑

b′=1

|ta′b|rb′bâSV†a′ âinb′ +H .c.

]

+
M
∑

a′=1

M
∑

(a′′ �=a′ ,a′′=1)

|ta′b||ta′′b|âSV†a′ âSVa′′ +
M
∑

b′=1

M
∑

(b′′ �=b′ ,b′′=1)

r∗b′brb′′bâ
in†
b′ â

in
b′′

+
[

M
∑

a′=1

|ta′b|α∗
(

M
∑

a′′=1

|ta′′b|âSVa′′ +
M
∑

b′=1

rb′bâ
in
b′

)

+H .c.

]

+ |α|2
M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|.

(30)�n̂wb � =
M
∑

a′=1

|ta′b|2�n̂SVa′ � + |α|2
M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|,

(31)�n̂wb � ≃|α|2
M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|.

(32)

�(�n̂wb )
2� =

M
∑

a′=1

T2
a′b�(�n̂SVa′ )

2� +
M
∑

a′=1

M
∑

b′=1

Ta′bRb′b�âSV†a′ âSVa′ �

+
M
∑

a′=1

M
∑

(a′′ �=a′ ,a′′=1)

Ta′bTa′′b

(

�âSV†a′ âSVa′ â
SV†
a′′ âSVa′′ + âSV†a′ âSVa′ � + �âSV†a′ âSV†a′ âSVa′′ â

SV
a′′ �

)

+ |α|2
M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|
[

M
∑

a′′′=1

Ta′′′b(2�âSV†a′′′ â
SV
a′′′ � + 1)

+
M
∑

b′=1

Rb′b +
(

M
∑

a′′′=1

|Ta′′′b|�(âSVa′′′)2� + h.c.

)]

,

(33)

�(�n̂wb )
2� =

M
∑

a′=1

M
∑

a′′=1

Ta′bTa′′b2 cosh
2 g sinh2 g +

M
∑

a′=1

M
∑

b′=1

Ta′bRb′b sinh
2 g

+ |α|2
M
∑

a′=1

M
∑

a′′=1

|ta′b||ta′′b|
[

1−
M
∑

a′′′=1

Ta′′′b(1− e−2g )

]

,

(34)�(�n̂wb )
2� ≃ �n̂wb �

[

1−
M
∑

a′=1

Ta′b(1− e−2g )

]

,
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Since the lens L1 performs a spatial Fourier transform between the object and pupil fields, the relation between 
â(z) and f̂ (ξ) reads as  follows35

where c denotes the spatial transmission bandwidth of the optical system.

Input–output relation in terms of the prolate spheroidal functions. In terms of the prolate spheroidal functions, 
the operators â(z) and f̂ (ξ) can be expressed as

where

âk ( ̂bk ) and f̂k ( ̂gk ) denote the annihilation operators of the prolate mode φk ( χk ) and can be obtained by

The operators ( ̂ak , b̂k , f̂k , and ĝk ) obey the standard commutation relation, [Ôk , Ô
†
k′ ] = δ(k − k′) ( O = a, b, g , k ). 

It is worthy noting that φk(z) lies within the region of |z| < 1 while χk(z) is distributed over the area of |z| > 1.
Based on the properties of the prolate spheroidal  functions62, one has

(35)f̂ (ξ) =
√

c

2π

∫ ∞

−∞
â(z)e−iczξdz,

(36)â(z) =
∞
∑

k=0

âkφk(z)+
∞
∑

k=0

b̂kχk(z),

(37)f̂ (ξ) =
∞
∑

k=0

f̂kφk(ξ)+
∞
∑

k=0

ĝkχk(ξ),

(38)φk(z) =
{

1√
�k
ψk(z), |z| ≤ 1,

0, |z| > 1,
χk(z) =

{

0, |z| ≤ 1,
1√
1−�k

ψk(z), |z| > 1,

(39)âk =
∫ ∞

−∞
â(z)φk(z)dz,

(40)b̂k =
∫ ∞

−∞
â(z)χk(z)dz,

(41)f̂k =
∫ ∞

−∞
f̂ (ξ)φk(ξ)dz,

(42)ĝk =
∫ ∞

−∞
f̂ (ξ)χk(ξ)dz.

(43)
∫ 1

−1

φk(z)e
−iczξdz = (−i)k

√

2π

c
ψk(ξ),

(44)
∫ ∞

−∞
ψk(z)e

−iczξdz = (−i)k
√

2π

c
φk(ξ).

Figure 9.  The traditional imaging system, including the object field a(z), the first lens ( L1 ), the field in the pupil 
plane f (ξ) , the second lens ( L2 ), and the field in the image plane e(z). X denotes the width of the object field 
and d represents the finite size of pupil. For convenience, the dimensionless spatial coordinates z = 2x/X in the 
object and image planes and ξ = 2y/d in the pupil plane are introduced.
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By substituting Eqs. (36), (37), (43), and (44) into (35), it is easy to obtain the relations between the photon 
annihilation operators of the prolate modes in the object and pupil planes

where Eqs. (45) and (46) build the connection between the input and output beams in the basis of the prolate 
spheroidal functions. Interestingly, this input-output relation is very similar to the case of a two-port beam 
splitter.

Reconstructed field operators and modified point-spread function. From Eq. (45), the operator-valued coeffi-
cients â(r)k  of the reconstructed  object35 is found to be

According to Eqs. (39) and (47), one can obtain the relation between the reconstructed field operator â(r)(z) and 
the object field operator â(z)35

where h(r)(z′, z) denotes the reconstruction PSF and is given by

From Eq. (49), it is easily found that the modified imaging system has a reconstruction PSF which is related to 
the number Q. It is worthy pointing out that as Q increases, the accuracy of PSF in Eq. (49) is  improved35. Par-
ticularly, in the limit of Q → ∞ , the PSF is given by h(r)(z′, z) = lim

Q→∞

∑Q−1

k=0
φk(z

′)φk(z) = δ(z′ − z)35, which 
reveals that the image is a complete replication of the object. In other words, the PSF is totally accurate.

Super‑resolution factor. As discussed above, the model of input-output relation of the optical imaging 
system has been reviewed. According this relation, we will deal with the situation in our scheme particularly. 
Consider a point-like object placed at the origin z = 0 in the object plane in Fig. 1. Correspondingly, we assume 
the focused beam in the object plane with a spatial distribution

where the width of the focused beam is very small ε ∼ 0 and �n̂wb � is actually the mean photon number of the 
focused beam. It is easy to check that the total mean photon number of the beam illuminating the object is given 
by 

∫ 1

−1
�â†(z)â(z)�dz = �n̂wb � and the corresponding reconstruction PSF is roughly equal to h(r)(0, z).

Assume that the object field (i.e. the focused beam) is a coherent state. In this situation, according to Eq. (16), 
the SNR is exactly equivalent to the mean photon number of the focused beam,

On the contrary, by combining Eqs. (15), (48), and (49), the SNR of reconstructed object R(r) can be obtained,

where the photon number operator of the reconstructed object n̂(r) =
∫ 1

−1
â(r)†(z)â(r)(z)dz  and 

ak =
∫ 1

−1
�â(r)(z)�φk(z)dz represents the coefficients of decomposition of â(r)(z) over the prolate function φk(z).

Note that the number Q in Eq. (49) determines the PSF in the super-resolving-Fourier-microscopy imaging 
system. It is easily checked that increasing Q improves the accuracy of the PSF in Eq. (49) which is related to 
the resolution. The larger the number Q is, the higher the super-resolution of the reconstructed object achieves. 
Nevertheless, from Eq. (52), it is easy to verify that with the increase of Q, the SNR in the reconstructed object 
degrades. That is to say, the number Q could not be arbitrary large due to constraint from the decay of the SNR 
in the reconstructed object. Without loss of generality, one can presume that the SNR in the reconstructed object, 
no less than unity, can deliver the reconstruction of the object.

To describe the superiority of this scheme in resolution, the comparison between the traditional and modified 
schemes is performed. Correspondingly, the super-resolution factor is introduced and is defined as the ratio of 
the width of the diffraction-limited imaging PSF (W) in Eq. (19) to the one of the reconstruction PSF ( WQ ). In 

(45)f̂k = (−i)k(
√

�kâk +
√

1− �k)b̂k ,

(46)ĝk = (−i)k(
√

1− �kâk −
√

�k)b̂k ,

(47)â
(r)
k = f̂k

(−i)k
√
�k

= âk +
√

1− �k

�k
b̂k .

(48)â(r)(z) =
∫ 1

−1

h(r)(z′, z)â(z′)dz′ +
Q−1
∑

k=0

√

1− �k

�k
b̂kφk(z),

(49)h(r)(z′, z) =
Q−1
∑

k=0

φk(z
′)φk(z).

(50)�â†(z)â(z)� =
{ �n̂wb �

ε
, |z| ≤ ε/2,

0, |z| > ε/2,

(51)R = �n̂wb � =
∫ 1

−1

�â†(z)â(z)�dz.

(52)R(r) ≡ �n̂(r)�2
�(�n̂(r))2� =

(

Q−1
∑

k=0

|ak|2
)2

/

(

Q−1
∑

k=0

|ak|2/�k

)

,
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order to characterize it more intuitively, Fig. 10 plots the diffraction-limited imaging PSF h(z) and the recon-
struction PSF h(r)(0, z) for Q = 7 normalized to unity at their maxima, respectively. To quantify the degree of 
the super-resolution, we introduce the half-widths W and WQ of these two PSFs measured at their half maxima. 
Then the super-resolution factor J can be obtained by

As depicted in Fig. 10, it is easy to find that W = 1.90 , WQ = 0.25 , and J = 7.6 which reproduces the result in 
Ref.35.

Derivation of the SNR in the presence of photon loss. The detailed derivation of SNR with loss is 
shown as follows. Assume that the focus mode experiences photon loss. We mimic this loss process by passing 
through a fictional two-port beam splitter with vacuum state injected in the other input port. After the focus 
state passes through the beam splitter, the output mode could be described by

where the complex number p and q denote transmission and reflection coefficients ( |q|2 indicates the photon 
loss rate), âV represents the annihilation operator of vacuum state.

Inserting Eq. (28) into (54), one can obtain

The photon number operator can be cast into

The corresponding mean photon number is then given by

The variance of photon number is found to be

The average Fano factor can be then obtained

(53)J = W

WQ
.

(54)âwb,L = pâwb + qâV,

(55)

âw†b,L = p∗
M
∑

a′=1

|t∗a′b|(âSV†a′ + α∗)+ p∗
M
∑

b′=1

r∗b′bâ
†
b′ + q∗âV†,

âwb,L = p

M
∑

a′=1

|ta′b|(âSVa′ + α)+ p

M
∑

b′=1

rb′bâb′ + qâV,

(56)

n̂wb,L = âw†b,Lâ
w
b,L

= p∗qn̂wb + q∗âV†
[

p

M
∑

a′=1

|ta′b|(âSVa′ + α)+ p

M
∑

b′=1

rb′bâb′

]

+
[

p∗
M
∑

a′=1

|t∗a′b|(âSV†a′ + α∗)+ p∗
M
∑

b′=1

r∗b′bâ
†
b′

]

qâV.

(57)�n̂wb,L� = �âw†b,Lâ
w
b,L� = |p|2�n̂wb �,

(58)�(�n̂wb,L)
2� = |p|4�(�n̂wb )

2� + |p|2|q|2�n̂wb �.

Figure 10.  Point-spread function as a function of z. The blue-dashed line denotes the traditional optical 
imaging system and the red one indicates the super-resolving-Fourier-microscopy imaging system.



15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7785  | https://doi.org/10.1038/s41598-021-85846-7

www.nature.com/scientificreports/

The average SNR arrives at
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