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Role of fluctuations in epidemic 
resurgence after a lockdown
I. Neri & L. Gammaitoni* 

Most popular statistical models in epidemic evolution focus on the dynamics of average relevant 
quantities and overlooks the role of small fluctuations on the model parameters. Models for Covid-19 
are no exception. In this paper we show that the role of time-correlated fluctuations, far from being 
negligible, can in fact determine the spreading of an epidemic and, most importantly, the resurgence 
of the exponential diffusion in the presence of time-limited episodes in promiscuity behaviours. The 
results found in this work are not only relevant and specific for the Covid-19 epidemic but are more 
general and can be applied to other epidemics.

In present days of the Covid-19 epidemic dynamics, when the maximum of the infection spreading has passed in 
most western countries, there is a growing concern that time-limited episodes of large increases in promiscuity, 
might bring important resurgence in the spreading of the infection. We show that, in order to model the effect 
of such episodes it is of fundamental importance to take in duly account the unavoidable presence of fluctua-
tions in the promiscuity behaviour. Neglecting the presence of time-correlated random fluctuations can lead to 
under-estimating the future evolution of the epidemics.

Although the need for a stochastic dynamics approach to epidemic modelling is well  recognised1–5, the general 
tendency is to rely on a statistical approach where the role of fluctuations is accounted for through a probabilistic 
 approach6,7 or by considering only white gaussian  fluctuations8,9. In the following we will address the stochastic 
dynamics of the epidemics through a Langevin-based approach (i.e. through stochastic differential equations in 
the presence of time-correlated fluctuations) and will show how does this compare to the (average-parameter) 
deterministic description.

To fix our ideas, we will focus on the simple susceptible-infected-removed (SIR)  model10 applied to a fixed 
population of N subjects. However, conclusions drawn here have a much general validity, specifically for the 
wide class of compartmental epidemic models.

Results
As a realistic model we considered the population of the Umbria region, in Italy. There, the epidemic spread has 
reached its maximum approximately on April 5, 2020 (day 36)11 and has subsequently decreased with a total 
of removed R = 1400 as of May 30 2020 (day 91). On March 13 (day 13) a lockdown was decided all-over the 
country and this affected the spread of the infection in Umbria, as well. The lockdown was subsequently gradually 
removed, starting on May 18 (day 65). According to the standard SIR model, we consider N = 820,000 the total, 
fixed, population that, at any time t, is composed by S(t)+ I(t)+ R(t) = N . Here, S(t) indicates the number of 
healthy people at time t, that is susceptible to get infected. I(t) indicates the number of actually infected people 
and R(t) the number of the removed from I(t), i.e. the deceased plus the survived that cannot be infected again. 
The deterministic dynamics of the populations is expressed by a set of ordinary differential equations:

The relevant parameters of this dynamics are β and γ , that represent the rate of passage from S(t) to I(t) and 
from I(t) to R(t), respectively. We can express β as the product of two factors β = CT where C represents the 
promiscuity, i.e. the tendency to socialise, to establish close contacts. The larger C the greater the number of 
contacts per day per person. On the other hand, T represents the capacity of the virus to be transmitted from 
person to person during a single contact. The larger is T, the greater is the probability to get infected in a single 

(1)

Ṡ(t) = −β
S(t)I(t)

N

İ(t) = β
S(t)I(t)

N
− γ I(t)

Ṙ(t) = γ I(t)
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contact. Finally, γ represents the removal rate, i.e. the probability to get out of the infected condition, due to 
healing or death. Public policies aimed at reducing the spread of the epidemics usually try to reduce the value 
of β by affecting C, with quarantines and lockdown and T with protection masks and social distancing (through 
this paper we assume γ = 0.037 , T = 0.43).

In order to keep the epidemics under control, authorities use to monitor a parameter, the Reproduction 
 Number12 Rt = (β/γ )(S(t)/N) , associated with the rate of change dI(t)/dt. The epidemic growth is conditioned 
by a positive rate of change and this, according to the second equation in (1), implies Rt > 1 . In the initial phase 
of the epidemics, where S(t)/N ≈ 1 , R0 = β/γ > 1 represents the condition that starts the exponential growth 
phase. In general, if the numerical impact of the epidemics is small compared to the total population (like in the 
Umbria case), we can consider simply Rt = β/γ . In Fig. 1a we present the results of the model for the infected 
population I(t), based on the data from the Umbria region. We modelled the lockdown occurred between day 
13 ( tstart ) and 65 ( tend ), as an exponential damping of the promiscuity index C(t) for the duration of the event.

with τ0 = 6 days. C0 and Cend are chosen such that before the start and after the end of the lockdown we have 
Rt = 11.6 and Rt = 0.7 , respectively. These values have been chosen to mimic the epidemic evolution in the 
Umbria  region11.

In this phase of the epidemics, when, thanks to the social  restrictions13, the I(t) curve has reached small val-
ues, there is a growing concern that changes in the population attitude might bring a resurgence of the growth, 
producing a second peak.

One potential risk is represented by the occasional gathering of people. These are intense, time-limited events, 
like public festivals (that span for a week) or civic or religious celebrations (one or two days) or public protests 
(few hours) that in a relatively small community, like in the Umbria region, they can easily interest up to 20% of 
the population. If τe is the duration of the event, we can model it with an impulse-like additional contribution 
to the C(t) parameter (due to a sudden and time-limited increase in the promiscuity):

where the rect function indicates a rectangular impulse of amplitude A and width τe that starts at time 
te = 150 days, with te > tend . Thus, our promiscuity function, at the end of the lockdown period, now reads 
C(t) = Cend + Ce(t) for t > tend.

(2)C(t) =

{

C0 0 < t < tstart

C0 exp(−t/τ0) tstart ≤ t ≤ tend

Cend t > tend

(3)Ce(t) = A rect

(

t − te

τe

)
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Figure 1.  (a) Population I(t) from the numerical solution of the SIR model in (1). (b) Reproduction Number 
Rt versus time. The lockdown phase is characterised by an exponential decrease in this parameter. The narrow, 
rectangle impulse at day 150 represents time-limited increase in the β coefficient, due to a large gathering event. 
Dot-dashed lines represent I(t) and Rt without any fluctuation, respectively in (a, b). Continuous lines represent 
the same quantities in the presence of fluctuations. β si affected by noise with correlation time τ = 0 days (blue), 
τ = 30 days (green), τ = 100 days (red). Here σ = 0.009 and �ξ� = 0 . The end of the lockdown phase is marked 
by the vertical dashed line.
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For there results presented in the curves of Figs. 1 and 2 we used A = 0.7 and τe = 4 days. We can observe 
that, although the event produces a significant increase in the Reproduction Number Rt (Fig. 1b), its impact in 
the epidemic growth is quite limited (Fig. 1a, dotted curve). We notice that by solely monitoring the Rt in this 
condition, might bring a sense of false security, due to the fact that low-amplitude and time-limited events seem 
to show limited consequences. This is also visible in Fig. 2, where we show the change in R(t) due to the presence 
of the event (Fig. 2, dotted curve).

However, as we are going to show, the impact of even such a limited event might be significantly larger if we 
take into account the role of fluctuations affecting the promiscuity attitudes. It is a fact that most of the popular 
approaches to epidemic  modelling6, avoid taking into account small fluctuations and focus only on slow, deter-
ministic changes in the C(t) (and thus β ) parameter.

In order to show the potential impact of such fluctuations, we will assume that C(t) can be affected by noise, 
due to random changes on people behaviour from day-to-day practice. We do so by adding a stochastic signal 
σξ(t) , so that C(t) = Cend + Ce(t)+ σξ(t) , with σ = 0.009 and ξ(t) a gaussian distributed, zero average, unitary 
standard deviation, exponentially correlated noise, with correlation time τ . As a consequence β = TC(t) becomes 
a random variable and (1) a set of stochastic differential equations. By the moment that β is a positive-defined 
quantity, we require that C(t) ≥ 0.

In Figs. 1 and 2, we present the impact of an exponentially correlated noise on the populations I(t) and R(t), 
respectively, where we show the numerical solutions of (1) for three different values of the noise correlation time 
τ . Although all the three cases have the same average ( �ξ� = 0 ) and standard deviation σ = 0.009 , the change 
in the number of removed is remarkable.

Specifically, we observe that, for the delta-correlated noise ( τ = 0 ), the role of fluctuations is actually negligi-
ble and there is no increase in I(t) and R(t). However, increasing the correlation time τ , we observe a significant 
increase in both the curves. This is apparent in the shape of the curve before the impulsive event and in the 
impact of the event itself.

To express quantitatively such an impact, we estimated the change in the so-called size of the epidemic 
N − S(t∞) = R(t∞) . The change in this quantity, before and after the impulsive event, is expressed by 
�R = R(t∞)− R(tend) , where t∞ ≫ te is a proper time, chosen when R(t) has reached the growth plateau. In 
Fig. 3, we show the value of �R , for τ = 100 days and a wide interval of τe and A values. As expected, �R grows 
when both τe and A grow.

In order to account for these behaviours and provide a detailed modelling of the effect of noise, we studied 
the behaviour of the size of the epidemic change �R as a function of the noise correlation time τ . In Fig. 4 we 
present the results of the digital simulation (dots) together with the prediction of our model (lines) expressed as 
relative changes. We notice that �R grows monotonically with noise correlation time. This is true both for the 
case without the time-limited event (lower curve) and with it (upper curve). The change in �R , due to a highly 
correlated noise can be very significant, up to 50% of the involved population. The role of white noise, instead, is 
negligible and the epidemic response is completely accounted for by the purely deterministic evolution.

All these feature can be accounted for by considering that the Reproduction Number Rt , in the presence of 
noise, can be expressed as a composition of the original (i.e. in the absence of noise) value plus the contribution 
of the fluctuating part:

with

(4)Rt(t) =
βd

γ
+

βξ

γ
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Figure 2.  Population R(t) from numerical solution of (1). Dot-dashed line represents the population R(t) 
without any fluctuation in β . Continuous lines represent R(t) in the presence fluctuations. Noise correlation time 
τ = 0 days (blue), τ = 30 days (green), τ = 100 days (red).
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By the moment that the noise ξ(t) represents a zero-average contribution, the usual  approach6 in these cases 
is to rule out the role of fluctuations, considering �βξ � = 0 and thus �Rt(t)� = βd/γ , and go back to the original 
set of equations (1) with �S(t)� = S(t) , �I(t)� = I(t) and �R(t)� = R(t) . As we have seen in Figs. 1 and 2, this is 
justified if the noise is white.

However, in the case of coloured noise, i.e. finite-time correlated fluctuations, the time-averaging operation 
has to be taken with some attention. In particular, in the case of averaging in a short (compared to the noise 
correlation time) time window, this might result in a non zero 〈βξ 〉 . In fact, this is the case if we consider that 
the relevant time window of the epidemics dynamics is represented here by the quantity � ≈ 1/|(β − γ )| . This 
is clear if we consider the time evolution of the infected I(t) in (1). In this case the τ-correlated noise contribu-
tion 〈βξ 〉 , has to be computed through a moving average, with a time window of width � . By the moment that 
time averaging can be interpreted as low-pass filtering, we represent the time averaging procedure in terms of a 
convolution operation between the auto-correlation function of the noise and the rectangular window rect(t/�) 
with width �:

(5)
βd = T(Cend + Ce(t))

βξ = Tσξ(t)
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Figure 3.  Impact of the impulse-like, time-limited event, in the presence of fluctuations, estimated by 
monitoring the change in the expected size of the epidemic, �R , versus event duration ( τe ) and intensity (A). 
τ = 100 days. σ and 〈ξ〉 as in Figs. 1 and 2.
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Figure 4.  Size of the epidemics �R as a function of the noise correlation time τ . Dots refer to numerical 
solution of (1) in the presence of fluctuations: (red) when an event with amplitude A = 0.7 and duration τe = 4 
days is present and (blue) without any impulsive event. Continuous lines represent numerical solution of (1) 
with β = βd + �βξ � , according to (7). Blue dashed line represents the theoretical prediction in Eq. (12).
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The time averaged contribution of the fluctuating βξ can thus be expressed as �βξ � = σŴ(�/2)/� . Carrying 
out the finite integral Ŵ(�) we finally obtain:

It is important to note that this expression provides 〈βξ 〉 only in implicit way, by the moment that

that prevents from obtaining an analytic expression for 〈βξ 〉 . However Eq. (7) can be solved numerically. The 
solid lines in Fig. 4 represent the result of the numerical solution of the SIR model where β = βd + �βξ � and 〈βξ 〉 
is provided by the numerical solution of Eq. (7).

In the approximation S(t)/N ≈ 1 , we can derive an analytic solution for �R that uses the second and third 
equations in (1). From the second equation we obtain:

where I(0) = I0 = k/(β − γ ) . Substituting Eq. (9) into the third equation and solving for R(t) we obtain:

We are interested in evaluating the impact in correspondence of the isolated event, thus we set R0 = R(tend) . 
we have:

and thus:

This quantity is also presented in Fig. 4 (dashed curve). As we can see the theoretical curve follows closely 
the numerical solution, in good agreement with the results of the stochastic simulation.

Discussion
In conclusion, we discussed the role of fluctuations in epidemics dynamics, with special attention to the impact 
that impulsive, time-limited events, may have on the resurgence of the epidemic growth, after the lockdown 
phase. Specifically we have shown that the role of even zero-averaged, small-amplitude random fluctuations, 
with correlation time of the order of, or longer than, the characteristic time scale of the epidemics dynamics, 
results in a significant amplification of the size of the epidemics. We presented a model to quantitatively estimate 
the impact of such fluctuations on the effective Reproduction Number Rt and on the size of the epidemics �R . 
Neglecting the role of fluctuations might result in an underestimation of Rt with potential consequences on the 
size of the epidemics itself.
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